Essential Guide to

. PropLESorT

nd N, Development and Customization

= In Depth Programming in PeopleCode
= Using Application Engine in PeopleSoft
= PeopleTools Development

= Application Designer Techniques

Tony Delia
Galina Landres
Isidor Rivera
Prakash Sankaran

/l' MANNING

Dottie
Text Box
Module One

Essential Guide to PeopleSoft

Development and Customization

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

Essential Guide to
PeopleSoft Development

and Customization

ToNYy DELIA
GALINA LANDRES
ISIDOR RIVERA
PRAKASH SANKARAN

MANNING

Greenwich

(74° w. long.)

License d to James M White <jwhite@maine.edu>

For electronic browsing and ordering of this and other Manning books,
visit http://www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

32 Lafayette Place Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2001 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s
policy to have the books we publish printed on acid-free paper, and we exert our
best efforts to that end.

Manning Publications Co. Copyeditor: Adrianne Harun
/I/I 32 Lafayette Place Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
123456789 10-VH -03 020100

Licensed to James M White <jwhite@maine.edu>

brief contents

Part 1 An introduction to PeopleSoft and PeopleTools 1

1 PeopleSoft fundamentals 3
2 Development tools 19
3 Administration tools 32

Part 2 Application development 69

Building your first application 71
Providing user access to the application 108
Enhancing your application 131

Advanced panel design features 165
Building database objects 198

PeopleSoft Application Processor 216
Application Designer—PeopleSoft 8 249

SO XNy AR

Part 3 PeopleCode: an in-depth look 257

11 Introduction to PeopleCode 259

12 PeopleCode language elements 268

13 PeopleCode & the Application Processor 293
14 Messages and error handling 313

15 Embedded SQL 332

16 Working with Scrolls 340

17 Function libraries 374

18 PeopleCode debugging tools 399

19 PeopleCode—PeopleSoft 8 416

Licensed to James M White <jwhite@maine.edu>

Part 4 Customizing PeopleSoft-delivered applications 429

20 “Vanilla” vs. customized 431

21 Customizing delivered panels 455

22 Adding new fields and panels 472

23 Adding new functionality to PeopleSoft-delivered applications 494
24 Customizing security search records, PeopleCode, and menus 527

Part5 Using SQR in PeopleSoft Applications 569

25 Running SQR programs in PeopleSoft applications 571
26 Creating a custom SQR program 590

27 Attaching SQR to the Process Scheduler — 600

28 Communicating with the Process Scheduler 634

29 Implementing security in SQR 659

30 Additional Process Scheduler topics 683

31 SQR and Process Scheduler—PeopleSoft 8 702

Part 6 Understanding PeopleSoft COBOL 713

32 What’ the difference? 715
33 Modifying PeopleSoft COBOL 738
34 Additional topics 748

Part 7 Using Application Engine 769

35 What is Application Engine? 771
36 Build your first application 789
37 Using cache fields 807

38 Dynamic SQL statements 817

39 Selecting multiple rows 828

40 Incorporating decision logic ~ 849
41 Dynamic sections 871

42 Using Run Controls—part A 887
43 Using Run Controls—part B 907
44 Additional topics 942

45 Application Engine—PeopleSoft 8 954

vi BRIEF CONTENTS

Licensed to James M White <jwhite@maine.edu>

contents

about this book xxi
about the authors xxiv
acknowledgments xxv

about the cover illustration xxvii

Part 1 An introduction to PeopleSoft and PeopleTools 1

1 PeopleSoft fundamentals 3

1.1 PeopleSoft architecture 4
Two-tier architecture 4 + Three-tier architecture 4 < Web architecture 7
n-tier architecture 8 < Tiers and their functions 9

1.2 A user’s view to PeopleSoft 10
Signing onto PeopleSoft 10 + Configuration Manager 11
Navigation in PeopleSoft 14

2 Development rools 19

2.1 Fields 20

2.2 Records 21

2.3 DPanels 22

2.4 Panel groups 24
2.5 Menus 25

2.6 PeopleCode 26

2.7 Projects and upgrades 27
Upgrades 27

2.8 Cross-reference utilities 28
Find object references 28 ¢ Find string In PeopleCode 29
Record Cross References 30

vii

Licensed to James M White <jwhite@maine.edu>

3 Administration tools 32

Part 2

viii

3.1

3.2

3.3

3.4

3.5
3.6

Data Mover 33
Data Mover overview 33 + Examining the Data Mover script 35

Import Manager 37
Defining an import definition 38 4+ Running the Import Manager 45

Security Administrator 47
Defining an operator class 47 < Linking operator IDs to an operator
class 54 4 Restricting Application Designer Access 57

Object security 58
Object groups 59 + Linking object groups to security classes 61

Operator preferences 63
Tree Manager 64

Application development 69

Building your first application 71

4.1

4.2

4.3
4.4

4.5

4.6

Identifying the application 72
Fit/Gap analysis 72 + Gathering user requirements 72 < Identifying the
objects to be developed 73 < Prototype 74

Using the Application Designer 75
General icons 76 + Record display icons 77 < Panel design icons 77
Panel group icons 78

Creating field definitions 78

Working with projects 82
General 84 + Report Filter 84 + Copy Options 84

Creating a PeopleSoft record definition 84

Create a schema 85 < Identify and create custom fields 86 < Creating a
record definition 86 ¢ Defining record definition properties 89

Define record field properties 93 < Perform Data Administration 100

Creating a PeopleSoft panel definition 101

Assembling record fields in the panel 102 < Define panel field
properties 103 ¢ Checking the panel layout 105 + Define panel
properties 105 4 Saving the panel 106

Providing user access to the application 108

5.1

Creating panel groups in PeopleSoft 109
Create a new panel group 109 «+ Insert panels into the panel group 109

Licensed to James M White <jwhite@maine.edu>

CONTENTS

5.2

5.3

Define Panel Group properties 110 + Save the panel group definition 112
Panel groups and process definitions 113

Creating application menus in PeopleSoft 113

Create a new menu definition 113 ¢ Create new bar items 114 ¢ Create new
menu items 114 4 Define Menu Item properties 115 + Define menu
properties 116 4 Save the menu definition 117 < Pop-up menus 117

Authorizing users 118

General attributes 119 < Menu items 119 ¢ Sign-On Times 121 + Process
groups 121 < Process profiles 123 + Creating operators using operator class
definitions 124 + Understanding functional security (Trees) 128

6 Enhancing your application 131

6.1

6.2
6.3

6.4

6.5

Creating and using prompt records 131

Principles of prompt records 132 ¢ Prompt records with a single search
key 132 ¢ Prompt records with effective dates 134 ¢ Prompt records with
multiple search keys 136 ¢+ Dynamic prompt records 137

Creating and maintaining translate values 140
Creating and using search records 144
Search records without keys 144 + Search records with search keys 145

Search records with search keys and database keys 148 < Search records with
From and Through search keys 149 + Create and define search records 151

Working with Derived/Work records 154
Using derived records as counters and totals 155 + Using derived records to
display messages 160

Using push buttons 160

7 Advanced panel design features 165

7.1

7.2

7.3

7.4
7.5

CONTENTS

Working with scroll bars 166

Multiple rows on scroll bars 166 + Parent and child records on scrolls 168
Scroll bars used as work scrolls 171

Working with effective dates 176

PeopleCode functions for effective-dated processing 178

Working with subpanels and secondary panels 179

Subpanels 179 ¢ Secondary panels 182

Designing inquiry panels 184

Using a grid on a panel 189

Sorting the grid on its columns 190 + Copy data from grids into
spreadsheets 190 4 Copy data from spreadsheets into grids 191 + Adjust

row heights and column widths 192 4 Freezing columns on a grid 192
Creating a grid on a panel 193

Licensed to James M White <jwhite@maine.edu>

ix

8 Building database objects 198

8.1 Tables and views in PeopleSoft 198
Database catalog tables and views 198 < PeopleTools tables and views 199
Application tables and views 200

8.2 Database object modeling 202

8.3 Building database tables and views 204
Define the record definition type 205 ¢ Define the database keys 205
Define DDL parameters for the table 207 < Define DDL parameters for
indexes 208 < Build the object in the database 209

9 PeopleSoft Application Processor 216

9.1 Search processing 218
Determine mode of access 218 4 Retrieve panel group definition 218
Determine search fields 220 + Populate and display search fields 222
Edit search fields 223

9.2 Data retrieval 225
Verify mode with data from search record 225 ¢ Prepare the list box 226
Prepare a list of panels 228 + Prepare a list of records and fields 229
Retrieves data from the database 230

9.3 Panel Group display 232
RowSelect processing 232 < Default processing (iterative) 233
Display panel group 234

9.4 Data entry or inquiry 236
Field modification 236 < Rowlnsert 239 < RowDelete 239 + Prompt
processing 240 <+ Command or push buttons 241 ¢ Pop-up menus 242
Save processing 243 < Cancel 248

10 Application Designer—PeopleSoft 8 249

10.1 Development objects 250
Application Engine program 250 < Business components 250
Business interlink 251 « File Layout 252 + HTML definitions 253 < Image
definition 253 ¢ Message definition 253 ¢ Message channel definition 254
Message node definition 254 + SQL definition 254 < Style sheet 255
10.2 Other features 255
General environment 255 ¢ Field definitions 255 ¢ Record definitions 255
Panel definitions 256 < Panel group definitions 256

CONTENTS

Licensed to James M White <jwhite@maine.edu>

Part 3 PeopleCode: an in-depth look 257

11 Introduction to PeopleCode 259

11.1 What is PeopleCode? 260

11.2 PeopleCode Events 261
Record PeopleCode events 261 + Menu PeopleCode events 263

11.3 Using Application Designer to develop PeopleCode 263

12 PeopleCode language elements 268

12.1 PeopleCode and record fields 269
12.2 PeopleCode editor 269

12.3 PeopleCode comments 271

12.4 Data types 271

12.5 PeopleCode data elements 273
Record field references 273 ¢ Temporary variables 275 + Constants 275
System variables 276 <+ Global and local variables 277

12.6 Statements and expressions 278
Statements 278 + Control statements 279 ¢ Expressions 286

12.7 PeopleCode tools tables 289

13 PeopleCode & the Application Processor 293

13.1 The Application Processor 294

13.2 Search processing 295
Menu item is chosen 295 4 Search processing—Add mode 295

13.3 Data retrieval 300
Search processing—Update mode 300

13.4 Panel Group display 302

13.5 Data entry and inquiry 303
Modifying data on a panel 303

13.6 Save processing 307
Adding PeopleCode to save processing 309

CONTENTS xi

Licensed to James M White <jwhite@maine.edu>

14

15

16

17

Messages and error handling 313

14.1 Using the MessageBox function 314

14.2 Using WinMessage 324
WinMessage 324 + Additional examples 325

14.3 Error and warning 326
Error 326 + Warning 327

14.4 MSGGET and MSGGETTEXT 329
MsgGet 330 ¢ MsgGetText 330

Embedded SQL 332

15.1 When to use embedded SQL 333

15.2 The SQLExec function 333
SQLExec 333

15.3 Using inline bind variables 336
15.4 Dates and Meta-SQL 337

15.5 Security and maintenance considerations 339

Working with scrolls 340

16.1 Parent/Child relationship 341

16.2 PeopleCode functions used with scrolls 346
ScrollSelect 347 <+ ScrollSelectNew 350 < ScrollFlush 351

16.3 Additional scroll functions 353
ActiveRowCount 353 ¢ CurrentRowNumber 355 ¢ DeleteRow 355
FetchValue 357 ¢+ HideRow 359 < HideScroll 360 + RowScrollSelect 362
RowScrollSelectNew 365 ¢ RowFlush 367 < UpdateValue 370
TotalRowCount 372

Function libraries 374

17.1 Function overview 375

17.2 PeopleCode built-in functions 376
Conversion functions 377 ¢ Date/Time functions 377 ¢ Effective Date/
Sequence functions 378 < Logic functions 380 < Math functions 380
Panel buffer functions 381 ¢ Panel control functions 384 < Save/Cancel
functions 385 ¢ String functions 386 ¢ Panel transfer functions 387
Process Scheduler functions 388

17.3 PeopleCode internal functions 389

Defining an internal function 389

CONTENTS

Licensed to James M White <jwhite@maine.edu>

17.4 PeopleCode external functions 393
Define the External function 394 < Declare the function 395
Call the function 396 ¢ Interpret return values 396

17.5 External non-PeopleCode functions 396

18 PeopleCode debugging rools 399

18.1 The first bug 400
18.2 Using WinMessage 400

18.3 The Application Reviewer 401
Breakpoints 401 < Viewing data 407 + Additional Application
Reviewer options 408

18.4 Search in PeopleCode 411

18.5 PeopleCode Trace 413
Trace PeopleCode utility 413 ¢ SetTracePC 414

19 PeopleCode—PeopleSoft 8 416

19.1 File object 417
19.2 SQL object 418

19.3 Associating PeopleCode with panel groups 419
Activate event 420 ¢ PreBuild 420 < PostBuild 420

19.4 Enhanced scroll function 420
Using Select 421

19.5 Array Class 422
Populating an array 422 + Removing items from an array 423 < Using an
array in a loop 423

19.6 PeopleCode Debugger 423
Improved visual support 423 + Additional options 427

Part 4 Customizing PeopleSoft-delivered applications 429

20 “Vanilla” vs. customized 431

20.1 What is customization? 431
Changing your company business practice 432 + Developing a manual desk
procedure 432 < Creating a satellite application with interface to
PeopleSoft 433 + Changing PeopleSoft-delivered objects and programs 433
Developing additions with PeopleTools 433

20.2 Upgrade considerations 433

CONTENTS

Licensed to James M White <jwhite@maine.edu>

xiii

xiv

20.3
20.4

Identifying objects for customization 437

Performing an upgrade 438

Understanding how the Upgrade Compare process works 448
Copying a project to the target database 450 < Executing Alter/Create
scripts 453 ¢ Stamping the database 453

21 Customizing delivered panels 455

21.1
21.2
21.3
21.4

What objects should be customized? 456
Modifying a panel 460
Testing the modifications 465

Possible impacts on future upgrades 469

22 Adding new fields and panels 472

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8

What objects should be customized or added? 473
Creating new custom fields 475

Creating a custom record 478

Creating a custom panel 480

Adding a new panel to the existing panel group 485
Granting security access 488

Testing our changes 489

Possible impact on future upgrades 492

23 Adding new functionality to PeopleSofi-delivered applications

23.1
23.2
23.3

23.4
23.5
23.6
23.7
23.8
23.9

What objects should be customized or added? 495
Creating a custom record by cloning an existing one 495

Creating a custom panel 498

Creating custom fields for a Derived/Work record 505

Creating a custom Derived/Work record 506 + Adding Derived/Work
fields to our panel 508

Creating a custom panel group 513
Modifying a menu 515

Adding a PeopleCode script 518
Granting security access 523
Testing our changes 523

Possible impact on future upgrades 525

Licensed to James M White <jwhite@maine.edu>

494

CONTENTS

24

Part 5

25

26

Customizing security search records, PeopleCode, and menus
24.1 What objects should be customized or added? 528

24.2 Creating a custom security record 537
24.3 Creating a custom panel group 541
24.4 Modifying a menu 544

24.5 Granting security access 546

24.6 Testing our changes 547

24.7 Developing a PeopleCode program 553
Creating a derived Funclib record and PeopleCode 556

24.8 Testing PeopleCode modifications 560
24.9 Possible impact on future upgrades 563

Using SQR in PeopleSoft applications 569

Running SQR programs in PeopleSoft applications 571
25.1 How SQR programs run under PeopleSoft 572

25.2 Selecting a report from a menu 573
25.3 Using the Run Control 574
25.4 The Process Scheduler Request dialog 576

25.5 Viewing the status of your report via the Process Monitor 578
Controlling your processes via the Process Monitor 581

25.6 Viewing the report output 582
25.7 Editing Run Control records 583

Creating a custom SQR program 590

26.1 Designing your SQR program 591
26.2 Executing your SQR program 597
26.3 Examining the SQR program output files 597

27 Artaching SQR to the Process Scheduler 600

27.1 Selecting a Run Control record 600
27.2 Creating a Run Control panel 605
27.3 Creating a panel group 610

27.4 Selecting a menu for your report 613
27.5 Granting security access 615

27.6 Testing your changes 617

CONTENTS

Licensed to James M White <jwhite@maine.edu>

527

XU

27.7 Creating a process definition for the problem status report 621
The Process Definitions panel 623 + Process Definition Options panel 626
Panel Transfers panel 627

27.8 Specifying the program directory 628
27.9 Testing your process definition 629

28 Communicating with the Process Scheduler 634

28.1 Using PeopleSoft-delivered SQC files 635
28.2 Exercise 2: Make your SQR program API Aware 636

Incorporating SQC files into your program 636 + Communicating errors
back to the Process Scheduler 639

28.3 Creating a new process definition for an API Aware program 640
Deleting the obsolete process definition 642

28.4 Exercise 3: Accept the As Of Date and problem status parameters
from an on-line panel 643
Using application-specific SQC files to obtain input parameters 643
How the Years of Service program accepts its input parameters 644
Accepting input parameters in your SQR program 646 < Creating your
own SQC files 647 + Creating an SQC file to select parameters from the
Run Control record 647 < Creating an SQC file to format selected input
parameters 647 + Integrating the SQC files with your program 648

28.5 Testing your changes 652

29 Implementing security in SQR 659

29.1 Overview of the PeopleSoft security layers 659

29.2 Row-level security in PeopleSoft online applications 660
Row-Level security in the PeopleSoft Query tool 662 + Row-Level security
in online Panels 665

29.3 Preventing an SQR program from executing outside the Process Scheduler 666
29.4 Incorporating Row-Level security in SQR 668
29.5 Using Run Control records for SQR security 672

30 Additional Process Scheduler ropics 683

30.1 Scheduling programs for execution on a recurring basis 684
30.2 Using job streams 688

Creating a panel group for a job stream 689 + Creating a Menu Item for
our new job stream 691 ¢ Creating a job definition 693 ¢ Scheduling a
job for recurrent execution 696

xXvi CONTENTS

Licensed to James M White <jwhite@maine.edu>

31 SQR and Process Scheduler—PeopleSoft 8 702

31.1
31.2
31.3
314

31.5
31.6
31.7

Process Scheduler terminology 703

Process Definitions 703

Process Scheduler Request dialog 706

Output options 707

Output types 707 ¢ Output formats 708 + Output Destination 708
Process Scheduler security 709

Process Scheduler PeopleCode support 710

SQR and PeopleTools 8 710
Unique names for file output and logs 710 + PSSQR shell 710
New printer setup SQCs 711 + Additional features 711

Part 6 Understanding PeopleSoft COBOL 713

32 What's the difference? 715

32.1

32.2

32.3

32.4

32.5
32.6

Conventional COBOL programming 715
Using SQL in COBOL programs 716

PeopleSoft structured programming 717
Stored SQL statements 718 < Storing SQL statements from
Data Mover scripts 719

The PTPSQLRT module 720
Calling PTPSQLRT 721

Parameter descriptions 721

Parameter 1—ACTION 721 ¢ Parameter 2—SQLRT (Communication
Area) 722 ¢ Parameter 3—CURSOR 723 ¢ Parameter 4—SQL statement
name 723 + Parameter 5—Bind Setup 724 ¢ Parameter 6—Bind Data 724
Parameter 7—Select Setup 724 < Parameter 8—Select Data 725

Setup lists 725

Action requirements 728

33 Modifying PeopleSofi COBOL 738

33.1

33.2

CONTENTS

Defining a modification 738
Delivered functionality 738 < A simple modification 739

Making our modifications 739

One important note 744

Licensed to James M White <jwhite@maine.edu>

xvii

34 Additional topics 748

34.1 Process Scheduler APT 749
The PTCUSTAT copybook and PTPUSTAT module 749
A real life example 753

34.2 Using trace files 758
Trace settings 759 ¢ Tracing a COBOL process 760
Examining the trace file contents 763

34.3 Cross reference files 765

Part 7 Using Application Engine 769

35 What is Application Engine? 771

35.1 About Application Engine 771

35.2 Advantages/disadvantages 772
Advantages 772 < Disadvantages 772

35.3 Set processing concepts 772
Set processing vs. row by row processing 773 < Example of row
by row processing 773 < Example of set processing 775

35.4 The main components of Application Engine 776
35.5 AJ/E definition tables 777

35.6 A/E definition panels 779
Application definition panel 780 + Section definition panel 782
Step definition panel 783 4 Statement definition panel 785

35.7 A/E section/step relationship 786
35.8 Application Engine: the big picture 788

36 Build your first application 789

36.1 Before we begin: an introduction to our tutorial 789
36.2 Adding message catalog entries 790

36.3 Creating a custom cache record 793

36.4 Beginning our tutorial 797

36.5 Exercise 1: Hello World! 797
Creating an SQR version 797 ¢ Defining the application 798 < Creating
sections, steps, and statements 800 4 Introducing the &MSG function 801
Running an Application Engine program 802 < Reviewing Application
Engine messages 805

36.6 SQR/Application Engine comparison 805

XViil CONTENTS

Licensed to James M White <jwhite@maine.edu>

37

38

39

40

41

42

Using cache fields 807

37.1 Exercise 2: How many rows in PERSONAL_DATA? 807
Creating an SQR version 808 < Assigning cache fields values with
&SELECT 811 ¢ Defining multiple steps within a section 812
Retrieving cache field values with &BIND 813

37.2 SQR/Application Engine comparison 816

Dynamic SQL statements 817

38.1 Exercise 3: How many rows in any table? 817
Creating an SQR version 817 4+ Using &BIND parameters NOQUOTES
and STATIC 821 ¢ Multiple &BIND parameters in a &MSG
function 823 ¢ Assign initial cache values on the Process Request panel 824

38.2 SQR/Application Engine comparison 826

Selecting multiple rows — 828

39.1 Exercise 4: Processing multiple rows 829
Creating an SQR version 829 ¢ Using the DO Select statement type 833
Creating and using additional sections 836 ¢ Section reusability 846

39.2 SQR/Application Engine comparison 848

Incorporating decision logic ~ 849

40.1 Exercise 5: Only process tables with rows 849
Creating an SQR version 850 ¢ Introducing the DO When statement
type 864 + PSLOCK and decision making 864

40.2 SQR/Application Engine comparison 870

Dynamic sections 871

41.1 Exercise 6: Calling dynamic sections 871
Creating an SQR version 872 ¢ The &SECTION symbolic 875
The AE_SECTION cache field 880 + Multiple process requests 883

41.2 SQR/Application Engine comparison 886
41.3 Dynamic sections in PeopleSoft 886

Using Run Controls—part A 887

42.1 Exercise 7: Delete process definitions 888
Application development steps 889

42.2 Build a new Run Control record 889
Modify our existing cache record 893

CONTENTS Xix

Licensed to James M White <jwhite@maine.edu>

XX

42.3 Building the Run Control panel 893
42.4 Create a new panel group 897

42.5 Attaching the panel group to a menu 899
42.6 Assigning operator security 900

42.7 Testing the new panel 902

42.8 Creating our process definition 903
Create a DUMMY process definition for testing 904

43 Using Run Controls—part B 907

43.1 Create the Application Engine program 908
Building the MESSAGE section 909 < Building the DELETE1
section 912 < Building the DELETE2 section 914 ¢ Building the
PROCESS] section 916 ¢ Building the PROCESS2 section 920
Building the DYNSECTN section 925 < Building the MAIN section 927

43.2 Testing the completed application 933
Verifying our results 936 + Examining the trace file 937

44 Additional ropics 942
44.1 Using trace files 943
Sample trace file 943
44.2 Restarting an A/E process 946
44.3 Analyzing A/E programs 947

44.4 Application Engine analyzer 948
Application Engine Analyzer source code—TD_AE75.SQR 952

45 Application Engine—PeopleSoft 8 954

45.1 Application Engine “wish list” 955
45.2 PeopleSoft release 8 955
Application Designer—Creating 957 <+ Action types 961 + Meta-SQL 962
Application Engine macros 963 + System Meta-Variables 963
Application Engine PeopleCode 963 <+ Application Engine debugger 966
appendix A Problem Tracking application 969
appendix B Operator Class/Locations 994
appendix C PeopleTool system tables 1002
appendix D Application Engine examples 1008
appendix E Built-in functions 1013
appendix F - Application Engine functions 1056
index 1063

CONTENTS

Licensed to James M White <jwhite@maine.edu>

about this book

The Essential Guide to PeopleSoft Development and Customization is an exhaustive, as well as prac-
tical, guide covering PeopleSoft 7.5 and many new features in release 8.0. Both novice and expe-
rienced programmers will benefit from the detailed coverage of topics ranging from the basics of
Application Designer to the proper use of PeopleCode within the Application Processor. The
book serves as both a reference and a tutorial and covers advanced topics that other books avoid.
The reader can gain valuable expertise by following the exercises and building sample applica-
tions and utilities. Extensive coverage of PeopleCode, including scroll and function library exam-
ples, can be found as well as the methodology behind customization and upgrades. Discover how
to effectively utilize SQR and Process Scheduler. Master various levels of PeopleSoft security. Most
developers won't touch PeopleSoft COBOL programs with a ten foot pole. Expand your horizons
by uncovering the secrets of PeopleSoft COBOL and the PTPSQLRT module and even walk
through a sample customization. Application Engine is a powerful PeopleTool—but one of the
least understood. Through a series of simple but effective exercises, the reader can learn Applica-
tion Engine concepts such as dynamic SQL, decision logic, and dynamic sections. A useful
Application Engine utility is produced which will enhance the delivered Process Scheduler pan-
els. This book takes a soup-to-nuts approach leading the reader through the full cycle of applica-
tion development.

The four authors provide the reader with the skills necessary to compete in the PeopleSoft
marketplace for years to come. Special sections are included which provide detailed information
on new features in PeopleSoft release 8. The reader should gain valuable insight into the next gen-
eration of PeopleTools. Exciting new features such as the new PeopleCode Debugger and Peo-
pleCode dot notation, using a new series of object classes, are revealed. Also covered are
Application Designer enhancements and improved Process Scheduler design and SQR support.
See firsthand how Application Engine has been turbo-charged with a new line of meta-constructs,
PeopleCode actions, and file handling capability, as well as a new integrated design. The authors’
primary goal was not to be the first book on the market ... it was to be the best.

XX1

Licensed to James M White <jwhite@maine.edu>

INTENDED AUDIENCE

This book is intended for both beginner and experienced PeopleSoft support personnel including:

* technical developers and consultants who develop, customize, or support PeopleSoft
applications

* functional consultants and users who would like greater insight into the realm of PeopleSoft
application development

* project leaders and managers responsible for PeopleSoft implementations, customizations,
and upgrades.

* database administrators, network technicians, programmers, and all other technical person-
nel involved in PeopleSoft implementations and support

* computer specialists who would like to learn how to use the PeopleSoft development toolset
through self-study.

* those who enjoyed SQR in PeopleSoft and Other Applications and would like to pick up
where the book left off

HOw THIS BOOK IS ORGANIZED

There are seven major parts to this book. The reader will find it to be most effective by following
the examples and exercises provided. Special chapters appear in some sections describing new fea-
tures in PeopleSoft release 8. These include details on Application Designer, PeopleCode, SQR,
Process Scheduler, and Application Engine.

Part 1 gives an overview of PeopleSoft architecture including comparisons between two-tier,
three-tier, and web based architecture and their functions. Also included is an introduction to the
PeopleSoft environment. Part 1 also describes development and administrative tools such as Appli-
cation Designer, Data Mover, Security Administrator, and Tree Manager. The reader will become
familiar with records, fields, panels, and menus as well as PeopleCode, projects, and upgrades.

Application Development comprises part 2 of the book. The reader will gain valuable insight
while building a sample Problem Tracking application. Critical design elements and components
are discussed and incorporated into your application. We apply enhancements using search
records, derived work fields, PeopleCode, and push buttons. We also discover panel design fea-
tures such as scroll bars, subpanels, secondary panels, and grids. We learn the difference between
PeopleSoft and database objects. We also cover the application processor as it performs during
search processing, data retrieval, and PeopleCode events. New Application Designer features
found in PeopleSoft release 8 are presented.

Part 3 is an in-depth look at PeopleCode. Here the reader can find a basic overview along
with detailed descriptions of the PeopleCode language and related components. Follow the exam-
ples which reveal the proper technique for accessing panel buffer fields, working with scroll bars
and effective dates, using embedded SQL, and performing error handling procedures. Additional
topics such as Security, Meta-SQL, and function libraries are discussed along with debugging
techniques. New PeopleCode features found in PeopleSoft release 8 are presented.

xx11 ABOUT THIS BOOK

Licensed to James M White <jwhite@maine.edu>

Part 4 deals with customizing PeopleSoft-delivered applications. In this section, we deter-
mine when to customize and what impact customization has on future upgrades. Tips on per-
forming an upgrade are given along with a discussion on the proper use of projects. Walk
through several sample customizations and the steps required to successfully implement your
derived modifications.

Part 5 discusses the use of SQR in PeopleSoft applications. Here we see how SQR programs
are set up and run in the PeopleSoft environment. We find comprehensive coverage when using
run control records and communicating with Process Scheduler and Process Monitor. Unearth
the secrets behind implementing security levels and scheduling recurring jobs. New SQR and Proc-
ess Scheduler features found in PeopleSoft release 8 are also presented.

Part 6 is an explanation of PeopleSoft COBOL and it’s unique structure. Differences between
conventional COBOL programming and PeopleSoft’s particular flavor is discussed. Learn the fun-
damentals behind the PTPSQLRT module which is the driving force behind PeopleSoft COBOL.
Individual PTPSQLRT actions are examined along with the required parameters for each. A realistic
modification is performed demonstrating the concepts behind PeopleSoft COBOL. Additional fac-
ets such as Process Scheduler API, Configuration Manager and using trace files are discussed.

Part 7 serves as both a reference and tutorial into the world of Application Engines. After an
overview describing the basic components and functionality of an Application Engine, the section
offers the reader a series of exercises designed to demonstrate each A/E concept. During these sim-
ple exercises we cover decision logic and loop control, as well as how to access cache records, effec-
tively utilize dynamic sections, and more. Additional topics are presented describing trace files,
restart capability, and analysis of Application Engine programs. New Application Engine features
found in PeopleSoft release 8 are also presented.

The appendices found in the book consist of descriptions of the Problem Tracking applica-
tion (appendix A), Locations by Operator Class application (appendix B), a listing of PeopleSoft
system tables (appendix C), Application Engine examples (appendix D), a list of commonly used
built-in PeopleCode functions (appendix E), and a list of Application Engine functions
(appendix F).

CODE DOWNLOAD

All source code presented in this book is available from the Manning website. The URL
www.manning.com/delia includes a link to the source code files.

ABOUT THIS BOOK Xxiii

Licensed to James M White <jwhite@maine.edu>

about the authors

TONY DELIA has over fifteen years” experience working with mainframe, client/server, and rela-
tional database applications, including PeopleSoft HR, Payroll, and Financial applications. He
specializes in custom application development. Tony enjoys roller hockey, weight lifting, and
most other physical activities. He seldom travels far without a sketchbook and crayons. Some of
his artwork and technical creations can be seen on his website http://www.sqrtools.com.

GALINA LANDRES has been working in the field of computer science for more than twenty years.
Galina has been involved in the development and customization of PeopleSoft applications since
PeopleSoft’s release 3.0. She is a co-author of SQR in PeopleSoft and Other Applications (Greenwich,
CT: Manning Publications, 1999). Galina is a founder of SQRLand (www.sqrland.com), a consult-
ing company specializing in PeopleSoft, SQR, and relational database applications.

ISIDOR RIVERA has been in the field of software development for twenty years. His background
includes Mainframe and Client/Server applications. He has worked on systems in areas such as
Financial Modeling, Accounting, and more recently, Human Resources and Payroll applications.
Isidor has much experience converting legacy data to PeopleSoft for distinct business units of a
major corporation and has in-depth knowledge of the globalization of PeopleSoft applications.

PRAKASH SANKARAN has been working with client/server applications for the past twelve years.
During that time, he has been involved in implementing PeopleSoft applications for the past ten
years. He has been working with the PeopleSoft application since release 1. Prakash has extensive
experience in converting legacy systems to PeopleSoft as well as upgrading existing PeopleSoft
applications to newer releases. Some clients which contributed to Prakash’s development and
growth in the PeopleSoft field are the International Monetary Fund, Wakefern Food Corpora-
tion, Best Foods, St. Francis and Bristol Hospitals, Seagram, and SPX Corporation.

The authors share several common threads. Besides having a considerable amount of
PeopleSoft experience, each of them has consistently exhibited a willingness to share this experi-
ence with others. It is this spirit of helping others which has served as the motivating factor in

producing this book.

XXIv

Licensed to James M White <jwhite@maine.edu>

acknowledgments

Many people deserve special recognition for their part in the making of this book. First and fore-
most, our appreciation goes to the people at Manning Publications who made this book a reality.
Not only were they professional and supportive, but very patient and understanding as well. Our
special thanks goes to Marjan Bace, Ted Kennedy, Mary Piergies, Adrianne Harun, Dottie
Marsico, Leslie Haimes, and Sharon Mullins.

We would like to thank the following people who participated in the technical review of this
book: Ahmet Emre, Peter Choi, Andrew Gatti, Buddy MacDonald, Cary Cloud, Celia Hyman,
Cindy Finnigan, David and Lisa Hill, David Hardacker, Del Iglesia, Doug Cha, JR Growney,
Peter Choi, Richard Reid, Steve Britt, and Steve Gill

A special note of gratitude goes to Chris Heller, the Director of PeopleTools Product Strat-
egy, for supplying release 8.0 information and also reviewing much of our material. His contri-
butions to this book have been greatly appreciated.

Tony DeLia would like to thank his family for their support and acceptance of occasional
neglect. Additionally he’d like to thank his wife Tanya, who has been an inspiration and a beacon,
carefully guiding the direction of his career. She has also given him the greatest gift imaginable,
his daughter Katie. His dog Devon deserves some praise for quietly waiting to be let out while
Tony finished some of these chapters. Tony would also like to thank Galina, Isidor, and Prakash
for the opportunity to be a part of this book.

Galina Landres would like to thank her husband Vlad for his enormous help in the review
process. This whole project was his idea and Vlad helped tremendously to bring it to life. Many
thanks go to her son Gene and her daughter Inna for their love and support as well as their help
in the book’s creation. Galina thanks her dear parents for being very understanding and patient.
Special thanks go to Irina, Arkady, Ester, and Leon for their continuous love and support. Many
thanks to the entire team at Seagrams (her best and favorite client). Huge appreciation goes to
her fellow co-authors Tony, Isidor, and Prakash for their excellent work and great friendship.

Isidor Rivera writes: This is for the memory of my father Isidro, Sr. Your illness and subse-
quent passing in the spring of ‘99 was very unexpected. We had so many plans early last year, just
as this book project was beginning. In the months following your passing, it became so difficult
to come home and work on this project. The weekends and late evenings were spent thinking
about all the wonderful things you did for Sonia and me. How we marvel at your work and miss

XXU

Licensed to James M White <jwhite@maine.edu>

you deeply. Thanks to the co-authors, Galina, Tony, and Prakash for helping me find the strength
and will to continue.

Prakash would like also to thank his book colleagues, Galina, Tony, and Isidor for putting
up with his work schedule and his endless (not anymore!) delays with his part of the book. He
also thanks his primary clients in the past five years—Wakefern Food Corporation, Best Foods,
St. Francis and Bristol Hospitals, Seagram, and SPX—for giving him an opportunity to acquire
the experience he needed to write this book. Finally, he would like to thank his father for always
supporting him in whatever he has done in his life.

XxXvi ACKNOWLEDGMENTS

Licensed to James M White <jwhite@maine.edu>

about the cover illustration

The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs. This book was first published in Paris in 1788, one year
before the French Revolution. Its title alone required no fewer than 30 words:

Costumes Civils actuels de tous les peuples connus dessinés d’aprés nature gravés et col-
oriés, accompagnés d une notice historique sur leurs coutumes, moeurs, religions, etc.,

etc., redigés par M. Sylvain Maréchal

The four volumes include an annotation on the illustrations: “gravé a la maniere noire par
Mixelle d’apres Desrais et colorié.” Clearly, the engraver and illustrator deserved no more than
to be listed by their last names—after all they were mere technicians. The workers who colored
each illustration by hand remain nameless.

The colorful variety of this collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Dress codes have changed everywhere and the diversity
by region, so rich at the time, has faded away. It is now hard to tell the inhabitant of one continent
from another. Perhaps we have traded cultural diversity for a more varied personal life—certainly
a more varied and exciting technological environment. At a time when it is hard to tell one com-
puter book from another, Manning celebrates the inventiveness and initiative of the computer
business with book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by Maréchal’s pictures. Just think, Maréchal’s was a world so different from ours peo-
ple would take the time to read a book title 30 words long,.

Xxvii

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

PART

An introduction to PeopleSoft
and Peopleools

E)pleSoft has been very successful in the ERP marketplace for many years. An obvious reason
for this has been PeopleSoft’s ability to provide solid packaged solutions for a wide range of busi-
ness functions. Equally important is PeopleSoft’s commitment to incorporating the latest
advances in technology into its software. Each release of PeopleSoft has kept stride with the best
that technology has to offer. For instance, PeopleSoft’s architecture has evolved from a traditional
two-tier to three-tier in release 7.0 to web-based architecture in the current 7.5 release and in the
not-too-distant future, #-tier architecture will arrive in the upcoming 8.0 release. In addition,
PeopleSoft provides an extensive toolset called PeopleTools, which allows customers to easily
modify existing applications or develop new ones. Third-party software such as SQR and Crystal
Reports are bundled into the PeopleSoft package for increased functionality.

In the pages ahead we take a look at the evolution of client/server architecture. We consider
its components and how client/server architecture specifically relates to PeopleSoft. We then per-
form a general walkthrough of the PeopleSoft software, discussing some of its basic capabilities.
You'll find a description of Configuration Manager and learn how it is used to control your
PeopleSoft environment. An overview of many tools used within PeopleSoft—including Appli-
cation Designer, Data Mover, Security Administrator, and Tree Manager are also presented. As
you proceed through the chapters, you'll see that PeopleTools is very robust yet easy to use—and,
yes, fun!

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

1

PeopleSoft fundamentals

1.1 PeopleSoft architecture 4
1.2 A user’s view to PeopleSoft 10

PeopleSoft has evolved from the traditional client/server architecture to the multi-tier
architecture in PeopleSoft 7.0. In this chapter we will discuss the components that are
part of this evolution and describe the functions of the individual tiers that form this
architecture.

Licensed to James M White <jwhite@maine.edu>

1.1
1.1.1

1.1.2

PEOPLESOFT ARCHITECTURE

Two-tier architecture

Traditional client/server installations are defined as two-tier architecture, which
means that two components exist in a two-tier structure, Client and Server. Client
refers to the workstation used to access the application; Server refers to either a
database server or some other type application server. In PeopleSoft, Server, in cli-
ent/server architecture, always implies the database server which hosts the applica-
tion database.

The following illustration can help us understand the two components and how
they communicate between each other.

Database
Server

Client Workstation

Figure 1.1 Two-tier architecture

The client workstation converts the client request into SQL statements and com-
municates to the database server using database connectivity tools. The client work-
station processes all user requests and transmits them across the network to the
database server. Some advantages of a two-tier architecture are as follows:

* simple architecture
¢ easier administration
¢ cost reduction

A two-tier architecture is ideal when the client is connected to the server on a local
area network, but SQL transmissions are voluminous and, as a result, efficient
transmissions are not possible across the wide area network. PeopleSoft and other cli-
ent/server software applications wanted to overcome this challenge and make it possible
for client workstations across wide area networks to have faster access to the application.

Three-tier architecture

Citrix Systems introduced an application server, which runs processes that would oth-
erwise run on a client workstation. Users log in to the application server and sessions
are run on the remote application server. Users transmit keystrokes and mouse-clicks
to the application server which then transmits images back to the client workstation.

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

The application server acts as the third tier. The key advantage in configuring a
third tier is that it is physically located near the database server. Communication
between the database server and the application server is within a local area network
or better. Data transmitted between the client and the application server is less volu-
minous than sending SQL requests across the wide area network directly to the data-
base server. This concept reduces the size of data transmitted on the wide area
network. Application servers provide a central point of administration as well. They
are usually configured to have more processing power and memory. Multiple
application servers can be configured to share loads from numerous clients accessing
applications across the wide area network. Citrix servers are physical application serv-
ers, and there is always a cost involved in maintaining hardware.

PeopleSoft joined with BEA Systems to introduce a transaction-based application
server called Tuxedo. Tuxedo application server is a collection of server processes that
communicate to the database server. On the server side, workstation listeners are lis-
tening to client Tuxedo requests and sending them to the appropriate server process.
These server processes request individual services, which can handle jobs such as SQL
calls, panel group build, panel group save, and so forth.

Some advantages in a physical three-tier architecture include:

* remote session capabilities near the database server

* reduction of network traffic by transmitting only keystrokes, mouse-clicks, and
images across the wide area network

* single point of administration and monitoring per application server

* single point of installation per application server

* load balancing using multiple application servers

Some advantages in a Tuxedo-based three-tier architecture include:

* the ability to transmit more requests using Tuxedo services than using SQL on a
network

* the ability to process Tuxedo requests close to where data resides

* the ability to reduce bottleneck in the database server because Tuxedo requests
are queued in the application server and transmitted to the database using Tux-
edo services as they become available

* the ability to achieve a minimum installation of clientside software, thereby
resulting in thin clients

* load balancing by installing many application servers that process data requests
from clients

* the ability to encrypt data transmitted from the database server to the client

* the scalability of Tuxedo application servers, which support a wide range of oper-
ating systems, databases, and hardware platforms

* the ability to install application software in a single server, thus resulting in easier
software maintenance and upgrades

PEOPLESOFT ARCHITECTURE 5

Licensed to James M White <jwhite@maine.edu>

In both Citrix and Tuxedo implementations, more than one application server
can be installed depending on the number of clients accessing the database. Some
implementations use Tuxedo clients on Citrix Metaframe systems which take advan-
tage of both systems. Users access the three-tier client software on Citrix application
servers using remote sessions. PeopleSoft application software is installed/replicated on
one or more Citrix application servers.

Note, that a Tuxedo application server can either be a logical or physical
configuration.

Logical Application Server In a logical application server configuration, Tuxedo
application software is installed on the same physical machine as the database server.
In this case, only two physical machines exist in the whole configuration: the client
workstation and the database server, which hosts both the database and Tuxedo.

Physical Application Server In a physical application server configuration, Tuxedo
application software is installed on a separate physical machine, one different from
the database server. In this case, three physical machines exist in the configuration:
the client workstation, the application server, and the database server. The physical
application server and the database server are either connected on the same network
backbone or within the local area network.

The illustrations in figures 1.2 and 1.3 can help us understand both the physical
and logical three-tier architectures in PeopleSoft.

I Tuxedo Data

Application
Server

Dl

Client
Workstation

Figure 1.2 Physical three-tier architecture

r -
Tuxedo

Dl

Application
Client Server
Workstation

Figure 1.3 Logical three-tier architecture

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

Notice that the only difference between these three-tier architectures is the num-
ber of physical machines configured.

With the arrival of electronic commerce and the recognition of the advantages of
accessing applications on the Internet, the next step toward expanding the PeopleSoft
architecture was to create a web client.

1.1.3 Web architecture

PeopleSoft introduced a web client which can access a web server that hosts PeopleSoft
HTML files and Java applets. The web server communicates with the application
server using a BEA System product, called Jolt, that supports web client connections.
Jolt interprets HTML and Java applet requests from the web server to the application
server. Jolt acts as the translator of Java and HTML codes into C++ codes.

The web server architecture can be either a physical or logical architecture. In a
physical architecture installation, Jolt Internet Relay (JRLY) and Jolt Relay Adapter
(JRAD) software are required. JRLY and JRAD are products supplied by BEA Systems
to secure transactions transmitted on an Internet or Intranet connection. JRLY is
installed on the web server placed outside the firewall, and JRAD is installed on the
same machine as the application server. Figure 1.4 illustrates the web architecture in
a PeopleSoft 7.5 installation.

In figure 1.4, we notice that the web server is an additional tier to a logical three-
tier architecture. The web client uses a web browser to access the application. Java
applets and HTML files loaded on the web server are used to access the application.
The web server connects to the application server with the help of Jolt.

. N -
I Tuxedo > SQ L
T T =
- [r—
= Application
. Server
Client (JRAD Installed)
Workstation
O
O Java & HTML
%

Web Client
Web Server
(JRLY Installed)

Figure 1.4 Web architecture

PEOPLESOFT ARCHITECTURE 7

Licensed to James M White <jwhite@maine.edu>

1.1.4

n-tier architecture

So far, we have discussed the evolution of PeopleSoft architecture in the previous sec-
tions. We should realize by now endless possibilities exist for expanding this architec-
ture to service various types of clients. PeopleSoft 7.5 serviced Windows clients,
three-tier clients and web clients. PeopleSoft 8 will be released with the deployment
of a number of tiers which service many types of clients. The number of tiers that can
be deployed is expandable, hence it is called the n-tier Architecture.

PeopleSoft 8 also introduces the Internet client which can access the PeopleSoft
application using the HTTP protocol via a web browser. PeopleSoft 8 will still support
the Windows client and the three-tier client. Additional features such as the Directory
Server, Application Messaging and PSWebDeploy will be available with PeopleSoft 8.
Directory Server provides a single point of user ID and password administration for
users logging into multiple databases. Integration with third party applications using
XML/HTTP based messaging will be available using Application Messaging and
Publish/Subscribe concepts. PSWebDeploy helps a large number of users access the
PeopleSoft application with minimum installation required on their workstations.
The client workstation is installed with an executable called PSLaunch that accesses
the PeopleSoft application server and downloads the components required to access
a PeopleSoft application panel. The PSLaunch software can be launched using a link
from a web browser. PSLaunch software can also be launched from an email attach-
ment or from a file stored on the user workstation.

The N-tier architecture is advantageous in that it:

* introduces the Internet client that can access the PeopleSoft application using a
web browser

* offers minimum workstation installation and thin client

* reduces network traffic by accessing the application using Tuxedo requests that
are smaller than an SQL request

* deploys and adds components to this architecture to service more types of clients
than before

Figure 1.5 provides an insight into the 7-tier architecture, illustrating the types
of clients that this architecture can service.

As you can see in figure 1.5, multiple application servers and web servers are
deployed accessing the same database. In the same installation, Windows clients,
Tuxedo clients, and Internet clients are deployed. Windows clients can access the
PeopleSoft application using traditional two-tier access.

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

Application

-
I Tuxedo
Servers

Tuxedo Client (JRAD Installed)

P
\S’%
%
©,
2z
2
:| D

[*] HTTP SSL [
— E

T
Web Client —
Web Servers
JRLY Installed - Web Client
PSLaunch, PSF Files for PSWebDeploy

D|4

Windows Client-two-tier

Figure 1.5 n-tier architecture

1.15 Tiers and their functions

The following important tiers are pertinent only to the PeopleSoft architecture.

Client A client is the tier which facilitates the user to access the server. A client can
be a user workstation which runs a Windows 95 or Windows NT operating system.
The client can access PeopleSoft using a traditional two-tier connection using SQL, a
three-tier connection using Tuxedo, or a four-tier connection using a web browser.

Database server The database server hosts the PeopleSoft application database.
The application can be hosted on a variety of relational database platforms such as
Oracle, Microsoft SQL Server, Sybase, DB2, and so forth. The database server can
also be hosted on a variety of operating systems such as Windows NT, Unix, MVS,
and so forth. In addition, the database server hosts the SQL connectivity software
which communicates with the client and the application server.

Application server The application server, an intermediate tier which connects the
client, the web server, and the database server, can be run on a Unix or Windows N'T
operating system. The application server runs the Tuxedo and Jolt middle-ware appli-
cations and can either be a logical server—which resides on the same machine as the
database server—or a physical server—which resides on a different machine than the
database server. The application server can also be a Citrix server which runs remote

PEOPLESOFT ARCHITECTURE 9

Licensed to James M White <jwhite@maine.edu>

12

1.2.1

10

client sessions. Some installations deploy both Citrix servers and Tuxedo application
servers which help create remote client access for tools and database access for data.

Web server Web servers service web clients which access the PeopleSoft application
using a web browser. The web server contains HTML and Java applets which the web
clients access using a web browser. The web server can either be a physical or logical
server. When the web server is installed on a separate physical machine, it also con-
tains the Jolt Internet Relay, used for communicating to the application server.

A USER'S VIEW TO PEOPLESOFT

PeopleSoft Applications offer an array of functionality, tools, and reporting features.
The current technology is based on relational database and client/server architecture.
The back end or database can reside on many platforms. Platform/database combina-
tions such as UNIX/Oracle, MVS/DB2, Windows/SQLBase, and NT/SQL Server are
just some of the many platforms and databases supported by PeopleSoft Applications.
As the new millennium progresses, the move toward web-based technology is
becoming ever more pronounced. PeopleSoft e-Business and Enterprise Performance
Management applications are also gaining momentum using web technology.

Signing onto PeopleSoft

Our journey into PeopleSoft begins with a sign-on into the application. The example
in figure 1.6 illustrates the PeopleSoft sign-on panel for a two-tier connection.
Figure 1.7 illustrates a three-tier sign-on.

The sign-on panel identifies several items:

Connection type PeopleSoft applications support connectivity on both two-tier
and three-tier client/server configurations. When a client signs onto the application
using a two-tier connection, the client connects directly to the database server. In a

w PeopleTools 7.5
Copynght (c) 1388-1338 PeopleSoft, Inc.
Al nghts reserved.

Eniter Signon Information Below:

Connection Type: ISQLB ace j
Database Name: JHRDMO
Dperator ID: [MrUSERID
Easswot:l I.\
0K | SetPasswod..| Concel Figure 1.6

PeopleSoft sign-on (two-tier)

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

PeopleSolt Signon [x]

PeopleTools 7.5
w Copyright [c] 19831938 PecpleSalt, Inc.
AN nghts reserved

Enter Signon Information Eelow:

Connection Type: [Appication S erver =l
Apphicstion Server Mame: [HRDMD B
Dperstor 10 [MYUSERID
Eﬂ‘wd |.....“.
] 0K I Set F'aam«d...l Cancel Figure 1.7

PeopleSoft sign-on (three-tier)

three-tier connection, the client is connected to an application server that maintains
connections to the database server

Database name The database name is simply the name of the database to which
we are connecting.

Operator ID The operator ID is the ID used to enter the PeopleSoft application.
The ID is generally set up by the security administrator. PeopleSoft IDs are linked to
an operator class which has specific functionality privileges allocated to it. In addition
to English, the operator ID can have other languages such as Dutch, French, German,
Japanese, Portuguese, and Spanish linked to it. Two users who have unique IDs but are
linked to the same operator class can view the same panels in their own language.

Password The password is initially established by the security administrator, but
can subsequently be changed by the end user. This can be accomplished by clicking
the Set Password button. Some items on the sign-on panel do not have to be keyed in
every time we logon. Unless we are transitioning from one platform and/or database
type to another, or we support applications on varying platforms and databases, the
connection type parameter can be set one time. The database name, application
server name, and ID can also be set. As a result, these parameters do not have to be
entered at each login. The Startup tab of the Configuration Manager panel enables
defaults and overrides during the PeopleSoft login process. An example of the Config-
uration Manager panel is shown in figure 1.8.

1.2.2 Configuration Manager
The Configuration Manager (figure 1.8) enables PeopleSoft settings to be adminis-
tered from a central site. These settings, however, are based on how the application is
implemented. Registry settings impact a workstation setup and can be shared by an
entire group. Therefore, a change to one setting may impact all users in the group.
This is common in a Citrix environment or when users share a common file server

A USERS VIEW TO PEOPLESOFT 11

Licensed to James M White <jwhite@maine.edu>

12

which contains the executables and runtime Dynamic Link Libraries (DLLs). The

Configuration Manager contains tab settings which can be used to tailor specific

environmental conditions. Configuration Manager can be entered using the Edit —
Preferences —Configuration menu navigation from either the various applications

or from a PeopleTool such as Utilities, Process Scheduler, Application Engine, Mass

Change, or Translate.

fﬁ![ﬁonﬁguration Manager 7.5 [x]

Applicalion Servers | Woikilow | Database | RemoteCall | ChentSetup | Impot/Export | Other
Statup | Display | Cistal | nvision | ProcessScheduer | OnineHelp | Trace | Common

Iniial Window: [APPLICATION_DESIGNER =
~ Signon Defaults |
Database Type: |soLease =l
Lonicaticn Seneti ame I J I
R g | |
Database Name: |HROMO |
Dperator 1D: s :

|
I |

© Operator Can Overiide [~ Server Logon Security
¥ Databass Type

¥ Database Name
¥ Opegator 1D

ITI Cancel el | Help I

Figure 1.8 Configuration Manager

Startup The Startup tab allows for the entry of default values for database type,
database name, and operator ID. In the startup tab, additional parameters exist which
can be defaulted but they are more platform-specific. These parameters include the
current ID/password for DB2 and Informix. MS SQL Server, and Oracle platforms do
not use these options. The lower left portion of the panel enables us to override the
database type, name, and operator ID. These parameters can then be modified during
sign-on.

Display The Display tab enables the modification of the PeopleSoft application
panels to be adjusted, based on desktop needs. These modifications include changes

to panel height and width.

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

The Navigator display options can be set so that the navigator is displayed once
during PeopleSoft startup each time a menu group is opened or not displayed.

Crystal The Crystal tab provides the Crystal executable path and default location
of Crystal Reports. Additional Crystal options include using trace during execution
as well as the subsequent logging to a trace file.

nVision The nVision settings are linked to PeopleSoft queries which are sent to an
Excel spreadsheet. The number of blank Excel columns between output data on a
spreadsheet can be specified. If no blank separator columns are required, the “Space
Between Query Columns” parameter can be set to zero.

Process Scheduler The Process Scheduler settings enable us to specify the directory
search path for SQR programs and COBOL executables. This tab setting also identi-
fies any PeopleTools and MS Word executable directory.

Online help ~ Any online documentation associated with Windows help or People-
Books can be defined based on function keys and PeopleBooks search order.

Trace Several types of settings can be used during an online session. Trace can
include PeopleCode trace, SQL trace, and message agent trace. The default online
trace file is DBG1.tmp, which can be overridden by specifying an online trace file.

Common This tab specifies the language setting used on panels and related objects.
The Cache file directory can also be specified on this tab. Data Mover, which is a
database administration tool used to migrate application data and objects, requires an

input, output, and log file. The directories for Data Mover files can be specified on
this tab.

Application servers Any configured application server to which a client is allowed to
connect to can be specified on this tab. Additional parameters are Application Server

Name, Machine Name or IP Address, Port Number, Tuxedo Connect String. The Set
and Delete buttons enable the entry and removal of Application Server Names.

Workflow Under the Workflow tab you specify the options and locations related to
the Workflow implementation at your site.

PeopleSoft Workflow allows tasks to be automated into flexible business proc-
esses. From a technical perspective, the options required to use Workflow can be iden-
tified on this tab. Some items, which can be specified on this tab, include Message
Agent, Forms, and Mail Protocol.

Database Databases such as DB2 and Sybase may require additional settings that
can be used to improve or monitor the system operations. Some parameters include
DB2 message size, Sybase packet size, and Application Designer image conversion
which enables the conversion of images to a new format during upgrades.

A USERS VIEW TO PEOPLESOFT 13

Licensed to James M White <jwhite@maine.edu>

1.2.3

14

Remote Call The options on the Remote Call tab are related to the Tuxedo
Remote Call. Transactions that require intensive memory and CPU resources can be
run on a remote server. The parameters include the timeout, the debugging options,
and the appearance on the desktop of a child COBOL process.

Client Setup The Client Setup tab identifies the options which impact worksta-
tions as well as invoke the Client Setup process. The settings include Shortcut Links,
3-Tier Minimal Install, and ODBC Setup. When checked, the Install Workstation
option connects the Client Setup function.

Import/Export The environment settings established can be exported to or
imported from a file using the information specified on the Import/Export tab.

Other These settings impact the environment used to run the PeopleSoft quality
server for manufacturing applications. These settings require two parameters, which
identify the local data directory and SQR Output.

Navigation in PeopleSoft
Once you logon to PeopleSoft, the panels you see displayed depend on several factors:

* DPeopleSoft products installed on your system

* the initial window default in the Configuration Manager

* the security profile of your operator ID, which allows you to view only certain
panels

For example, a typical Human Resources user would have access to the Admin-
ister Workforce panels, illustrated in figure 1.9.

The panels and menus used in the delivered PeopleSoft applications can be easily
navigated with proper knowledge of function keys and toolbar icons. Custom appli-
cations should also use the same convention as standard PeopleSoft applications.
Throughout this book, you’ll see figures which reference two small custom applica-
tions used to present the topics discussed. One application is used for problem track-
ing and the other links operator classes to office locations.

Let’s discuss the objects found on a PeopleSoft application panel.

Menus are used to group functionally-related panels and panel groups. A typical
menu in the HRMS system is illustrated in figure 1.10. The menu identifies the bar
items contained in the menu. The menu navigation required to display the panel
group illustrated in figure 1.9 can be written as

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

Navigation: ~ Go —Administer Workforce (GBL) —Use —Hire

Administer Workforce (GBL) - Use - Hie
File Edit View Go Favortes Use Uselel Setup Seluplel Process Inqure Repot Reportlcl Language Help

alg(@x| =laE| se o= s 2= #vl4z]

Name/Addess | Personal Profie | Eighilty/identiy | Work Location | Job Informalion | Pagroll| Compensation | Job Eamings Distibu | *|

1D: 123456 Status: Employes ‘

Name: I Initials: Prefix: I j

=
Effective Dote: [02/1672000 4| :I

-‘Home Address ‘Mailing Address-

Country: |m" # Canada
Address 1:

Address 2:

Address 3:

City:
County:

|
[
|
Address 4: I
|
|

Posta: [
Province: [4 Edk Walleg pibos |||

[Engish [[Name/Address |&dd y

Figure 1.9 Administer Workforce panels
@ Dlancl

® Rccord Fields
© Scroll Bar

Navigation: ~ Administer Workforce (GBL) —Use —Hire

Administer Workforce (GBL) - Uze - Hire

5{> File Edit View Go Favoiles Use Uselgl Setup Setuplel Process |nguie Report Repodlel Language
Heip

Figure 1.10 Menu portion of toolbar

© Menu Label
© Menu Bar Label

A USER’S VIEW TO PEOPLESOFT 15

Licensed to James M White <jwhite@maine.edu>

0000000

v Hie 8 After the menu is displayed, each menu bar item may con-
addConcurent)o® ¥ | tain one or more menu items to which the operator has access.
fesone Date > The menu items associated with the Use menu bar label are
Cumrent Job »| shown in figure 1.11.

Pay Bate Change »

e , FeaFures, such. as the toolbar,. are common to PeopleSoft
Disabilty »| Applications. Specific panel functionality allows us to use the
Employee Checklist

toolbar for saving data, submitting a process or canceling out of
Prior Woark Experience 1 Wh l . 1 1 lb b b
Compary Property a panel. When a 1s.t is present, several list toolbar : uttons can be
Business Expenses used to display a list or move up and down the list. Additional

Names .

EmegencyConact » | toolbar buttons can be used to navigate from one panel to
deniiicatinData > | another or to insert/delete rows from a scroll bar. Figure 1.12
Diiver's License Data . . .
Bankpccounts »| ilustrates a standard toolbar available with most PeopleSoft

i applications using release 7.xx.
General Comments

Figure 1.11 Menu
items under the
Use menu bar label

?°? ¢ ¢ ¢ ° 9
Ble@x| ke == 5= S8 Ze2] ®le(#l]

Figure 1.12 Typical PeopleSoft application toolbar

Save button

Run, Run with Defaults

This cancels a panel

Next in List, Previous in List, List

Next Panel in Group, Previous Panel in Group, Next Panel, Previous Panel
Insert Row (F7) Delete Row (F8)

Change Window content, Back < Forward =

Add, Update/Display, Update/Display All, Correction

If you are familiar with Windows applications you know that the Save button is
enabled after a change has been made to a panel. A save operation on a panel or panel
group can also be performed by pressing the ENTER key.

Run and Run with Defaults are used to submit processes to the Process Scheduler.
The Process Scheduler can submit a process such as an Application Engine, an SQR,
or a COBOL program to be run on a client workstation or server.

The Cancel button is used to cancel activity on a panel.

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

Next in List, Previous in List, and List are activated when a partial key value is
entered into a search dialog and the results of the search return more than one record.
These buttons enable a list to be displayed and navigated upward or downward.

Next Panel in Group, Previous Panel in Group, Next Panel, and Previous Panel
allow for movement between panels or panel groups.

Records which contain effective-dated rows or are part of a parent/child key hier-
archy can be presented on panels that utilize scroll bars. The use of scroll bars enables
us to work effectively with multiple record hierarchies. At the same time, however,
scroll bars present unique challenges to both the developer and end user. (In subse-
quent chapters throughout this book, scroll bars will be discussed and explained in
more detail.) Figure 1.9 is an example of a panel that contains one scroll bar. A panel
with scroll bars may use the Insert Row and Delete Row icons. These icons are used
to insert or delete effective-dated rows. Function key F7 can be used to insert data,
while F8 deletes data.

The Change Window Content button is used to toggle on and off the business
process maps. The Back and Forward buttons are used when navigation display is used
with menus.

Additional buttons such as Add, Update/Display, Update/Display All, and Cor-
rection are used when data consisting of new keys are added or when data are updated.

Panel tab labels identify the panels in a
panel group and are used to move from one
Figure 1.13 Tabs in a panel group panel to another. An example of panel tab

labels is shown in figure 1.13.

Name/éddress | Persanal Profile | Eliibiity/identity |

1 PeopleSoft has evolved from a traditional two-tier client server architecture in
the earlier years, to a web based 7-tier architecture in PeopleSoft.

2 PeopleSoft n-tier architecture enables various types users to access PeopleSoft
applications. Application owners, end users, employees, and vendors can access
PeopleSoft applications using various architectures and tools.

3 PeopleSoft provides applications that are robust, full of tools, and functionality.

A USERS VIEW TO PEOPLESOFT 17

Licensed to James M White <jwhite@maine.edu>

18

4 The PeopleSoft sign-on process requires a connection type, database name
or application server, operator ID, and password. These options can be set
once using the Configuration Manager.

5 Menus, toolbars, and panels vary, based on the functionality assigned to an
operator class.

6 Toolbar buttons as well as menu actions and function keys enable the end-
user to save, cancel, insert, or delete data on a panel.

CHAPTER 1 PEOPLESOFT FUNDAMENTALS

Licensed to James M White <jwhite@maine.edu>

2

Development tools

2.1 Fields 20 2.5 Menus 25

2.2 Records 21 2.6 PeopleCode 26

2.3 Panels 22 2.7 Projects and upgrades 27
2.4 Panel groups 24 2.8 Cross-reference utilities 28

In this chapter, we cover some basic concepts surrounding the primary development
tools used in PeopleSoft. The Application Designer is a conglomeration of the pri-
mary development tools that design a PeopleSoft application. Prior to release 7 of
PeopleSoft, objects were built using individual tool menus for each object. For exam-
ple PeopleSoft 6 has Data Designer to develop record definitions, translate values,
and so on; Panel Designer was used to build panels; and Menu Designer was used to
build menus. Starting from release 7, however, PeopleSoft integrated all the develop-
ment tools into an integrated menu, the Application Designer.

19

Licensed to James M White <jwhite@maine.edu>

FIELDS

Fields are at the lowest level in the totem pole of objects in PeopleSoft. Fields are indi-
vidual objects defined in a PeopleSoft system. One or more fields are assembled to
form a record definition, and fields can be shared across record definitions. In other
words, the same field can be used in more than one record definition. The basic
attribute of a field is the same across all these record definitions. For example, a field
defined as character field is always a character field across all record definitions.

The following field attributes are shared across all record definitions in the system.

* field type

* field length

* field decimal places

* translate values (optional)
* long and short names

e field formats

The field type, length, decimals (if any), long names, short names and field for-
mats are the same across all record definitions. Translate values, although attached to
a field, can be used optionally in record definitions. Fields on record definitions can
be defined not to use the translate values attached to fields.

Field types allowed in PeopleSoft include the following:

* Character fields are usually used for codes in PeopleSoft.

* Long Character fields are used to store comments in PeopleSoft.

* Number fields can hold positive integers and decimal numbers.

o Signed Number fields can hold negative integers and decimals.

* Date fields can hold dates and is always represented in a “MM/DD/YYYY” format
online regardless of how they are stored in the database.

* Time fields can hold time and are represented in a “HH:MI:55.999999” format.
Seconds and subseconds are optional and can be suppressed.

* DateTime fields can hold both date and time in one field. They are represented
in the same format as date and time fields put together. They can be used to
store date and time stamps in PeopleSoft.

* Image fields are used to store pictures in PeopleSoft. Some formats in which
images can be stored are bitmaps, JPEG, Postscript, and so on. Employee photos
are stored using Image fields in a PeopleSoft HRMS system.

Fields attributes are stored in a database table called PSDBFIELD, the catalog
table, which is populated as fields are created and changed in a PeopleSoft system. All
field definitions in a PeopleSoft system can be listed from this catalog table. During
an application upgrade, this catalog table is used to compare and list out differences
in fields across databases.

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

2.2

RECORDS

PSDBFIELDLANG This language-related catalog table stores field long and short
descriptions in alternate languages. The long and short descriptions can be used when
a user, who has a default language other than English, accesses the field online.
When fields are used in record definitions, they are stored in a catalog table called
PSRECFIELD. By querying this table we can find out all the records that use a certain
field in the system. (See chapter 4 for more about creating fields in PeopleSoft.)

RECORDS

A record definition is a collection of fields. A record definition in PeopleSoft can be
an SQL table, an SQL view, a Sub record, a Derived/Work record, a query view or a
dynamic view. SQL tables and SQL views also exist in the database. Other types of
record definitions are stored only in the PeopleSoft system.

Record definitions may possess a variety of attributes, but they can be categorized
into three properties. The list of properties for a record definition include General
properties, Use properties, and Type properties.

General properties contains a description of the record definition, the last date
and time the record definition was updated, and the ID of the operator who updated
it. Use properties defines the key fields, search fields, list fields, query security record,
related language record, parent record, and the audit properties for the record defini-
tion. Type properties defines the type for the record definition. We define whether the
record definition is an SQL table, an SQL view, and so on. under the Type properties.
Let us look at some of the catalog tables that store properties of a record definition.

PSRECDEFN Record definitions in PeopleSoft are stored in a catalog table called
PSRECDEFN. This table stores all the primary attributes for a record definition. It
holds attributes such as record type, audit record name, related language record, parent
record name, query security record, index count, field count, and others. This table also
holds the table space name for record definitions defined as an SQL table. All record
definitions that are SQL tables or views are stored with a prefix of ‘PS_’; all PeopleTools
record definitions are defined with a non-standard SQL table name. The SQLTABLE-
NAME field is an override to the ‘PS_’ prefix. In the database, the table name is stored
with the value entered in the SQLTABLENAME field without the ‘PS_’ prefix.

PSRECFIELD The PSRECFIELD table stores the fields that the record definition
contains. Each field in the record can have its own edit properties. It can either have
translate value edits, prompt table edits, or a Yes/No edit. These attributes are specific
to the record definition field. Each field can also hold default values and PeopleCode
events specific to the record definition. A field in this catalog table, called PROG-
COUNT, contains the number of PeopleCode events for the record field. If this pro-
gram count does not match the actual number of PeopleCode events for a given field,
the record definition cannot be opened.

21

Licensed to James M White <jwhite@maine.edu>

2.3

22

PSINDEXDEFN The PSINDEXDEFN table contains a row for each index for the
record definition. This table is populated only if the record definition is an SQL table
or an SQL view.

PSKEYDEFN The PSKEYDEFN table contains all the fields that the PSINDEXDEFN
holds. All the record fields that compose the index are stored with the key sequence.

PSRECDDLPARM The PSRECDDLPARM table has all the DDL parameters for the
record definition. This is stored only if the record definition is an SQL table or an SQL view.

As you can see, record definitions serve as building blocks with fields assembled
in them. It is important to remember that record definitions defined as SQL tables or
views are also stored in the back end database. Other types of record definitions are
stored only in PeopleSoft and are not database objects. Record definitions that are
database objects have to be built in the database as well. Chapter 8 describes the proc-
ess of building database objects from PeopleSoft record definitions.

PSRECDEFNLANG This language-related catalog table stores long and short descrip-
tions of record definitions. When a user has a default language other than English, the
user can see record descriptions in his/her own default language. Developers can login
to the system using alternate languages and enter descriptions in that language.

Other types of record definitions are Derived/Work records, query views,
dynamic views, and subrecords. The use of Derived/Work records and subrecords are
explained in chapter 6.

PANELS

Panels serve as user interface to the application. Panels are built using field and record
definitions. Panels are a collection of record fields adhering to certain rules. Panels
vary from simple panels, panels with scroll bars, panels with subpanels and secondary
panels, and panel groups.

Let us look at all the panel field types used in PeopleSoft:

* Frames group fields logically. For example, fields used to hold an address can be
grouped into a frame for clarity.

* Group boxes are similar to frames in the sense that they are also used to group
fields. The difference is that group boxes are used to group the same field with
translate values. Group boxes group the same record field with radio buttons rep-
resenting different translate values. An example of a panel with group boxes is
the PAYROLL_DATA2 panel in a PeopleSoft HRMS system.

o Static Text fields are used to hold free form text.

* Static Image fields store images that remain static and do not change at any point
of time.

* Checkboxes store fields that either accept “Yes' or ‘No’ for input. They can also be
used to store fields that contain only two translate values. They can be turned on
or off to store two different values in them.

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

PANELS

Dropdown list boxes are used for any field that has a prompt record. By clicking
on the drop-down button, the user can invoke the prompt to produce a list of
valid values.

Edit boxes are very similar to drop-down list boxes except that they do not have a
prompt list. Edit box is the most common panel field type in PeopleSoft. When
a field that has a prompt record is defined as an edit box, the panel designer
automatically changes the field into a drop down list box. The prompt button
can be hidden using the Panel Field Properties screen.

Images stores images in the database. Unlike static image fields, image fields can
hold dynamic images. Images can be inserted into the panel field by either choos-
ing the F5 key or by choosing “Edit/Insert Image” from the application menu.
Long Edit boxes are used for long fields that are, in turn, used to enter comments.
They can be sized to the desired height and length, and they scroll as more data
are input into them.

Push Buttons are used to invoke a command, bring up a secondary panel, or
invoke a process. We will learn more about push buttons in chapter 6.

Radio Buttons are fields that can contain a value from the translate table. They
are used for record fields which have translate values in them. PeopleSoft has
changed most of its radio button fields to drop-down list boxes in release 7. This
makes a lot of sense because radio buttons restrict the values that can be entered
into an application panel. Since radio buttons can hold only one translate value
from a field, a radio button must exist for each translate value. In contrast, one
drop-down list box shows all the translate values in a list.

Trees represent data in a tree format. For example, departments can be entered
using a tree format in a PeopleSoft HRMS system.

Grids are used instead of scroll bars. They can replace single level scroll bars to
represent data in a spreadsheet format. (See chapter 7 for more information rela-
tive to Grids.)

Seroll Bars store multiple rows of data into the same record definition. Scroll bars
can also be used to store effective dated rows in the system. (See chapter 7 for
more information about scroll bars.)

Secondary Panels are used to organize fields in a separate panel. When a panel has
optional fields, those fields can be stored using a secondary panel. For example,
in the PeopleSoft HRMS system, secondary panels are used to enter mailing
addresses for employees. Secondary panels are invoked using push button fields.
(See chapter 7 for more information about secondary panels.)

Subpanels are used to organize fields from a subrecord. They are used as an input
mechanism for repetitive fields. Addresses in any record definition contain stan-
dard fields such as street address, city, county, state, zip code, and country. A sub-
panel, which contains all these fields from a subrecord, can be built and used in
more than one panel.

The following catalog tables are used to store panel definitions in PeopleSoft:

23

Licensed to James M White <jwhite@maine.edu>

2.4

24

PSPNLDEFN The PSPNLDEEN catalog table stores panel descriptions, field
counts, panel types, and grid definitions. Panels are built using the same panel name
in different languages. LANGUAGE_CD is part of this catalog table and stores one row
for each language, if needed.

PSPNLFIELD The PSPNLFIELD table stores the attributes of all fields in the panels.
Some attributes stored in this table include the panel field type, the record name, the
field name, the field labels, and so on. This catalog table also stores rows for panel
fields in different languages, if necessary. Attributes such as Related Display and Con-
trol Display items are also stored in this catalog table. This catalog table has the most
number of rows stored in the database among all PeopleSoft catalog tables because, for
every panel field, one row exists in this table. Even if the same record field is used in
ten different panels, ten rows are stored in the database.

PANEL GROUPS

Panel groups contain a series of panels that are either organized functionally or con-
tain many record definitions. A single panel group can be used to store data into mul-
tiple records. Panel groups are ideal for records that have more than one child record.
For example, in the PeopleSoft HRMS system PERSONAL_DATA is used to store per-
sonal information for an employee. JOB, EMPLOYMENT, and BEN_PROG_PARTIC
are tables that store employment and benefit information for the employee. These
tables are placed in a series of panels into a panel group called JOB_DATA.

Individual panels are attached to form a panel group. All the panels in a panel
group use the same search record. Also, a search record can be defined when the ADD
action is used. Panel groups can also contain work panels that can be hidden. In other
words, the hidden panels will be invisible when the panel group is accessed online.

Panel groups were part of the menu object prior to PeopleSoft release 7. Starting
from release 7, panel groups are objects themselves. Panel groups can be attached to
more than one menu item. Panel groups are stored in their own catalog tables. Panel
groups were part of the menu object prior to PeopleSoft release 7. Thus, as stated,
starting from release 7, panel groups are objects themselves which means panel groups
can be attached to more than one menu item.

PSPNLGRPDEFN The PSPNLGRPDEEN table stores the panel group description,
search records, processing location, and market definitions. Markets are used to store
the same panel group using different market locations. For example, suppose we want
to build different conditional logic for the same panel group for different user regions.
The market field makes this possible.

Let’s say that we want to use one panel group with two different market defini-
tions for users in United Kingdom and the U.S. We want to have descriptions written
using U.K. English conventions or U.S. English conventions depending on the market
definition defined in the panel group. In this case, we first build the panel group with
‘USA’ as the market definition, then clone it by changing the market definition to

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

2.5

MENUS

GBR. Logic can be built by using the system variable $MARKETS, available during
panel processing.

PSPNLGROUP The PSPNLGROUP table stores all the panels contained in the
panel group. Each panel can have its own name and label. Item Name uniquely iden-
tifies the panel, and Item Label shows in the application menu. Panels can also be hid-
den within a panel group. All these definitions are stored in this catalog table.

PSPNLGDEFNLANG This catalog table stores language-related descriptions for a
panel group.

PSPNLGROUPLANG This catalog table stores panel item names and labels in lan-
guages other than English.

MENUS

Menus serve as gateways to the application. Menus store panel groups that in turn
hold application panels which help the user access data from the database. Menu
items are individual items which hold a panel group and provide access to an appli-
cation panel. Users have to be given access to a menu item to access an application
panel. Panel level security can be managed using the Security Administrator menu
in PeopleSoft.

Menus can be either “standard” or “pop-up” menus. Standard menus, used to
create application panels, come with pre-defined menu items. File, Edit, View, Go,
Favorites, and Help are the bar items that come predefined in a standard menu. Stan-
dard menus are included in a menu group, a collection of like menus grouped by func-
tion. When we create a Menu definition, we can specify the menu group for the menu.
We can also specify the sequence for the menu within the menu group. We can like-
wise specify the sequence for the menu group, which can either be sorted numerically
or alphabetically.

Pop-up menus are attached to panel fields and function as context sensitive
menus. When the user right-clicks on a panel field, pop-up menus are activated. Pop-
up menus are defined as a panel field attribute in the panel definition and do not have
any predefined menu items. Pop-up menus, useful in bringing up help when the user
needs it, can also be used to facilitate look-ups of related information for panels in a
standard menu. Panel Fields can be highlighted to indicate the existence of an asso-
ciated pop-up menu for the panel field by activating the Highlight Pop-up Menu
Fields checkbox under the Display tab in the Configuration Manager. The following

catalog tables store menu definitions:

PSMENUDEFN This catalog table stores the menu definition. It contains the menu
group name, the menu label, the menu sequence, the menu group sequence, and the
menu type.

25

Licensed to James M White <jwhite@maine.edu>

2.6

26

PSMENUITEM This catalog table holds the individual items in a standard or pop-
up menu. It contains the panel group, the bar name, the item name, the item label,
and the override search record name.

PSMENUDEFNLANG The PSMENUDEFNLANG table stores menu descriptions
and labels in languages other than English.

PSMENUITEMLANG The PSMENUITEMLANG table stores menu item names,
labels, and bar names in languages other than English.

Menus, when migrated to other databases, are migrated as a whole. Individual
menu items cannot be marked for migration. For this reason, when menus are being
developed by more than one developer, caution has to be exercised in moving these
menus to other databases.

PEOPLECODE

Activated at different points of panel processing, PeopleCode events are used to con-
trol logic during panel processing. Some PeopleCode events are activated before a
panel is brought up online; other PeopleCode events are activated during save time.
The following PeopeCode events are available in PeopleSoft:

* FieldDefault PeopleCode is used to default values into a panel field.

* FieldEdit is used to edit values entered into a panel field.

* FieldChange is used to perform actions upon entry into a panel field. Other
fields can be populated, depending on values entered into a panel field. Func-
tions held in Field Formula PeopleCode can be called from Field Change
PeopleCode.

* FieldFormula usually holds functions called from other PeopleCode events.
Field Formula can also be used to perform logic based on values entered on
several fields in the panel.

* RowInit is used to initialize fields in a panel before they are displayed.

* RowInsert is used to perform logic when rows are inserted on a scroll bar.

* RowDelete is used to perform logic when rows are deleted from a scroll bar.

* RowSelect PeopleCode is used to drop records on a scroll bar before they are
displayed on the panel.

* SaveEdit is used to edit fields in the panel at save time. Save Edit can also
be used to edit several fields in the panel.

* SavePreChg is performed before the data are stored in the database. It can be
used to change values in panel fields just before they are saved in the database.

* SavePostChange is performed after the data are stored in the database. It can
be used to insert values into other tables after save time.

* SearchInit PeopleCode is used to populate values into fields used as input
fields for the application panel. Fields in search records which appear in the
input dialog box contain the Search Init PeopleCode event.

* SearchSave is used to edit values entered in the input dialog box.

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

2.7

2.71

* WorkFlow events are used to create work flow to other users based on functions
performed by the current user.
* prePopup PeopleCode is activated before a panel is brought up on a pop-up menu.

The following catalog tables store PeopleCode events in PeopleSoft:

PSPROGNAME This catalog table stores one row per PeopleCode event. It contains
the record name and the field name that holds the PeopleCode event as well as the type
for the PeopleCode event.

PSPCMNAME This table stores references to other fields in PeopleCode events.

PSPCMPROG This catalog table stores the actual PeopleCode text. It also holds the
count of number of references made to other fields from the PeopleCode event.

PROJECTS AND UPGRADES

Projects are a collection of objects developed to build an application. Let’s say we are
developing a time and attendance system. We can include all fields, records, panels,
panel groups, menus and PeopleCode used to develop this application. Projects are
useful when you want to organize objects and migrate them to other databases.
Projects can also be used for change control purposes.

Objects can be inserted into a project by either pressing the F7 key or by choosing
“Insert/Objects into Project” from the Application Designer menu. Projects are stored
in the following catalog tables:

PSPROJECTDEFN This catalog table stores the project definition and also holds
attributes such as commit levels, copy options, target database name, operator ID nec-
essary to sign on to the target database, and report filter options.

PSPROJECTITEM This catalog table stores all the objects included in the project
as well as the object type, the action to be taken on the object during upgrade, and
the copy status.

PSPROJECTMSG The PSPROJECTMSG table holds error/status messages when
projects are upgraded from the source to the target database.

Upgrades

Projects can be upgraded by accessing the Upgrade option from the Tools menu.
Objects in projects are pushed from the source database to the target database. Prior
to release 7, objects were pulled from the source database into the target database. In
order to migrate objects, it was necessary to log into the target database. Starting from
release 7, however, objects are pushed from the source database. This makes a whole
lot of sense, especially in the implementation stage of a project. Usually, test and pro-
duction databases exist in every implementation. As soon as development is finished,
projects can be pushed to the test database for testing. Once the application is tested,
the project can be moved to the production database.

PROJECTS AND UPGRADES 27

Licensed to James M White <jwhite@maine.edu>

2.8

2.8.1

28

CROSS-REFERENCE UTILITIES

Utilities, built inside the Application Designer and Utilities menus, are helpful dur-
ing development in PeopleSoft. Let’s take a look at these utilities and consider how we
can use them.

Find object references

In the Application Designer, we can find where a particular object is being used by
choosing “Edit/Find Object References” from the Application Designer menu. The
object should be open first in order to find its object references. The result is then
shown in the output window in the bottom of the Application Designer screen.
Double-clicking on any of the resulting reference objects will open that particular
object in the screen (figure 2.1).

Notice how the five objects which refer to MY_APPLICATION_ID field are
shown on the output window in the bottom of the screen. We can find references for
any object in the Application Designer by following the same procedure.

Navigation: Open —Field -MY_APPLICATION_ID —Edit —Find Object References

] Application Designer - MY_PROJECT - MY_APPLICATION_ID (Field)

Ele Edt Yiew [need Buld Jook Go Favortes MWindow Help

IR EEEET

B -] ni§ MY_APPLICATION_ID (Ficld) M=
B3 Fields Fieid T Charach
& MY_APPLICATION. i -
@ MY_DOCUMENT Field Lenathe [
@ MY_DOCUMENT ¢ i BT
& MY_PROBLEM_DT F
& MY_PROBLEM_ID Short Name: [agpicaticn D
@ MY_PROBLEM_RE - Field Format
& MY_PROBLEM_ST - [Uepmeme 3]
& MY_PROBLEM_TR Famat Type: e
@ MY_PROJECT_ID Famiy Mame: [-]
@ MY_USER_ID : I
& MY_USER_TYPE il
: a :xsﬁrum = Fel H": b N | |
=" [H i |
1 bevelopment Upgrade

MY _APPLCTN_TEL (Record)
MY_PROJECT_TEL (Record)
MY _APPLCTN_TEL (Panel)
MY _PROBLEM_TRKG (Panel)
MY _PROJECT_TEL (Pana])

|5=arch Completed - Found 5 object(s)

[b |\ Buld)\ Find Object References /i Upgrads) Fesuls)\ Walidae
Ready I o [
Figure 2.1 Find object references using the Application Designer

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

2.8.2

Find string In PeopleCode

Navigation: Edit =Find in PeopleCode

Find in PeopleCode E

Find what: | wirword
- Options -
I™ Match case
¥ Search Record PeopleCode
¥ Seaich Menu PeopleCode

™ Use search list

| Find I
Cancel |
Define List... |

Export
™ Export to File

Output File:]L AWINDOWSATEMPAPCFIND .. |

Figure 2.2 Find string in PeopleCode

Navigation: Define List (Find in PeopleCode)

Define Search List

Record Search List:
MY_APPLCTM_TEL
MY_DERIVED
MY_PROBLEM_TREG
MY_PROJECT_TEL
MY_RUN_CNTL_HR
MY_TREG_STATUS
MY_UUSER_TABLE

Menu Search List:

|

Y
2]

Available Fecords:

v B
[MY_APPLCTN_TBL
MY_DERIVED
MY_PROBLEM_TRKG
MY_PROJECT_TBL
MY_RUN_CNTL_HR

MY_TREG_STATUS
MY_USER_TABLE

Ayailable Menus:

r o

0K I Cancel I

Figure 2.3 Define list of object to search

We can also search PeopleCode text in
PeopleSoft to search for a string. This
feature is useful for finding customized
PeopleCode in the system. We should
follow a convention in developing cus-
tom PeopleCode. We mark custom
PeopleCode with a standard comment
and use this comment as the string to
search for all occurrences of custom
PeopleCode. To search the PeopleCode
for text, “Edit/Find in
PeopleCode” from the Application
Designer screen (figure 2.2).

We enter text as a search string in
the box labeled “Find what.” We also
define a list of record definitions for
search by clicking on the Define List
push button. In figure 2.3 we define the
list of record definitions and push them
to the left-hand side of the screen. We
click on “OK” to complete the list for
search, and the output is displayed in
the output windows of the Application
Designer screen. When a list is not
defined, all PeopleCode events in the
database are searched for the occurrence
of the text string.

The results of the PeopleCode

search can also be exported into a file by

choose

choosing the Export to File option and specifying an output destination. The Match
Case checkbox will match the string exactly for upper and lowercase characters.

CROSS-REFERENCE UTILITIES

29

Licensed to James M White <jwhite@maine.edu>

2.8.3 Record Cross References

Navigation: Go —Uitilities -Use —Record Cross Reference

Update/Display — Aecord Cross Aeference

‘ T — | T a record definition across all objects

FRecord

We can find the Cross References for

cocet || in the database by choosing “Use/
_ seach | Record Cross Reference” from the

perail | Utilities menu.
g e By choosing the record name in
Now Ousw | the input dialog box in Figure 2.4 we

can find all the objects in the database
that refer to the record definition.

Figure 2.4 Record Cross Reference

In figure 2.5, two tabs exist which
show information on objects that refer
to the MY_PROJECT_TBL record

definition. The first tab shows all the panels, views, and menu items that use the record def-
inition. The second tab shows prompt definitions, field defaults, and PeopleCode events
that use the record definition. The Record Cross Reference is a great tool to use to deter-
mine where a particular record definition is being used.

Navigation: Use —Record Cross Reference (from the UTILITIES menu)

Utilities - Use - Record Cross Reference

File Edt View Go Favoites Use Process Help

ale(@x| ol0o| sl 5le| Ss8| @] *lvelvsl]|

Panels, Views, Search Records | Prompts, Defaults, PeopleCode |

[Record: MY_PROJECT_TBEL

rUsed az a Search Record on:

ENG MY_PROJECT_TBL

Menu Item Panel Group
PROBLEM_TRACKING MY_PROJECT_TBL MY_PROJECTS ;I
-Referenced on Panels: :I ~Ref d in Projects: :l
ENG MY_PROBLEM_TRKG MY_PROJECT

-

Used in Views:

[[|Panels, Views, Search Records | Update/Display 4

Figure 2.5 Record Cross Reference

30

CHAPTER 2 DEVELOPMENT TOOLS

Licensed to James M White <jwhite@maine.edu>

All these utilities work using SQL views delivered with the PeopleSoft system.
These views refer to the catalog tables that we have been visiting throughout this chap-
ter. Some SQR programs, which come delivered with the system, also serve as cross ref-
erence utilities. These SQR programs start with an XRF prefix. For example,
XRFFLPN.SQR shows references to fields from panels.

1 Application Designer is an integrated tool for application development in
PeopleSoft.

2 Fields are the lowest level objects used in PeopleSoft application develop-
ment.

3 Records are a collection of fields and can be defined as SQL tables, SQL
views, Derived/Work records, Sub records, Dynamic views or Query views.

4 Panels are designed by assembling record fields on an empty panel.

Panel groups are mandatory objects that attach panels to menu items. Panel
groups can also be a collection of panels assembled together.

6 Menu Items serve as user interface to an application panel. Menu Items are
objects that are used in implementing panel security.

7 PeopleCode events help in creating logic during panel processing.

8 Cross-Reference Utilities come delivered with the PeopleSoft system and are
very useful in application development.

CROSS-REFERENCE UTILITIES 31

Licensed to James M White <jwhite@maine.edu>

3

Administration tools

3.1 Data Mover 33 3.4 Object security 58
3.2 Import Manager 37 3.5 Operator preferences 63
3.3 Security Administrator 47 3.6 Tree Manager 64

In addition to the tools discussed in chapter 2, PeopleTools provides mechanisms to
load and unload data across database platforms. Simple prompt tables can be loaded
using the Import Manager tool.

The Security Administrator provides a tool to manage PeopleSoft operator IDs.
The ability to group many users into an operator class enables the individual(s) admin-
istering security to grant or revoke access to panels and processes much faster when the
IDs are linked to a particular class.

Tree Manager is another tool that can be used for reporting security. This chapter
presents an overview of these tools and will complement the information obtained in

the chapters ahead.

32

Licensed to James M White <jwhite@maine.edu>

3.1

3.1.1

DATA MOVER

Data Mover is a PeopleTool utility that enables the developer to move data from one
database to another. Data Mover can also be used to move tables from one PeopleSoft
platform to another. Most organizations have multiple databases such as production,
QA, and development. Consequently, the need to move or unload data from one
environment to another is a necessity.

Data Mover overview

Data Mover uses commands which can be entered ad-hoc or from predefined
script files.

The scripts generated by Application Designer can be used in Data Mover to exe-
cute SQL statements against database tables without regard to database platform. Data
Mover also uses scripts to load and unload data and to perform table manipulation.
These scripts can be made up of Data Mover commands, SQL statements, or a com-
bination of both.

Let’s define a simple Data Mover script which unloads data from one environ-
ment and then loads the data into another.

Odur first step is to sign onto the database. The sign-on process is similar to the Peo-
pleSoft application sign-on described in chapter 1. After sign-on, the Data Mover win-
dow is displayed. This window is the mechanism used to process Data Mover scripts.

NOTE Data Mover scripts do not necessarily have to be defined in the Data Mover
window. Scripts are generated by Application Designer during create and
alter table actions. Scripts can also be developed using a text editor.

In figure 3.1 the assumption is made that the script is defined in the Data Mover
window. After Data Mover is launched, a new script can be defined.

The Data Mover window consists of an input window and an output window.
Statements are entered into the input window and processed by the Data Mover Peo-
pleTool. The data are captured on a file that can be supplied to another Data Mover
script during a migration of data to another database or platform. Data Mover is
extensively used during upgrades and specific system updates such as patches and fixes.
Additional applications of Data Mover can be used for backups and restores or the
movement of setup data. In the PeopleSoft HRMS application, the use of setup data
such as Company, Department, and Locations can be moved to another database on
a regular basis. This is very useful during testing or when it is necessary to have an envi-
ronment similar to production. Reusable scripts can be developed to unload data from
one database and load it into another.

DATA MOVER 33

Licensed to James M White <jwhite@maine.edu>

34

Navigation: File -New

[Untitled) - Data Mover

MEEORIEEK

Figure 3.1 Data Mover window

NOTE The use of Data Mover may not always be feasible when very large tables
are moved. For large tables, database specific utilities such as Oracle
Export/Import or DB2 SQL loader may be used. The disadvantage is that
those tools have specific platform and database dependencies.

We've developed an application called Problem Tracking, to illustrate the tools
and concepts used in PeopleSoft. In figure 3.2, Data Mover scripts are used to export
several tables from the Problem Tracking system.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

3.1.2

- Data_Moves dins - Data Moves

o Lt Yew Hep

DlelBe] x{ele] v
REM This is an ple of a i d into a data mover script. The comment lines can |

continue on several lines and conclude with a delimiter such as ;

set output ctemp\SetUpTables.dat:
set log cMlemp\SetUpTables.log:

export MY APPLCTN TBL:

export MY_PROBLEM_TRKG WHERE MY_PROJECT_ID = '000001"%;
export MY_PROJECT_TBL:

export MY USER_TABLE;

- Comments can also be entered in this If the i requi multiples lines
— each line must be preceded by two dashes

Ll

ul5e

J s

Ready el [[[Taceow

Figure 3.2 Data Mover commands

Examining the Data Mover script

Let’s examine our Data Mover script. The first statement is a remark. In Data Mover,
a remark can be entered by coding REMARK, REM or --. The next two statements are
Set commands, which are used to identify the environmental settings with which
Data Mover will work. In the example, the first SET OUTPUT statement identifies an
output file. When tables are unloaded, the specified output file will contain the
exported data. The next Set statement represents a log file which records Data
Mover activity. The activity is also displayed in the output window.

The Export statements are used to write the specified records to the file identi-
fied by the SET OUTPUT statement. The Export statement can accept an optional
WHERE block, which can be used to limit the selected data to specific values. The con-
tents of the WHERE block can be any valid SQL statements. In the example, Data
Mover will only export entries from MY_PROJECT_TBL which have a
MY_PROJECT_ID field containing ' 000001 '. The other tables are exported in their
entirety. Data Mover commands are delimited using a semicolon (5).

To run the script, click on the traffic light or select File =Run Script (figure 3.3).

The log file contains statistics such as run date, data mover release, and number
of records exported for each table. The output file SetUpTables.dat contains the
exported table entries and data. In a real world example (and depending on the num-
ber and size of tables exported), a file such as SetUpTables.dat can become very large.

DATA MOVER 35

Licensed to James M White <jwhite@maine.edu>

36

Navigation: File -Run Script

= Data_Mover dms - Dala Moves

Fle Edt View Hep
ni=lEe] X=E] 2
AEM This is an le ol a tinserled inlo a dala mover scripl. The comment lines can |

lcontinue on several lines and conelude with a delimiter such as ;

el oulpul cilemp\SelUpTables.dal;
el log cilempiSelUpTables.log;

lexport MY_APPLCTN_TBL:
export MY_PROBLEM_TRKG WHERE MY _PROJECT_ID = '000001"%;
export MY _PROJECT_TBL:

export MY _USER_TABLE:

- Comments can also be entered in this manner. If the comment requires multiples lines
- each line must be preceded by two dashes
W}
tarted: Sun Sep 12 19:03:53 1999
a Mover Release: 1.5
Export MY_APPLCTN_TBL 1
Export MY_PROBLEM_TRKG 1
Export MY_PROJECT_THL 2
Export MY _USER_TABLE 5
Ended: Sun Sep 12 19:03:54 1999
uccessiul completion
cript Completed.

ok

| M=~ 1 =
Ready Cap Teace O |

Figure 3.3 Data Mover windows after execution

This data can be saved for backup purposes or can be migrated to another database.
Let’s continue with the example and assume that the data will be loaded onto another
database. Our next task is to load the data into another database. The statements used
to accomplish this task are illustrated in figure 3.4.

The SET INPUT statement identifies the name of the input file for this script. In
this example, the input file is the output file used in figure 3.3. The SET LOG state-
ment refers to the file used in the export operation. The log file is written over and
contains the results of the data load.

The next statement in the script is REPLACE_ALL. This statement drops the
specified table and any associated indexes. The table and indexes are then created using
the characteristics that appear in the input file. The data are then loaded into the spec-
ified table.

This example contains an embedded SQL statement. When the export operation
is run as shown in figure 3.3, the Where statement is used to select only those rows
in MY_PROBLEM_TRKG that contain a '000001 "' in the MY_PROJECT_ID field.
This is done in order to preserve any existing data for MY_PROJECT_ID values other
than '000001' on the target record. The Delete statement removes any
'000001" values before the subsequent Import statement is processed. The
Import statement does not alter existing table characteristics or data. For an existing

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

7| 38| =]t
Fle Edt Miew Help

Olczale] e=el 2

I~ This script is used to load data

set input citemp\SetUpTables.dat;
set log citemp\SetUpTables.log:

replace_all MY_APPLCTN_TBL:

delete from PS_MY_PROBLEM_TRKG WHERE MY _PROJECT_ID = '000001°%;
import MY _PROBLEM_TRKG ignore_dups;

replace_all MY_PROJECT_TBL:
replace_all MY_USER_TABLE:

L o

|
§ | "
Ready BootStrap | Trace OIf 4

Figure 3.4 Data Mover script to load

table, Import inserts non-duplicate rows only.
S enor St 0 Exos Fosiion 0 Fehert 605 - Duplicate entries generate an error message

e Insest/update of unique conztramed columng with duplicate
dts similar to the one illustrated in figure 3.5.

Duplicate entries can be ignored using the
IGNORE_DUPS parameter. IGNORE_DUPS
Figure 3.5 Data Mover duplicate data permits duplicate row messages without abnor-

mally terminating the import operation. In the
example, the IGNORE_DUPS parameter is redundant because of the preceding
Delete statement. The parameter should be used with caution because there may be
instances where duplicate rows might indicate design errors in the export and import
process. REPLACE_DATA is a version of the Import statement. The difference is that
REPLACE_DATA first deletes data from the table and then inserts the corresponding
data referenced on the input file.

3.2 IMPORT MIANAGER

Import Manager is another tool that can be used to load Application data. A popular
use of Import Manager is the conversion of data from one system to another or from
one set of codes to a format compatible with PeopleTools tables. One unique feature
of Import Manager is that, while data are loading, system edits are being performed
as if the data were entered from a PeopleSoft application panel. Edits can also include

IMPORT MANAGER 37

Licensed to James M White <jwhite@maine.edu>

3.2.1

38

PeopleCode programs if necessary, and PeopleCode programs can contain code to
execute when they are run during the Import Manager process only.

Import Manager works very closely with PeopleTools record definitions. The
fields on the record definition are mapped to data on the Import Manager upload file.
A great way to learn Import Manager is by example, so let’s begin.

Defining an import definition
The following example loads data obtained from an existing legacy application to a
soon-to-be implemented PeopleSoft HRMS system. The data are loaded into the
Department table, and our objective is to build as much of the record information as
possible. After the departments are loaded, the end user can complete the record with
additional information.

The input file exists as an ASCII file with a fixed length format. (These are file
requirements for Import Manager.)

Let’s begin the Import Manager session:

Navigation: PeopleTools =Import Manager —File —-New

& Import Manager - (Untitled) M= E3
Fle Change Yiew Go Favortes Help
File Hame:

Record Mame:

Field Name Type Req Start Length Date Fmt Bypass XLAT Default

% = Top of List = = =
* % % End of List » = =

Figure 3.6 Import Manager window

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Our next step is to assign a file name and record name to the Import Manager definition.

Navigation: Change —Header

& Import Manager - [Untitled) M= E3

Field Name Type Req Start Length Date Fmt Bypass XLAT Default

% = Top of List = = =
* % % End of List » = =

Figure 3.7 Header menu option

The Import Header information is displayed (figure 3.7). The record name is
selected from a list box containing all available record names as shown in figure 3.8.

Import Header Information E |
File Mame:
IE:\TEMP\DEPTLDAD.PHN
Record Name:
DEPT_TBLACS_LNG 4

DEPT_TBL_ACCESS
DEPT_TBL_LANG |

Cancel

Figure 3.8
Defining header information

After the Import Header information is entered, we click OK and are presented
with a list of field names from the DEPT_TBL record definition. The record field
names are then available in the Import Manager window (figure 3.9).

IMPORT MANAGER 39

Licensed to James M White <jwhite@maine.edu>

& Import Managesr - (Untitled) M= E
File Change View Go Favoites Help

File Name:

Record Name: DEPT_TBL

Field Hame Type Req Start Length Date Fmt Bypass XLAT Default
SETID |Char |Yes| 8| 5 | | Ho | Ho |
DEPTID |Char |Yes| 8] 18 | | Ho | Ho |
EFFDT |Date|Yes| 8| 18 |YYYVYMMDD| HNo | Mo |%date
EFF_STATUS |Char |Yes| 8] 1 1 | Ho | Ho |A
DESCR |Char |Yes| 8] 38 | | Ho | Ho |
DESCRSHORT |Char [Ho | 8] 18 | | Ho | Ho |
COMPANY |Char |Ho | 8| 3 | | Ho | Ho |
SETID_LOCATION |Char |Ho | e 5 | | Ho | Mo |
LOCATION |Char |Ho | 8] 18 | | Ho | Ho |
TA%X_LOCATION_CD |Char|Ho | 8] 18 | | Ho | Ho |
MANAGER_ID |Char |Ho | 8] 1 1 | Mo | Ho |
MANAGER_POSH |Char |Ho | e 8 | | Ho | Mo |
BUDGET_YR_EMND_DT |Hbr |Ho | e 8 | | Ho | Ho |
BUDGET_LUL |Char |Yes| 8] 1 1 | Ho | Ho |H
GL#_EXPEMSE |Char |Ho | 8|35 | | Ho | Ho |
EED4_FUNCTION |Char |Ho | 8| 2 1 | Ho | Ho |
CAM_IHD_SECTOR |Char |Ho | 8| 3 | | Ho | Ho |
ACCIDENT_INS |Char |Ho | o] 3 | | Ho | Ho |
SI_ACCIDENT_HUM |Char|Ho | 8|15 | | Ho | Ho |
HAZARD |Char |Ho | e & | | Ho | Ho |
ESTRABID |Char |Ho | 8| 5 | | Ho | Ho |
RISKCD |Char |No | a] & | | HNo | No |

& End of List = = =

Figure 3.9 Record Definition window

In this example, the Import Manager upload file contains basic information. To
load a “stripped down” version of the department table record, three data elements in
the input file are all that are required. By combining default values and one People-
Code program, data can be loaded into the department table using the small input file
illustrated in figure 3.10.

The mapping process can now begin. During this process we have several options.
We can:

* point fields to columns on the input file,

* default fields by supplying default values in the Import Field definition, or

* provide no specific reference to fields. (The assumption is that this category of
fields can either be populated later or will not require a value at all.)

180881Hachinery 8061 I~

100082P1lant Systems 8011 o

100883administration 8501

10004Training gom

10005Information Systems 8so

10006The Café 8002

180070perations Administration 8612

>l Figure 3.10
A *| Z| Import Manager data file
40 CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Import Field Information E3

Field Marme:
Field Type:
Start Location:

Length:

F

¥ Bypass record if blank

Default:

—

o] ol

Figure 3.11

Import Field Information

Field Name:
Field Type:
Start Location:
Length:

Field information
window

DEPTIC
Characte
|1_
|5_

¥ Bypass record if blank

Default:

——

co

Figure 3.12 Assign department ID

Impoit Field Information

Field Name:
Field Type:
Start Location:
Lengthc

Date Format

—
o
C MMDDYY € MMDDYYYY

C DDMMYY DDMMY'YYY
C YYMMDD YYYYMMDD

™ Bypass record if blank

Default:

I"/.dete

Cancel

Figure 3.13 Date formats allowed

The first field on the record is SETID. We dou-
ble-click and enter the starting location and length
on the corresponding input record. The dialog box
to enter this information 1is illustrated in
figure 3.11.

The default starting location is zero, and the
default length is obtained from the record. In the
example, SETID and COMPANY use the same
value. This enables us to map these two fields to one
specific column on the upload file.

The next field is DEPTID. DEPTID is the field
which appears in column 1 on the upload file. The
assignment for DEPTID is shown in figure 3.12.

The next field is the Effective date. EFFDT is
defaulted to the current date (figure 3.13).

Import Manager default values are taken from
the default value setting in the Application
Designer Record Field properties. When an actual
date value is loaded, Import Manager allows date
formats to be specified.

Another feature of Import Manager is that
field contents can be translated from one value to
another. The translation process occurs before the
record is inserted into the database. This is useful
when data are being converted from a legacy appli-
cation. In the example, column 39 on the upload

file contains a comparable effective status value as it exists on the legacy application.
We know that, in PeopleSoft, the EFF_STATUS field Xlat values are A and I, which
represent Active and Inactive respectively. The legacy application equivalents are
1 and 2. The EFF_STATUS field information appears in figure 3.14.

IMPORT MANAGER

41

Licensed to James M White <jwhite@maine.edu>

Import Field Information E
Field Mame: EFF_STATUS
Field Type: Character
Start Location: |44
Length: I‘I

[~ Bypass record if blank

Default o
Concel

When loading the effective status, blank values
are not bypassed; they are defaulted to A. To set up
translate values for EFF_STATUS, the field is high-
lighted in the Import Manager window followed by
the corresponding menu action.

The Translate Values dialog box (figure 3.15)
enables the entry of old and new values. Figure 3.16
illustrates how old and new values are entered into

the dialog box.

Figure 3.14 EFF_STATUS

Navigation: Change —Translate

42

Import Translate Values E3 |
Field Name:
Field Type: Add Import Translate Value m
Old ¥ alue |Mew Value

Add | Field Marme: EFF_STATUS

Figld Type: Character
%L OdVale i
'_l New Value: |A

Cancel |

Figure 3.15 Translate values dialog

Field N ame:

Field Type:

Old Value

Dane

Figure 3.16 Entering translate values

The completed translate values are

identified in figure 3.17.

Figure 3.17 Completed translate values

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

The next two fields, DESCR and DESCR-

SHORT, contain the full department description as

::: ::: Ijr}_ well as a short description. On the upload file, the

Salocaion 6 description appears in column 6. Because the next

Lengh: E field on the upload file begins in column 36, we

I |Bypase iecord i blank allow a 30 character length for DESCR and 10 for

Default: — DESCRSHORT. The field information for DESCR
is illustrated in figure 3.18.

Cencel| The start and end columns of data on the

upload file must be tracked carefully. It is possible

Figure 3.18 Department to load the contents of one field into an incorrect

description column on the record. This is particularly true for

fields that do not contain edits.

The “Bypass record if blank” box is checked for COMPANY, SETID, and DESCR.
For EFF_STATUS, blank fields are allowed and are subsequently defaulted to A. Fields
considered important, such as descriptions, key fields, or codes, should not be passed
as blank whenever possible. In our example, we are loading “skeleton” records onto the
department table which contains the significant data elements (SETID, DEPTID,
DESCR). The EFF_STATUS is defaulted to Active if the data are not available. Some
end-user involvement may exist after the process is completed. For this example, iden-
tifying departments as active or inactive can be one of these tasks.

The next field, COMPANY, shares the same position on the upload file as SETID.
All other remaining fields are either defaulted based on the record definition or are left

blank.

Navigation: Import Manager —File —Save

After these tasks are completed, our next step is to
save the import definition (figure 3.19).

The Import Manager definition is now com-

LOAD_DEPARTMENT . ..
JLoAD._ Lox | pleted (figure 3.20). To view the definition based on
the input order on the file, use the view menu option.

Save Import As [x]

Save Import Mame As:

Cancel

Figure 3.19 Import Manag-
er save dialog

IMPORT MANAGER 43

Licensed to James M White <jwhite@maine.edu>

Navigation: View —Input Order

& Import Manager - LOAD_DEPARTMENT

File Change View Go Favoites Help

File Name: C:\TEMP\DEPTLOAD .PRN

Record Name: DEPT_TBL

Field Hame Type Req Start Length Date Fmt Bypass XLAT Default
|# % #TopofList w e ® |
DEPTID |Char |Yes| 11 5 | | ¥Yes | Ho |
DESCR |Char|Yes| 6 | 38 | | ¥es | Ho |
DESCRSHORT |Char|Ho | 6 | 18 | | ¥es | Ho |
COMPANY |Char|Ho | &1 | 3 | ¥Yes | Ho

SETID |Char|Yes| 41 | 3 | Yes | Ho
EFF_STATUS |Char|Yes| 44 | 1 | Ho Yes|nA
ACCIDENT_INS |Char |Ho | a] 3 | Ho Ho
BUDGET_LUL |Char|Yes| al] 1 | Ho Ho |N
BUDGET_YR_END_DT |Hbr [Ho | 0] & | Ho Ho
CAN_IND_SECTOR |Char|Ho | a] 3 | Ho No
EEO4_FUNCTION |Char |Ho | a] 2 | Ho Ho

EFFDT |Date|Yes| e | 18 |YYYYHHDD| HNo | Ho |%date
ESTABID |Char |No | 8] 5 | | No | No |
GL#_EXPENSE |Char |Ho | e] a3 | | Ho | Ho |
HAZARD |Char |Ho | 8] & | | Ho | Ho |
LOCATION |Char |Ho | 8] 18 | Ho Ho
MANAGER_ID |Char |Ho | a1 | Ho Ho
MANAGER_POSHN |Char |Ho | a|] 8 | Ho HNo
RISKCD |Char |Ho | a] 6 | Ho Ho
SETID_LOCATION |Char|Ho | a] 5 | Ho Ho
SI_ACCIDENT_NUM |Char |Ho | a | 15 | Ho Ho
TAX_LOCATION_CD |Char |Ho | a| 18 | Ho Ho

= = = End of List = = =

Figure 3.20 Completed Import Manager definition

When viewing the import definition fields we can see that Import Manager has
several menu options available:

Navigation: View —Record Order This is the default. Fields are displayed as they appear on the
record definition.

Navigation: View —Input Order Fields are displayed based on starting column positions of the
upload file.
Navigation: View —Alpha Order Record is displayed based on alphabetical field names.

One additional item which can play a role during the Import Manager process is People-
Code. When the import definition is run, the following PeopleCode events are executed:

® RowInit

* FieldEdit

* FieldFormula
* SaveEdit

* SavePreChg

* WorkFlow

* SavePostChg

44 CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Based on the PeopleCode events identified, let’s insert a small piece of code that
concatenates the company into the description field. This will help identify depart-
ments which were migrated from the legacy system. The code is inserted into the
SaveEdit event:

If %Import = True Then
DESCR = RTrim(DESCR, " ") | " (" | COMPANY | ")";
End-If;

The $Import system variable is verified for a return value of True. The system vari-
able indicates this is an Import Manager session. During non-Import Manager ses-
sions the variable returns False. As a result, any code in the context of the Tf
statement is not executed.

NOTE PeopleCode is discussed in part 3 and appendix E also contains a selected
list of PeopleCode built-in functions.

3.2.2 Running the Import Manager

At this point, we are now ready to run the import. The run import dialog box, shown
in figure 3.21, contains a list of import definitions, run types, and report parameters.

Navigation: File -Run

Import Manager can be run in one of three modes:

FRun Import Namef(s}: Edit Generates a report based on the data in the
R upload file. No database inserts are performed.

NATIONS_DUEV! Load Attempts to write to the database. Edits are

also performed against record keys, and trans-
late and prompt tables. Effective date process-
ing is implicitly performed.

Run Type Compare Performs the same function as Edit. This is
Edt (" Load ¢ Compare reserved for future use.

Margins(mm) Left: [0 Right [0
Top: IE Bottom: |5_
Border Space(mm}: [3

[T Border [Header [Footer

Figure 3.21 Run Import window

IMPORT MANAGER 45

Licensed to James M White <jwhite@maine.edu>

46

import Manager | Import Manager displays a run status window

PS Import Rure LOAD_DEPARTMENT

Input record count:
Edit/lat wamings:
Bypassed records:
Error records:
Walid records:

[=]

~ o= oo

(figure 3.22) that indicates the number of input
records processed. For very large input files, we can
identify the number of valid records or records that
generate errors as Import Manager is processed.

Import Manager produces a report containing
the record counts (figure 3.23).

Figure 3.22 Import Manager

run status

Printed: 09/12/99 8:02:08PM

Record Name: DEPT_ TBL
Run Type: Edit

End of run.
Input record count:
Edit/Xlat warnings:
Bypassed records:
Error records:
Valid records:

Norow®

Database: HRDMO PS Import Run: LOAD_ DEPARTMENT Version: 26 Page: 1

Figure 3.23 Import Manager report

Finally, let’s look at the end results. The department profile within PeopleSoft is illustrated
in figure 3.24. Note the embedded company code in the description field. This is accomplished
using the small piece of PeopleCode inserted into the SaveEdit event.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Manage Human Resources [GBL) - Setup - Department Table Hi=E
File Edt View Go Favoites Setup Setuplel Proclgl Repot Rptlel Help

888X naal = e 88| 2lsl2] |4l

Department Profil |
| SetlD: 800 Department: 10006
Effective Date: Imﬂ Status: Inactive = . =
Description: The Café (800) Short Desc: [The Café
Location SetiD: [9
Location: [4
Company: IW j Corporate
Manager ID: [3
Manager Position: [4
Incumbent Manager:
Budget Year End Date: |
Budget Level: INnme—;' @ :I

[Department Profile |Update/Display

Figure 3.24 Results of Import Manager run

3.3 SECURITY ADMINISTRATOR

PeopleSoft security is comprised of operators and classes of operators. An operator is
the individual ID assigned to a user. A class of operators is a profile that includes the
menu items and type access each operator assigned to the class will have.

3.3.1 Defining an operator class

In this section we define a simple operator class and assign an operator ID to it.
The Security Administrator can be entered using the menu (figure 3.25).

SECURITY ADMINISTRATOR 47

Licensed to James M White <jwhite@maine.edu>

48

Navigation: Go —PeopleTools —Security Administrator —File =New

43 Security Administrator - [[Untitled] (Operator]]
%y Fle Edit View |nset Tools Go Favoites Window Help =12 x|

DI=E6| 8| Bl

Gonerd Secuy Defintion Type: | TR -

Description: [
E [~ General Attrib
Business Process Map: | =
Menw ltems
 Background Disconnact Interval Time-Out Minutes
" Use defaul from PeopleT ool: Options panel % Mever time-out
[©] % Never disconnect " Specific time-out (minutes) I
" Specific disconnect interval [seconds| |
Signon Times | L 4 1B

[~ Dperator Attributes -

@ Opesator Password: [— [F Options
Process Groups LConfirm Password: [— ™ Allgwed to start application server
Language Preference: |Ergish 5] ™ Enable Muliingual support
L3 Access Profile: |
Classes Employee |D:

Ready] |

Figure 3.25 Security Administrator panel

Several options are available based on whether the security definition type is oper-
ator or class of operators:

* General

* Menu items

* Sign-on times
* Process groups
* Classes

General

First, we define a class of operators. To define a class, select “Class of Operators” from
the Security Definition Type list box. An optional 30 character description can be
entered. The General Attributes section contains several settings. Business Process
Map identifies the path within the business process to which the operator class will
have access to when using the Navigator. In HRMS, business processes are events such
as New Hires and Terminations. These events are graphically represented in the busi-
ness process.

The Background Disconnect Interval uses the default from the PeopleTools
option panel. This feature enables a database connection to be released when the
instance is moved to the background or is minimized as an icon. The connection is
reestablished when a database call is required for SQL statements.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

The Time-Out feature specifies the amount of inactivity allowed in minutes. The
system signs off the ID after the threshold period has been exceeded. The General
options are illustrated in figure 3.26.

sas Security Administrator - [[Untitled) (Clazss of Dperators]]

&% Fle Edt View [mset Jools Go Favoites Window Help =8| x|
DzelE & ==l
Ggﬂ Security Definition Type: ICIazs of Operators 'I
Description: IThis iz 3 basic Opesatos Class
5 ~— General Attributes
Business Process Map: [HRMS I
Menu ltems
~ Background Disconnect Interval 1 Time-Out Minutes
+ Use default from PeopleT ools Options panel " Mever lime-out
[©] " Neves disconnect * Specific time-out (minutes): (60
~ ;
Signon Times . Specific disconnect interval [secands] I .
Process Groups
Ready] |

Figure 3.26 General Security options

At this point, we can save the panel by supplying an operator class name, then
proceed to insert menu items.

Menu Items

Menu Items are the main components of an operator class. Here we select menus and
make specific menu items accessible to each operator class. Click on the Menu Items
icon within the Security Administrator window.

Our next step is to insert a menu (figure 3.27).

A list of available menus is provided. In the example, we select the
ADMINISTER_WORKFORCE_(GBL) menu by double-clicking on its name. A list of
associated menu items is displayed (figure 3.28).

When the Select Menu Items window is presented, we can either press the Select
All button or select only those menu items the operator class is allowed. View Only secu-
rity can be given by clicking on a menu item and then clicking the Change Display-Only
button. The DispOnly column will then contain the value Yes. Display Only security

SECURITY ADMINISTRATOR 49

Licensed to James M White <jwhite@maine.edu>

Navigation: Insert -Menu Name

Security Adminizstrator - [MYCLASS [Clazs of Dperators]]
g% Fle Ed® View Incet Took Go Favodtes Window Help =181
D|=(8lo| & (5|
General
t Menu Name
&
R Select the menu to insert:
S ADMINISTER_WORKFORCE_[BEL)
ADMINISTER_WORKFORCE [cam
ADMINISTEH wunnmncs |
@ ADMINISTEH_DRKFDHCE_[GEFI]
. : ADMINISTER_WORKFORCE_[JPN)
Signon Times ADMINISTER WORKFORCE (NLD)
ADMINISTER_WORKFORCE_(U.S.)
ADMINISTER_WORKFORCE_[UK)
@ ANALYSIS_DB_MANAGER
APPLICATION_DESIGNER
Process Groups APPLICATION_ENGINE
APPLICATION_REVIEWER =
_Coreel |
Ready T v

Figure 3.27 List of available menus

., Security Administrator - [MYCLASS [Class of Operators)]
aaeﬁdﬁwlrwtlwhﬁome}ieb =181 %]
S EEEE k=TT
General
E Menu Name: ADMINISTER WORKFORCE_(GEL)
Menu ltems Bar Name | ltem Name | Actions/Panels |D_=mj
JOB_DATA Update/Display -
Update/Display A1
Conection ~
@ JOB_DATA1 No
JOB_DATA_JOBCODE No
Signon Times JOB_DATAZ No
JOB_DATA, 3 No
JOB_EARNINGS_DISTRIBUTIONMo
BENEFIT_PROGRAM_PARTICIF|No
EMPLOYMENT_DATA No
£ JOB_DATAI_WRK No
SCATY_TBL_GBL_WRK. No
ficcass Bioups CURRENT_JOB Conscion
JOB_DATAT
eectAd | _Change Doy Oy | = _I
Ready |

Figure 3.28 Select menu items window

50 CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

permits the operator to view data, but does not allow changes. Figure 3.29 identifies
the menu items selected for the ADMINISTER. WORKFORCE_(GBL) menu.

2o, Security Adminiztrator - [MYCLASS [Class of Dperators)]

% Fie Edit View Inset Tools Go Favortes Window Help NETE

D=l & BB/l

Select Menu ltems

Menu Name: ADMINISTER_WORKFORCE_[GEL)

Menu ltems Bar Name |ltem Name | Acti
JOB WTA,

Process Groups CURRENT_JOB

Select Al | Change Display-Orly

e i i T

Figure 3.29 Menu Items selected. Note DispOnly option Yes

Note the DispOnly column for the JOB_DATA2 and EMPLOYMENT panels.

Based on the menu items selected, any operator IDs assigned to this class have access
to the JOB_DATA panels as follows:

* JOB_DATAL1 Update/Display, Update/Display All
* JOB_DATA_JOBCODE Update/Display, Update/Display All
* JOB_DATA2 Display Only

* BENEFIT_PROGRAM Update/Display, Update/Display All
EMPLOYMENT_DATA Display Only

To enable the operator class to run queries, the Query menu is inserted into the
profile as well. The operator class now contains two menus (figure3.30).

Signon times

To display sign-on times, click on Signon Times or select View —Signon Times (fig-

ure 3.31):

SECURITY ADMINISTRATOR 51

Licensed to James M White <jwhite@maine.edu>

o0 Security Administrator - [MYCLASS (Class of Operators)]

% File Edt View Inset Tools Go Favoiites Window Help =181

D|=(8|0| & Blm|= 50

ADMINISTER_WORKFORCE_ (GEL)

QUERY

General

=

Menu Items

Signon Times

B

Process Groups

Feady ’_’_I_ YA

Figure 3.30 Menus allocated to operator class

Navigation: View —Signon Times

sas Security Administrator - [MYCLASS [Class of Dperators)]
&% Ele Edit View Inset Tools Go Favortes Window Help -|a| x|

sEEEE N

General Sunday |100:00-23:59
|Monday |00:00-23:59
Tuesday [00:00-23:59
Wednesday|00:00-23:59
Thursday |00:00-23:59

Menu Items Friday 100:00-23:59
Saturday |00:00-23:59

Signon Times

Process Groups

Day Start-End

Ready | 4

Figure 3.31 Authorized sign-on times

52 CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Sign-on times identify what days of the week (and hours within those days) dur-
ing which a user is authorized to logon. In some organizations sign-on times are
restricted to prevent updates during batch cycle runs such as Payroll. Occasions also
exist when activities such as database reorganizations or data migrations occur, which
may require limited access for specific periods of time.

The authorized sign-on times display consists of two columns, Day and Time,
representing the allowed sign-on times for each day of the week. To change the sign-
on times, double-click on the day of the week.

We can have multiple sign-on times during the day, provided the time ranges do
not overlap. Let’s assume, for example, that Saturday is the system maintenance win-
dow, and, with the exception of a few IDs, no one else should be on the system
between 17:01 and 21:30. To enforce this, we can change the time range for Saturday
and then insert an additional time period which allows for sign-on after the mainte-
nance window.

To change the Saturday sign-on time, double-click on Saturday and change the
time as shown in figure 3.32.

This change enables the user to be logged on between 00:00 and 17:00. To add
additional time periods, select Insert —=Signon Times (figure 3.33).

Modifying the sign-on time ensures that our users are not on the system during
the Saturday time period 17:01-21:29. This information may help provide clues when
a help desk report reads User mysteriously disconnected from system.

Process groups

The next available item in the Security Administrator window is process groups.
When process definitions are set up using the Process Scheduler PeopleTool, the defi-
nitions are linked to one or multiple process groups. When a process is defined and
attached to a process group, that process cannot be run by an operator until the class
contains the process group as part of its definition. A process group can contain many
process definitions.

To add a process group, select Insert —Process Group (figure 3.34).

NOTE Process definitions are discussed in part 5.

At this point we have an operator class with two menus. The class is disconnected
after sixty minutes of inactivity. With the exception of the Saturday 17:01-21:29 time
period, the operator class can be logged onto the system at all other times.

3.3.2 Linking operator IDs to an operator class
Now that an operator class has been defined, we need to define an operator ID and
link it to the class. Before proceeding, do not forget to save the operator class settings.
SECURITY ADMINISTRATOR 53

Licensed to James M White <jwhite@maine.edu>

To establish an operator ID, click on the General icon in the Security Adminis-
trator window or select the View, General menu item.

The next step is to change the security definition type to Operator and enter an
optional description. The General Attributes section is required when an operator ID
is not linked to an operator class.

The operator attributes are defined as follows:

* Operator Password The Operator Password is the password the operator will
require during sign-on.

* Confirm Password This field is compared to the operator password and must
match its value.

* Language Preference This option overrides the base language setting defined in
the configuration manager. The option can be left blank to use the default set-
ting. The language preference can be overridden using the Configuration Man-
ager as discussed in part 1.

* Access Profile After the operator has been validated during logon, this parame-
ter identifies the ID and password used to connect to the database. A typical
access profile is SYSADM.

* Employee ID The Employee ID field contains the operator’s PeopleSoft
EMPLID, which is compared against the database and prevents users from
changing their own data.

Additional options also exist. They include:

o Start the application server This option indicates whether or not the user is
allowed to start the application server. Access to this option is commonly limited
to system administrators.

» Multilingual support This option permits the user to work in multiple lan-
guages. The user does not have to log off or change his/her language preference
setting.

The appropriate fields are entered and saved. The operator ID profile is illustrated
in figure 3.35.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Figure 3.35 Operator ID attributes for MYUSERID

In this example, the operator ID is linked to the MYCLASS profile which implies
that the menu items, sign-on times, and process groups will be defaulted from the
class profile.

To link the operator ID to one or more classes, click on the Classes icon in the
Security Administrator window or select View —Classes From the Menu (figure 3.36).

SECURITY ADMINISTRATOR 55

Licensed to James M White <jwhite@maine.edu>

56

Navigation: View —Classes

432 MYUSERID (Operator) HEE

| Description | Primary? |

| Class
General
Menu ltems
@ Row-Level Security
. . ’ Operator Class:
Signon Times

55

Process Groups

I MYCLASS = I

Figure 3.36 Viewing operator classes linked to an ID

Navigation: Insert —Class

Insert Classes E

Select the class or classes to insert

CNHRPNLS =
FRHRPNLS

GRHAPNLS

JCADMIN

LKJPN

| MYADMIN

HR
PSADMIN

TEMP

LKHRPNLS

UKNIPNLS

LUSAPANLS

USHRPNLS

WEBGENAL

WEBPNLEE =

Cancel |

Figure 3.37 Attaching operator
class

To attach one or more operator classes to an ID,
we can select Insert —Class (figure 3.37).

The operator ID MYUSERID is now linked to
the class MYCLASS and is authorized to use the menu
items selected.

Operator classes serve an important function,
particularly from a table space and system adminis-
tration perspective. The System Administrator
allows operator IDs to be defined without a link to an
operator class. This may be useful for a handful of
IDs, but when hundreds or thousands of IDs are nec-
essary, quite a large amount of system resources and
administration time are involved. The one-to-many
ratio between a class and many operator IDs reduces
the number of rows in the PSAUTHITEM system
table. This tool table contains the authorized menu

items allocated to an operator ID or class. Without classes, a system with one hundred
users would require at least one hundred times the amount of rows in the PSAU-
THITEM table. System resources are improved, for example, when ten distinct classes

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

3.3.3

of operators are allocated among the one hundred operator IDs. From an administra-
tion perspective, security is facilitated when IDs are grouped into classes.

When it becomes necessary to add additional operator classes, we use the Insert
Classes menu and select the appropriate classes. An example of MYUSERID with addi-
tional classes allocated is illustrated in figure 3.38.

i3« MYUSERID (Operator) M= B3
8 Class | Description Primary? |
General 1_|FRHRPNLS
2 |MYCLASS This is a simple Operatar Clas ~
13 |UKHRPNLS | |

Menu ltems

— RowLevel Security

Operator Class: IMYELASS -I

i

Signon Times

T"o;
)

Process Groups

Figure 3.38 Allocating classes to an ID

The example in figure 3.38 identifies MYCLASS as the primary operator class.
Any menu items associated with the two additional classes are made available to
MYUSERID. Row level security is used to limit access to specific data linked to the
security search views.

Restricting Application Designer Access

An IS organization can include developers and functional analysts supporting or
implementing a PeopleSoft application. Sometimes a rift between developers and
functional staff, and even among developers themselves, may arise when the issue of
security is addressed. The question of who has access to specific tools is often a
touchy subject. Some developers do not want undocumented changes made to
objects. This is a justified argument, particularly when the changes cause production
problems or do not appear until the next upgrade, during which time the culprits
have either moved on or developed short-term amnesia.

SECURITY ADMINISTRATOR 57

Licensed to James M White <jwhite@maine.edu>

3.4

58

When a group requires restricted access to an entire object type, such as panels
and menus in the Application Designer, the access can be restricted using the Appli-
cation Designer Access feature shown in figure 3.39.

Application Designer Access

Obiect Types | Tools |

— Object Types
Business Processes: |Full access =
Bus Process Maps: | Full access 'I Fead Only
Fields: I Full access —I No Access

Menus: | No access 'I
Panels: W
Panel Groups: Im
Projects: | Full access 'I
Becords: | Full access 'I

Figure 3.39
aK | Cancel Re?tricting access to an entire
object type

In release 7.xx of PeopleTools, object types are defined as:

* business processes

* business process maps

* fields

* menu definitions

* panel/panel group definitions
* project definitions

* record definitions

The example in figure 3.39 does not allow menu access in Application Designer
and enables read-only access to panels. Now, let’s assume we have someone who is
assigned to work on specific functionality but requires access to update menus and
panels. This can cause a dilemma. On the one hand, we want the person to make the
necessary changes to a specific set of panels and menus. Alternatively, we have to
change the settings to Full Access for menu and panel objects. How can this quandary
be solved? The answer is Object Security, our next topic of discussion.

OBJECT SECURITY

Object security is an additional layer of security which can be used to restrict access to
PeopleTools objects such as record definitions, panel definitions, menus, and others.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Object security is also used at the field level. When a modification to a field on
arecord is required, object security access is necessary. A change that involves the mod-
ification of a field label or field attribute will require access to every record that con-
tains the field.

3.4.1 Object groups
Object groups are the entities defined using object security linked to security admin-
istrator profiles. The object group can be comprised of objects related to specific
applications such as Human Resources or General Ledger. The object group can also
include PeopleTool objects such as records, menus, and panels. Object security is
applied to object groups only and not to individual objects.
Let’s define a simple object and attach it to a security profile. The initial object
security window is shown in figure 3.40.
Navigation: Go —PeopleTools —Object Security —File - New Group
= PS Object Security - Group ID : M= E3
Fle Change View Go Favortes Help
merinl 7| == = fact | 22| 23| Ay
@ §| | | icH 'EE| l {82 | oA @]
Type Name
2|
3
-
A
Figure 3.40 Object Security panel
Let’s assume that we are working with a developer to enhance a few of our custom
applications. These applications include some HRMS objects. The developer is
allowed access to these objects only. To define an object group, we must select which
objects to add or remove from the group. When defining a new object group, the
OBJECT SECURITY 59

Licensed to James M White <jwhite@maine.edu>

60

objects associated with the object type are selected using the toolbar or menu. To select
record objects, select View —Records From the Object Security Menu (figure 3.41).

Navigation: Object Security —View —Records

= PS Object Security - Group 1D : M=

EsEEEEEEEEER

Name Excluded Records:

JOB =
JOB_ADM_PLN_UW

JOB_APPROVALS

JOB_BU_uW

JOB_CUR_MC_uW

JOB_CURR_UY

JOB_EARNS_DIST

JOB_EARNS_UY

JOB_EC_uW

JOB_EC_WD

JOB_EFFDT_UW =
JOB_EMPLRCD_UW

JOB_FAMILY_LNG

JOB_FAMILY_TBL

JOB_FAMILY_U2

JOB_FAMILY_UW

JOB_FAMLYU2_LHNG

[ss [+ loe Lo

JOB_FAMLYUW LHG
JOB_FRA_SBR
JOB_FUT_MC_Uw hd

Figure 3.41 View record definition objects

For this example, we can choose the records prefixed with JOB and move them
to the left side of the panel. The left side indicates the objects included in the object
group and the right side represents the excluded objects. The arrows can be used
as follows:

| moves selected object(s) to the left side

£ adds all objects in the excluded group to the left side
:J moves the select object(s) to the excluded group

3] moves all objects to the excluded group

The selected records and panels related to specific HRMS functionality are also
added to the object group. The object group build is completed with the addition of
panel groups and menus. After all the objects are added, the object group can be saved.

After the object group is saved, the objects can be viewed using the View All menu
selection. The selected objects and related types are displayed in the panel (figure 3.42).
The Type column contains an identifier for the object type as follows:

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

e P=Panel

¢ B=Business Process
* Q=Query

e E=Tree

¢ R=Record

* G=Panel Group

e S=Tree Structure
* I=Import

* U=Business Process Map
* J=Project

e X=Translate Table
¢ M=Menu

Navigation: Object Security —File —Save

2 PS Object Security - Group ID : MYOBJECTS

File Change View Go Favortes Help

? B EEBHC

Type Name

G|JOB_DATA
M|ADMINISTER_WORKFORCE_{GBL)
P|JOB_DATA1

P|JOB_DATA1_WRK

P|JOB_DATA2

P|JOB_DATAZ_FRA
P|JOB_DATAZ_GER

e L+

P|JOB_DATAZ_JPN
P|JOB_DATA2_UK
P|JOB_DATAZ_US
P|JOB_DATA2GBL_SBP
R| EMPLOYMENT
R|EMPLOYMENT_HOME
R|EMPLOYMENT_PHON
R|JOB

R| JOB_EARNS_DIST
R| JOB_EARNS_UW
R|JOB_EFFDT_UW

R| JOB_LABOR

R| JOBCODE_TBL

Figure 3.42 Completed object group

3.4.2 Linking object groups to security classes

After the object group is defined, it is then allocated to security class profiles. To
assign an object group to a security class, it is necessary to open the class profile (see

figure 3.43).

OBJECT SECURITY 61

Licensed to James M White <jwhite@maine.edu>

62

Navigation: Object Security —File -Open —Operator

= PS Object Security - Operator : MYCLASS

Fle Change View Go Favortes Help

Group ID Display Only Excluded Group ID:
*% ALL OBJECTS ==
MYOBJECTS
PEOPLETOOLS

oo Lo [en 2

Figure 3.43 Assigning object group to class profile

The arrow buttons can be used to move object groups to the left side. The arrows
work in the same manner as when they are used to allocate specific objects, such as
records and panels. The left side indicates the group IDs allocated to the class.

To enable view only, select Change, Display Only from the menu. This displays
the Object Security list dialog that contains the object groups allocated to the class.
An individual object group can be selected or all the groups can be selected by pressing
the All button. When objects in a group are specified as display only, it is a cliché for
“Look, but don’t touch.” This implies the objects cannot be modified.

The completed object group and link to class MYCLASS are shown in figure 3.44.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

= PS Object Security - Operator : MYCLASS
Fle Change View Go Favortes Help

Group ID Display Only Excluded Group ID:
MYOBJECTS | Mo *% ALL OBJECTS ==
PEOPLETOOLS

oo Lo [en 2

Figure 3.44 Completed object group and class profile

3.5 OPERATOR PREFERENCES

After an operator ID has been established, the Operator Preferences panel can be used
to specify defaults such as Business Unit, Set]D, Company Code, Country, and Cur-
rency Code. Additional settings include standard hours and payroll system. When the
operator logs on to the application, default values specified on this panel will be used
when necessary. This facilitates global implementations and reduces some level of
functionality which is used to provide specific defaults such as country or currency
code, based on system identifiers (menu, operator class).
To display the Operator Preferences panel, we can use the menu.

OPERATOR PREFERENCES 63

Licensed to James M White <jwhite@maine.edu>

3.6

64

Navigation: Define General Options —Setup —Operator Preferences

Define General Options - Setup - Operator Preferences
File Edt Wiew Go Favorites Setup Process Repoit Help

ale(@x| mlael sle o 8= @2l *lv]s]|

Operator Preferences |

| Operator Id: MYUSERID EmpliD: 8001 Schumacher, Simon
Business Unit: |CNADM j Canada Administration
SetlD: [600 o coporate
Company: |8I]I] ﬂ Coiporate
Country: |CAN ﬂ Canada
To Currency: |CAD ﬂ Canadian Dollar
Currency Rate Type: |CUMM ﬂ Commercial Rate

Standard H

Minimum: I 20.00 Maximum: 65.00 Default: 40.00 ‘
Census Metro Area: OM - Payroll System: INA or Payroll Interface j
Industrial Sector: IAil Transp 'I
Regulatory Region: I :I I” Altemate Character Enabled?

[Erﬂsh [|lemPreferm |Update.-’DispIay v

Figure 3.45 Operator preferences

TREE MANAGER

Tree Manager is a tool that can be used to graphically represent a hierarchy such as
the departmental structure within an organization or the relationship between tables
in a database. Tree branches or nodes can be traveled up or down, expanded, col-
lapsed, and used to drive processes such as reporting and security. A tree can be used
to produce a report identifying the tables an operator class can query.

The illustration in figure 3.46 is an example of a tree and the nodes, branches,
and other components that make up a tree.

The following list describes the icons used to represent the structures contained
in a tree similar to the one in figure 3.46:

i This icon defines the top of the tree.

This icon identifies a category that is used to group similar data elements
together at a high level. An example of a category in figure 3.46 is TOOLS.

o= This icon represents a tree structure. A tree structure represents a hierarchy
within a category. ACCESS_GROUP is an example of a tree structure in figure 3.46.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

+-QUERY_TREE_PT-01/01/1900- - Tree Manager

File Edit View Go Favortes Stucture Node Help
DisHE] 8| il X5l 2]
=& TOOLS =
=)-wfg® ACCESS_GROUP
-4 QUERY_TREE_PT
=<3 0170171900
=l _& PT_ACCESS_GROUP - PeopleT ools Access Gioup
+-{_] APPLICATION_ENGINE
[+-{_]) CHANGE_CONTROL
[#-(2 EDI_MANAGER
-] FIELD_DEFIMNITION
#-{_] RECORD_DEFIMITION - Record Definition
[+#-{_] RECORD_*REF_DEFM - Record Cross Reference Defn
[+ PANEL_DEFINITION - Panel Definition
(] PANEL_GROUP
[#-{_] MENU_DEFINITION - Menu Definition
[#-{_) OPERATOR_DEFIMITION - Operator Definition
#-{_] TREE_DEFINITIOM - Tree Definition
-] QUERY_DEFINITION - Query Definition =
-] NVISION_DEFINITION - rivision Definition
=% PEOPLECD_DEFIMITION - PeopleCode Definition
3 PSPCMMNAME - PeopleCode Reference
Q PSPCMPROG - PeopleCode Program
[#-(_) HELP_DEFINITION - Help Definition
-] WORKFLOW_DEFINITION - Workflaw Definition =l

Figure 3.46 A tree and its components

@ A tree definition consists of a description, higher level category, use of levels
section and status. Figure 3.47 illustrates the tree definition for QUERY_TREE_PT.
The menu item to access this panel is Edit —Tree Definition.

¢} SetlD/Effective Date are the key fields in a tree definition. This information
is required when a Tree is opened.

2 This icon identifies the Tree Branch. When a tree is branched, it is actually
divided into two objects. One object is for the new branch and contains the remaining
tree components. Within PeopleSoft, not every tree will require or contain branches.
When a tree is branched, some improvement in efficiency may exist because less data
are available to load. A more important application of tree branches is for security.

& This icon represents a branch node.

@ This icon identifies an expanded node. In figure 3.46, the
PT_ACCESS_GRP is an example of an expanded node. In the illustration, many nodes
report to it.

& This is also an expanded node in which levels are skipped.

@ This icon represents a collapsed node. When a node is collapsed, the box
next to the node contains a “+,” indicating nodes are reporting to the collapsed node

TREE MANAGER 65

Licensed to James M White <jwhite@maine.edu>

66

but are not displayed by Tree Manager. In figure 3.46 PANEL_GROUP is an example
of a collapsed node.

Al This icon represents a collapsed node. (However, the levels represented by

this icon are skipped.)
¥ This icon applies to detail/summary trees.

The icon represents a record definition. In the example (figure 3.46)

PSPCMPROG is a record definition. It can also be collapsed or expanded to reveal
child nodes.

TIP When changes are made to the departmental security tree, a process is re-
quired to update the security profile for operator and operator classes. This
process, called PER505, confirms that operators will have access to the
modified tree structure.

Tree Definition

SetiD: —

Tree Name: |_;'_:' TREE_PT

Effective Date: 01/01/1300

Status: Active " Inactive
Structure 10: JacCESS

Description: |F'eon1ei ool Quety Tree
Category: |TooLs

™ All Detal Vahses in This Tree

™ Allow Duplcate Detall Values
Usze of Levels: 5 ShctihEnforeed

€ Lomsely Erfarned

" Not Used

Cancel | Figure 3.47

Tree definition for QUERY_TREE_PT

Tree can be categorized into four groups: Detail Trees, Summary Trees, Node
Oriented Trees, and Query Access Trees.

Detail trees are considered the most basic type of tree. A detail tree rolls up to
detail values comprised of tree nodes that combine the detail values and roll up to
higher level tree nodes.

Summary trees enable us to re-arrange or re-group nodes from a detail tree. The
detail tree itself is not copied in its entirety. Detail values in a summary tree are tree
nodes from another detail tree, not values from database fields.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

Utilities - Use - Query Security
File Edt View Go Favortes Use Process Help

glg|@x| man sel =lE| a8 2e2] *lel#l7]

Query Profils. Access Groups |

‘ Operator Id: MYCLASS EmpllD:

Tree Name Access Group Accessible r
|IJUEFIY_TFIEE_F'TI]PﬂNEL_DEF[N[I’[ON

<

IQUEHY_TFIEE_PT]PEUPLECD_DEF[NIIION

<l

IQUEHY_THEE_PT]HECUHD_DEFINITII]N

EOEA A A
jzea s) fjeen |
<l

<l

IQUEHY_TREE_PT]MENU_DEFINIT[BN

Access Groups |Update/Display

Figure 3.48 Query access trees used with query security

Node oriented trees contain nodes which depict database field values. Node Ori-
ented trees can be used in applications such as HRMS Departmental Security.

Query trees are used in conjunction with PeopleSoft Query. Query trees combine
database record definitions into entities identified as access groups. Access groups are
used with the Query Security panel where we link an operator ID or class to one or
more access groups. Each tree name can contain one or more access groups. A user can-
not query records not contained in the access groups linked to their operator class. Fig-
ure 3.48 illustrates the use of query access tress with query security.

TREE MANAGER 67

Licensed to James M White <jwhite@maine.edu>

68

Data mover is a PeopleTool that is used to load and unload data from one
environment to another. Data Mover can be used to load data across data-
base platforms.

Import Manager is another tool that can be used to load data to tables
defined by the Application Designer. Import Manager uses the record defi-
nition and an ASCII fixed file. The fields on the file are mapped to fields on
the record.

Security Administrator is used to define Classes of Operators containing
access to menus and menu items. An Operator Class is also linked to proc-
ess groups defined by process scheduler.

Operator IDs can be linked to multiple operator classes and one class pro-
file for row level security.
Object security is a tool that can be used to limit access to specific objects

contained in an object group.

Tree Manager is a tool that can be used graphically represent departments
within an organization or relationships between database tables.

CHAPTER 3 ADMINISTRATION TOOLS

Licensed to James M White <jwhite@maine.edu>

PART

Application development

Application development in PeopleSoft begins with Application Designer. Once the require-
ments have been specified you can begin building your application in a logical sequence. Here’s a
simplified example of this sequence. First you define and create any custom field definitions you
may need. The field definitions can then be utilized in a record. You can create online applica-
tions by placing these records with their associated fields on a panel. Panels can be placed in a
panel group and added to a menu. Security access is assigned to operators who will utilize the
new panel on the menu. If the new panel is used as a front-end to a batch process, a process def-
inition is created and linked to the panel. These basic tasks can be accomplished very easily using
Application Designer, Security Administrator and Process Scheduler. Additional enhancements,
simple or complex, may be made as well. We'll demonstrate the use of these and other People-
Tools by building a Problem Tracking application, gradually introducing more advanced features
as our development progresses. Some advanced panel design features include working with scroll
bars, effective dates, sub and secondary panels and using grid objects. The key to online develop-
ment in PeopleSoft is the Application Processor which dynamically governs data retrieval and
event processing. PeopleCode, PeopleSoft’s proprietary language, should always be written to
fully exploit the capabilities of the Application Processor. By carefully following along with the
Problem Tracking application you'll see all of these exciting features unfold before you. As I men-
tioned earlier, this is some very fun stuff!

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

I \\"
W\NCHAPTER 4

Building your first
application

4.1 Identifying the application 72 4.5 Creating a PeopleSoft record
4.2 Using the Application Designer 75 definition 84
4.3 Creating field definitions 78 4.6 Creating a PeopleSoft panel

4.4 Working with projects 82 definition 101

PeopleSoft uses a bottom-to-top methodology to build applications. A bottom-to-top
method involves individually collecting all the components used to build higher level
components, eventually arriving at a fully developed application. In this chapter, we
look at how this methodology is used to design and develop an application.

71

Licensed to James M White <jwhite@maine.edu>

4.1

4.1.1

4.1.2

72

IDENTIFYING THE APPLICATION

Our first step in application development is to collect development specifications.
The user requesting the application may provide the initial specification. Then, the
developer creates technical specifications for user review. To facilitate our discussion
on basic functions used in collecting user specifications, we will develop a Problem
Tracking application. Our Problem Tracking application will function within People-
Soft and track both user-reported problems as well as developed solutions in a project
life cycle. Hundreds of PeopleSoft implementations require such an application to
efficiently track problems and resolutions. We'll build the underlying data model for
our application in such a way that the project team can use a variety of search mecha-
nisms to identify resolutions to new incidents. This application will be particularly
useful as a production tool to provide customer support in a live environment. Note
that, while endless possibilities exist for enhancing this application, we'll limit our
discussion here to basic functions, leaving more advanced development concepts for a
later review.

Fit/Gap analysis

We begin by identifying our business needs and then evaluating those needs against
the PeopleSoft software application package. This process, called Fit Analysis, identi-
fies functions in the PeopleSoft application that fit the business needs. It also helps
identify any Gaps that the application package cannot accommodate. We identify
Fits and Gaps in a Fit/Gap analysis document, which is then used to build our project
plans and delineate development efforts toward successful implementation. Tools
provided by PeopleSoft are so easy to use that even new applications can be built with
relative ease. In our case, Problem Tracking is a brand new application not available
in PeopleSoft. Hence, we need to gather business needs to develop the application
from scratch. Let us look at the business functions that should be available in a com-
mon Problem Tracking application.

Gathering user requirements

In all the projects in which we have ever been involved, user specifications have
proven to be extremely important. User specifications show us how the user sees the
end result. Specifications are developed both by the technical and functional users.
Several iterations of the specifications are exchanged back and forth between the tech-
nical and functional users, depending upon the complexity of the application. Tech-
nical users must assist the functional user in identifying the application fields that are
utilized in a user panel or report. Specifications also help the developer to stay on
track so far as the business needs are concerned and develop for those needs. Even
though we won't discuss the stage where specifications are developed in this book, we
cannot emphasize enough how important it is to develop with written specifications.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

413

TIP Develop an application with user specifications. This will not only save

time but will ensure that you are on the right track.

Let’s suppose that our functional and technical users get together, discuss the business
functions that should be available in the application, and arrive at the following
requirements for the application:

¢ All problems reported should be categorized into a set number of applications such as
Human Resources, Payroll, Benefits, Accounts Payable, General Ledger, and so on.

* All problems reported should identify the end user that reported them.
* All problems reported should have a status for tracking purposes.

* The problems and resolutions should be stored in a public domain so that all

users have access to the resolutions.

* The application should be able to identify and prioritize commonly reported

problems.

* The basic design of this application should facilitate problem tracking in new

and future projects.

Figure 4.1 illustrates some inputs and outputs to and from our application.

List of all
applications that
need to be tracked

Problems with
statuses

Problem Tracking
Application

Problem

o Resolutions
descriptions

List of all users Reports

Figure 4.1 Problem Tracking application —Input/Output diagram

Identifying the objects to be developed
Now that we have compiled all the user requirements that we need to build our appli-
cation, we can create a list of objects that need to be developed in PeopleSoft. How do
we go about doing this? Data design is a term that comes to mind. Using PeopleSoft’s
integrated application development tool, Application Designer, we can build all the
objects for our application by following these steps:

1 develop all record definitions that will be used in our application,

2 identify database keys for SQL tables and views,

IDENTIFYING THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

/3

414

74

3 develop all the user interface screens (otherwise known as panels) in PeopleSoft,
4 develop all the panel groups that provide a gateway to our application panels,

5 develop menu items that will hold the application panels and present them to
the user, and

6 provide user access to menu items.

Prototype

While gathering user requirements, it is always useful to create a prototype of the
application. A prototype allows us to walk the users through the application panels to
give them an idea relative to data input and output. Prototypes are also used to gather
additional user inputs on data elements missed during the Fit/Gap analysis. Proto-
types help in creating final user specifications for development. Figure 4.2 shows the
relationships between different objects in a PeopleSoft application.

Problem Tracking
Application

A

Menu
PeopleCode

Menu ltems and Menus [«

Panel Group

= (=
A

Record Record Record Record Record
and and and and and
Fields

Record Field
PeopleCode Figure 4.2

PeopleSoft Object Relationships

Fields Fields Fields Fields

In this case, the Problem Tracking application is a new application in PeopleSoft.
Here we ask the user to walk us through the current system. If this process can be per-
formed during the Fit Analysis stage, then the prototype stage is skipped, and we pro-
ceed to the design, development, and unit testing stages.

As you can see in figure 4.2, design is usually performed starting from the top
(represented by our application). On the contrary, development is performed from
bottom up with objects assembled individually to achieve the end result. The bottom
then refers to all the individual objects, and the top refers to the application. First, we

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

4.2

start from the top, designing our application’s presentation to the user including all
user interface objects such as panels and menus. Then we design and develop the
Record definitions, views, PeopleCode, and panel groups, which are building blocks
for the user interface. The panels and the panel groups, together with application
menus, will provide the user interface to our Problem Tracking application.

We can now start building development specifications. These specifications are
incorporated into the project time line in a project plan document. During stages
in projects, new problems arise and these problems can be tracked using our appli-
cation. As mentioned before, we will use the Application Designer tool to develop
our application.

USING THE APPLICATION DESIGNER

Application Designer, is a comprehensive design tool used to build applications in
PeopleSoft. Ideally, we want to build all the objects related to this application into a
PeopleSoft Project. A Project is a collection of PeopleSoft objects developed to serve a
common function. In our case, the purpose of developing objects is to build a Prob-
lem Tracking application. Therefore, we collect all objects we develop and include
them in one project. Let us take a look at the Application Designer screen before we
can start our development (figure 4.3).

Navigation: Go —PeopleTools —Application Designer

«) Application Designer - MY_PROJECT - MY_APPLCTN_TBL [Record)

fle Edt View |met Buld Jools Go Favoiles MWindow Help

DlzlElg] 8| s|ule #8fF |[F szl

T PROIECT i MY_APPLCTH_TBL [Record)
E |ﬂ ::’:js Field Mame |Type|Len |Format [H | Shoit Name
B Pansl Gious MY _APPLICATION ID ! 3 |Uppesr | | Apphcation | Application Idei
— i DESCR Char | 30 |Mixed Deser Description
B Panels DESCARSHORT Char | 10 |Mixed Short Dezc | Shoit Descripti
-3 Records

B MY_APPLCTN_TBL
5 & MY_DERIVED

-6 MY_PROBLEM_TRKG
@& MY_PROJECT_TBL
o} MY_USER_TABLE

4 (|

" Pvevelopment [iranse

9 Field objectis) in project. S|
4 Panel object(s) in project
1 Menu object(s) in project
4 Parel Group object(s) in project
23 totad object(z) in project ;I
A »]\ Buld Find Rederences Results ﬂ Validale ,J

Ready I s | [

Figure 4.3 Application Designer screen

USING THE APPLICATION DESIGNER 75

Licensed to James M White <jwhite@maine.edu>

4.2.1

76

The left side of the Application Designer screen is called the Project Workspace.
When we open projects (Navigation: File —Open —Project), all objects in the
project are displayed in the Project Workspace. The right side, the Object Workspace,
is the actual development area. The bottom tab portion of the screen serves as an out-
put window for showing development progress, object reference searches, and so forth.
For example, if we search for object references in the whole database (Navigation: Edit
—Find Object References), the output appears in the bottom window. In figure 4.3
we can see that a project is already open. The objects in MY_PROJECT are all displayed
in the Project Workspace. We can also see the number of objects in our project in the
Output Window. The right side is used for development of these objects. Let’s go
through the process of developing these objects, inserting them into MY_PROJECT as
we finish.

The icons that we see in the Application Designer menu bar are all short cuts used
for various tasks. When we move the mouse pointer over these icons, a tab appears,
denoting the tasks these icons perform. Let’s look at all the icons available in the
Application Designer screen.

General icons

|
Dizl8lo| 8| xisie| slsf=

* New—creates new objects.

* Open—opens existing objects.

* Save—saves the current object. In other words, if we have multiple objects open
and we are working on one particular object, only the current object that we are
working on will be saved when we choose the Save button.

* Save All—saves all objects that are open in the Application Designer screen.

* Print—prints the current object.

* Cut—deletes and stores the selected item in the clipboard.

* Copy—-copies the selected item into the clipboard.

* Paste—pastes the copied item into the selected area.

* Properties—brings up the Properties window for the current object.

* Build Current—helps build SQL tables and views in the database. (We will learn
more about this in chapter 8.)

* Project Workspace—is a toggle to hide or show the project workspace in the
Application Designer screen.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

4.2.2

423

Record display icons

____ &
& 3|2

These icons appear only when a record definition is open and is the current object in

focus:

Field Display—displays all record fields, their attributes, short name, and long
name.

Use Display—displays all the search keys, list box items, and defaults for the
record definition.

Edirs Display—displays all the edits for the record definition.

PeopleCode Display—displays all record fields and their associated PeopleCode

events.

Panel design icons

& E8 |EE: =] 2]

These icons are available only when a panel definition is open and is the current
object in focus:

Select Group—selects a group of panel fields for cut, paste, and move operations.
Order—displays the Order panel that is used to change the order of panel fields.
Test—is a toggle that switches between test and design mode.

Object Inspector—is a toggle that hides or shows the Object Inspector tool.
Panel Size—controls the panel sizing properties.

Grid—is a toggle that hides or shows a grid in the Object Workspace.

Label Position—moves the field label to its default position.

|
A 12279]| b B] < | @] B8 | = o s

Text—adds a static text field into the panel.
Frame—adds a frame into the panel.

Group Box—adds a group box into the panel.

Static Image—adds a static image into the panel.

Edit Box—adds an edit box into the panel.

Drop-Down List—adds a drop down list into the panel.
Long Edir Box—adds a long edit box into the panel.
Check Box—adds a check box into the panel.

USING THE APPLICATION DESIGNER 77

Licensed to James M White <jwhite@maine.edu>

424

4.3

78

* Radio Button—adds a radio button into the panel.

* Image—adds an image into the panel.

* Scroll Bar—adds a scroll bar into the panel.

* SubPanel—adds a subpanel into the panel.

* Push Button—adds a push button into the panel.

* Secondary Panel—adds a secondary panel into the panel.
o Tiree Control—adds a tree control into the panel.

* Grid Control—adds a grid control into the panel.

Panel group icons

|___F|
-E]

* [Insert Panel—inserts a panel into the panel group.
* Validate Panel Group—validates the panel group.

If we double-click on any object that appears in the Project Workspace, the object
is opened in the Object Workspace. When we click on the object using the right
mouse button, a standard pop-up menu appears showing tasks that can be performed
on the object. We can customize the Application Designer by accessing Options from
the View menu. We can also customize or resize components of the Application
Designer by dragging the edges of Project Workspace, Object Workspace, and Output
Window using the mouse.

And, as we also noted under the general icons, the Project Workspace icon is a
toggle that shows or hides the Project Workspace.

CREATING FIELD DEFINITIONS

Let’s start by looking at the schema—e.g., the structure—for the first record in
our application. We will call this record MY_USER_TABLE and start here for sim-
plicity reasons:

Record Name MY_USER_TABLE
Field Names MY_USER_ID
NAME
EMPLID
PHONE

MY_USER_TYPE

We have five fields in this record. The first and the last fields are new fields we need to
create before we can start building our Record definition. The other three fields are
already available in a PeopleSoft HRMS application. Fields in PeopleSoft are defined,
as well, not within the scope of a record, but globally throughout the entire database.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: File ->New (From Application Designer)

Fields are objects and they can be shared

MNew
N across record definitions. For t.hls purpose,
Project - let us suppose that we are working in a Peo-
Record Cancel | . . .
bee i pleSoft HRMS application. First, we create a
new field (figure 4.4).
We choose Field as the new object
Figure 4.4 Create a new object type. Then we ChOOSC Character as the
field type in the New field window as illus-
trated in figure 4.5.

In the Field Attributes screen (figure 4.6)
we specify the field length, long name, and
the short name for the field. We also specify
the field format as Uppercase. We associate
Figure 45 Selecting the field attribute the field with a particular field format by
defining the family name and the display
name for the format (figure 4.5).

1 MY_USER_ID (Field) H[=]
Field Type: Character
Freld Length: |
Long Name: IUser [[1]
Short Mame: |User D
~ Field Format
Format Type: IUppe-lcase ;I
Famidy Name: [|
Display Name: [=
~Field Help
Context Number: |D < Auto Assign | .
Figure 4.6
Field Attributes Screen

NOTE Fields are individual objects. When field attributes are changed, they are
changed throughout the system. The same field can be used across many
record definitions.

Field Help Context Number is a number we can use to associate the field with
a help text in a Windows-based help file. We click on Auto Assign to automatically
assign the next available Context Number from the system. WINHELP can be used to
create a Windows-based help file. Since PeopleSoft has reserved context numbers up
to 10,000,000, we must use numbers higher than this to associate our fields with
Windows-based help.

CREATING FIELD DEFINITIONS 79

Licensed to James M White <jwhite@maine.edu>

80

We can also create the MY_USER_TYPE field by following the same instructions.
Let us see how numeric, date, and other types of fields are created in PeopleSoft. In
order to do so, let us take a look at other fields available in our application. The nav-
igation is the same except that the correct field type has to be chosen as illustrated in
figure 4.5.

PRIORITY is a number field that we will use in MY_PROBLEM_TRKG table.
Since this field exists in a PeopleSoft HRMS system, we are going to make use of this
field in our record definition. Take a look at the field attribute for this field (figure 4.7).

78 PRIDRITY (Field) =] E3

Field Type: Number I™ Signed

Integer Posibons: ;3_
Decimal Positions:]0_

Long Name: }Priority
Short Name: |Pr|ority
Field Help
’7 Context Number:]U < Auto Assign I Figure 4.7
Number and Signed Number—

Field Attributes screen

We have to specify the Integer and Decimal positions for number fields. The
attributes screen is the same for both Number and Signed Number field types except
that the Signed checkbox is turned on for a signed number.

Figure 4.8 illustrates the attributes defined for MY_PROBLEM_RESOLTN field,
a long character field. We define a maximum length for the long character field by
entering a ‘0’ to use the maximum length that the database can accommodate. This
can be anywhere from 2000 to 64000 characters, depending upon the database plat-
form. We also define whether the field is to be stored in Raw Binary or Text format.
Raw Binary can be used to store embedded Nulls in our field.

Figure 4.9 illustrates a Date field in PeopleSoft. For this purpose, we use the
INCIDENT_DT field in our application.

In order to resolve Y2K issues, PeopleSoft has presented all dates with inclusive
century dates. If the user enters a date without the century, the Default Century

g MY_PROBLEM_RESOLTN (Field)

Field Type: Long Charactes

Masimum Length: [T ™ Raw Binaty

Long Name: F':oblem Resolution

Short Name: |Paob Resclution

Field Help

’7 Contegt Number: |[J < Ayto Assign |
Figure 4.8
Long Character Field Attributes

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

attribute comes into play. We can enter a number here that determines the century
for the date. If a century is not entered, and the two-character year is greater than the
number specified in this box, the Application Processor uses the current century for
the date; otherwise, it defaults to the next century.

=8 INCIDENT_DT (Field)
Field Type: Date
Long Name: Incident Dats
Short Mame: |1ncdnt Dt
~ Default Century

Deefault to 2000 if year less than o equal to; 159

1~ Field Help -

| Context Mumber: |0 < Auto Assign |

Figure 4.9
Date Field Attributes screen

Figure 4.10 illustrates attributes defined for a Date/Time field in PeopleSoft. The
MY_PROBLEM_DTTM field used in our application is a Date/Time field.

7l MY_PROBLEM_DTTIM [Field) =10] %]
Field Type: D atetime
Long Mame: D ate/Time Reported)
Shart Nare: IDate.r‘Tim Rpit
Default Century
’7 Default to 2000 i year less than or equal to: |5D
Time Farmatting
{ € HHMI 5 HH:MI:SS € HH:MI:55.939999

Fiedd Help
{Cm;t Number |0 < Auto Assign |

Figure 4.10
Date/Time Field Attributes screen

The Date/Time field attributes are the same as the Date field attributes. The
Date/Time field has an additional attribute for the time part. “HH” refers to the hour
portion of time, “MI” refers to the minute portion, “SS” refers to the second portion;
and “999999” refers to the subsecond portion. We choose “HH:MI:SS” for
MY_PROBLEM_DTTM field.

Let us take a look at a Time field in PeopleSoft. Notice in figure 4.11 that the
attribute screen only has the time attributes.

By the end of this section, we should have created all the custom fields needed
for our application. We can accomplish this task by building a schema for all records

CREATING FIELD DEFINITIONS

81

Licensed to James M White <jwhite@maine.edu>

44

82

1% TIME_REPORTED (Field) H[=] B3

Field Type: Time
Long Mame: ne Reportes
Short N ame: |Tirne Reptd
i~ Time Fomatting
@ HHMI C HHMESS € HH:MI:55.999933 ‘

1~ Field Help

Context Number: IU < Auto Assign | ‘
L ————— —_— Figure 4.11

Time Field Attributes screen

that will be used in our application. Since fields are building blocks used to build
Record definitions, it is convenient to have all the fields in the system ready for inclu-
sion when records are built. Another way of accomplishing this task is to add the new
fields when building the Record definition. By creating a schema for all records in our
application, we can easily identify the custom fields as opposed to the fields delivered
in a PeopleSoft system.

Now that we have started creating custom objects in the system, it is only logical
to create a Project that will hold all the objects used in creating our application.

WORKING WITH PROJECTS

A project is a collection of objects used to develop an application or a subsystem. It’s a
good habit to save into a project all objects that belong to an application or sub-
system. This ensures that the project is complete for application upgrade to other
databases. In our case, we are developing a whole new application, and all the objects
which we create for our application will be collected and stored as a project. We just
created all our custom fields, so now it’s time to save them to a project.

By default the Application Designer screen always displays an untitled project
upon startup. We had previously saved a number of field definitions. These fields can
be inserted into the untitled project either by pressing F7 or choosing “Insert/Current
Object into Project” from the Application Designer screen. (We use this last option
to insert objects currently open in the Application Designer screen.)

Alternatively, we can bring up a list of objects and then insert them into the
project. We can accomplish this by pressing CTRL-F7 or by choosing “Insert/Objects
into Project” from the Application Designer screen. We can also insert a whole project
into our current project by choosing “insert/Projects into Project” from the Applica-
tion Designer screen.

Finally, we save this Project by choosing the Save icon from the Application
Designer screen. We are then prompted to name the project as illustrated in figure 4.12.

We use MY_PROJECT to insert the other objects we create for our application.
Let’s take a look at how we define project properties using the Application Designer.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: File —Save Project from Application Designer

D|=|BlE] 2| L=8 &8]E
Eowe

B3 Fields
& MY_USEF_ID

Save Project As

Save Prect e
o

 Blowvtomet [Bomro

| Opening project .. —
0 tetal chiect(s) in project.
1 Field object(=) inserted

4§ »]\ Buld A Find Object References Resubts fi Validabe

Ready [[

Figure 4.12 Saving a project

The Project Properties window has three different tabs: the General, the Report filter,
and the Copy Options (figure 4.13).

Navigation: File —Project Properties (MY_PROJECT is open)

Project Properties E3 :

General Inemellul Copy Options]

Q MY_PROJECT
DI cbien Tracking]

LComments: This project contaings all objects for the PROBLEM TRACKING ;I
apphcation.
=l
Last Updated Application Upgrade Tanget
Date/Time: (09/23/38 10:36:09PM Server:
By Operator: PS Database:
Operator:

Figure 4.13
oK [Cancel | Bpok) | Project Properties screen,
General tab
WORKING WITH PROJECTS 83

Licensed to James M White <jwhite@maine.edu>

441

442

443

4.5

84

General

Under the General tab, we specify a description for the project. The Comments sec-
tion is used to maintain a log of changes to the project. The LAST UPDATED section
displays the date and time when the project was last updated as well as the ID of the
operator who last updated the project.

Report Filter

During a major application or tools upgrade, all objects identified as custom objects
during the Upgrade Comparison process are tagged as CUSTOM. We can use the
Application Upgrader tool to migrate objects from one database to another. The
Upgrade Comparison process is a delivered PeopleSoft process used to compare
objects between two databases. For example, development and production databases
can be compared to identify newly developed objects not in the production database.
The Upgrade Comparison process uses a database link between two databases.
(We will describe more about the Upgrade Compare process in chapter 20.)

Copy Options
The Copy Options tab defines parameters for the Upgrade Copy process in People-
Soft. After database objects are compared, the target database can be upgraded to
match the source database by running the Upgrade Copy process (see chapter 20).
After defining Project Properties, click on the Apply push button to save the
properties. MY_PROJECT is complete so far as the properties are concerned. We can
add more objects to this project, and the Project Properties will still apply to all the
objects in the project.
After saving the project, all objects in the project appear on the left side of the
Application Designer screen.

TIP All objects used in developing an application can be inserted into a project.
The project as a whole can be migrated to other databases.

NOTE All objects in PeopleSoft contain a Date/Time stamp for their last update
as well as the ID of the operator who updated them.

CREATING A PEOPLESOFT RECORD DEFINITION

A record definition is a collection of fields that defines data storage in the database
and data presentation online. Record definitions can be categorized as tables, SQL
views, Derived/Work records, Subrecords, Dynamic views, and Query views. We will
discuss the different types of record definitions more later in this section. For our
application we will create one Derived/Work record. Derived/Work records are only
relevant to the online application. They exist only in PeopleTools and not in the
database. Derived records, used as temporary holding spaces during panel execution,

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

can also be used to hold fields that are counters, calculation fields, or command
fields. In our case, we will use the Derived record field as a command field to open a
document. In chapter 6 we will add more fields to this Derived record to show how
the derived fields are used as counters and calculated fields. First, let’s consider in
detail the steps necessary to create a PeopleSoft record definition:

* create a schema

* identify and create custom fields

* create a record definition

* define Record Definition properties

* define Record Field properties

* perform Data Administration, if necessary

451 Create a schema
Remember, a schema acts as a structure and is developed before SQL tables and views
are built. Similarly, we can create a schema for each record definition used in our
application. Our application is built using individual objects. In this case, these indi-
vidual objects are fields, which are assembled into record definitions using the
schema. Listed immediately following are the fields that we will use to build the
record definitions for our application:
Record Name MY_USER_TABLE
Field Names MY_USER_ID
NAME
EMPLID
PHONE
MY_USER_TYPE
Record Name MY_PROJECT_TBL
Field Names MY_PROJECT_ID
DESCR
MY_APPLICATION_ID
START_DATE
END_DATE
CONTACT_NAME
CONTACT_PHONE
Record Name MY_ APPLCTN_TBL
Field Names MY_APPLICATION_ID
DESCR
DESCRSHORT
Record Name MY_PROBLEM_TRKG
Field Names MY_PROBLEM_ID
INCIDENT_DT
MY_PROJECT_ID
MY_PROBLEM_STATUS
PRIORITY
CREATING A PEOPLESOFT RECORD DEFINITION 85

Licensed to James M White <jwhite@maine.edu>

45.2

453

86

MY_USER_ID
MY_PROBLEM_TRACKER
CLOSE_DT
MY_DOCUMENT_ATTACH
DESCRLONG
MY_PROBLEM_RESOLTN
MY_PROBLEM_DTTIM

Record Name MY_DERIVED
Field Names MY_DOCUMENT
MY_USER_ID

Identify and create custom fields

We have two custom fields in the first record definition. We identify these custom
fields by the prefix “MY,” which we use to identify the custom objects in our applica-
tion. In order to build the first record, we first create the two new fields by accessing
the Application Designer “File” menu and choosing “New” option. Then we choose
Field as the object type. Once we have created these fields in the database, we can
start building our record definition. We create field definitions by using the tech-
niques described in section 4.3.

Creating a record definition

The PeopleSoft catalog table which stores record definitions is called PSRECDEFN.
SQL tables and SQL views, which are record definitions, are database objects as well.
SQL tables store permanent data in the database, and SQL views helps us in present-
ing this data in different ways. For this simple reason, SQL tables and SQL views are
the only built-in types of record definitions within the database.

To create a record definition, we start by clicking on the New icon from the
Application Designer screen and choosing Record as the object type. A new screen
appears where we can insert the necessary fields.

Figure 4.14 illustrates a blank record definition. We insert fields into this record def-
inition by first selecting the key fields, which are always the first fields in the field order.

Navigation: File —New —Record

=8 Record1 (Record] _ O] =]
Field Name | Type |Len |Format [H | Shoit Name|Long Name

Figure 4.14
New Record screen in the
Application Designer

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Figure 4.15 illustrates the screen used to insert fields into record definitions. We
can either type in the field name or search for the field name by entering the first few
characters of the field name and clicking on the Insert push button. When we specify
the full field name, the field is inserted into the blank Record screen (figure 4.14).
When we search for a field by providing the first few characters of the field name, all
field objects matching the selection criteria appear in the bottom. We then highlight
the correct field and click on Insert to include the field to the record definition.

Navigation: Insert —Field (Blank Record Definition is open)

DbiectTipe: [Feid = '
~ Selecton Crkeria =

None: [TNRIEED e | |

Long Mame: Project IM Projects > I New Search I

Type 4l Fislds ~]
Objects matching sslection cena:

Name | Type | Long Name: |

v _USEFLID Character Uset D

MY_USER_TYPE Characler User Type

Figure 4.15
_ Inserting a field into a record
EOROR definition
TIP Fields are placed next to each other when we start from a blank record

screen. When inserting a field into an already existing record definition, de-
termine the field that will be the previous field after the new field is insert-
ed. Highlight that field, then proceed with the insertion. The new field will
be placed right after the highlighted field.

CREATING A PEOPLESOFT RECORD DEFINITION 87

Licensed to James M White <jwhite@maine.edu>

Inzert Field E
Ohate 5 3
- Selection Criteria
Close
Hame: HAME —I
Long Name: [Project [Al Frojects | New Seaich
Type: |m Fields v|
DObjects matching selection criteria:
Name I Type | Lang Name: -
Character Hame
MNAME_AC Character Ahemate Character Name
MNAME_INITIALS Character Name Irstials
i Character Pat of Hame
MAME_PREFI< Character Mame Prefix
MAME_ROYAL_PREFIX Character Name Foyal Prefic |
MAME_ROYAL_SUFFD< Character Name Royal Suffic
MNAME_SUFFIX Character Name Suffi
MAME_TITLE Charactes Title
NAME_TRANS Character Narme of Petsan Transmiing ¥ Figure 4.16
4 3| - - .
I | Inserting a field into a
15 object{s] b Y]
il record definition

After all fields are inserted (figure 4.16), choose Close to finish the selection, then
File/Save from the Application Designer screen to save, the record definition. During
save time we will be prompted for a record name so name this record
MY_USER_TABLE. Notice that we have used a prefix of MY_ to identify that the
record definition is a custom one. The record definition for MY _USER_TABLE
appears as illustrated in figure 4.17.

=] Ed

i MY_USER_TABLE [Record)

Field Name |Type|Len |Foimat |H | Shoit Name| Long Name
MY USER ID_ IChar| 6 |Upper | IUserID _ |UserlD
NAME Char | 50 |Mame Name Name
EMPLID Char | 11 |[Upper (1] EmpliD
PHOMNE Char | 24 |Custm Phone Telephone
MY_USER_TYPE Char | 1 Upper User Type |User Type

Figure 4.17
A saved record definition screen

Now we need to insert this record definition into our project. We accomplish this
by choosing “Insert/Current Object into Project” from the Application Designer
menu. Since we have added all the fields that comprise this record, we now define the
record attributes required to complete the record definition.

88 CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

TIP

Under the Tools/Options menu, we can specify default options for a
project, including a setting for inserting objects into the project. We can
choose the option that results in the automatic insertion of an object after
the object is modified and saved. As an alternative, the manual insertion
option gives us better control regarding objects inserted into the project.

45.4 Defining record definition properties

We can also bring up the Record Properties screen illustrated in figure 4.18 by press-
ing ALT-ENTER from the keyboard. The record definition itself should be open at
this time. We complete defining Record Definition properties by entering parameters
in the three different tabs—the General tab, the Use tab, and the Type tab—available
in the Record Properties screen.
Navigation: File —Object Properties (MY_USER_TABLE is open)

Application Designe 1_TABLE [Record)
Bl Edt View |rset Buld Tools Go Favorles \Window Hep

[7 B2

S

Save Al

Seve Prepect Ffi MY_USER_TABLE (Record]

Save Propct Az, r

Export Project...

Progect Properties

Object Propedies AR+Erter
e PHONE

Bename. . MY_USER_TYPE User Type |User Type

Delete...

Page Setup ..

Print Previewy

Pt CilsP

Exi d
PRt fe

9 Field okject(s) in project. ;I

4 Panel object(s) in project

1 Menu object(s) in project

4 Panel Group abjectis) in project J

23 fotal object(x) in project ;I

A b\ Buld Rederences Results ﬂ alidaie ,J

I ==
Figure 4.18 Record properties screen in Application Designer
General tab
In figure 4.19 we can see the General tab where we describe the record definition. We
can also maintain a log of changes made to the record definition here in the Com-
ments section. Notice that the Last Updated section helps us identify the date and
CREATING A PEOPLESOFT RECORD DEFINITION 89

Licensed to James M White <jwhite@maine.edu>

time the record definition was last updated as well as the ID of the operator who last

updated it.

ﬁWd]Use I Type I

@ MY_USER_TABLE

Descipon: (BRI
Comments:
This table contains all the user ID%s and their names. This table is ;I

primanily developed for the PROBLEM TRACKING application.

&l
st indatnd
Date/Time: 03/23/1338 3:37.27PM
By Operator: PS
Figure 4.19
[—DK—I i | Record definition properties —

General tab

Figure 4.20 illustrates the Use tab under the Record Properties screen.

General Use |T_l,lpa I
Set Control Field: | =l
~Record Relationships
Parent Record : | |
Related Language Record: | ;l
Duery Security Record: | ;l
~ Record Audit
Becord Name:
|
oK | Caricel | Figure 4.20
Record definition properties—Use tab
90 CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Use tab

Let’s go through the properties defined in the Use tab. Although we won’t be using
these features in MY_USER_TABLE, let’s quickly walk through these features and
briefly explain their usage.

Set Control field ~ The Set Control field is used in a multi-company environment.
You can use Set Control field to share this particular table across companies. For
example, MY_USER_TABLE can be shared between companies by simply adding
SETID to the MY_USER_TABLE definition. The SETID field is a delivered field in
PeopleSoft. This field has to be both the first field in the record definition and a
search key. We can specify another field from the system as the Set Control field. The
value of the Set Control field will be compared to the value of SETID field from
MY_USER_TABLE. This comparison controls the selection of data from
MY_USER_TABLE. Organizations with multiple companies can use the same record
definition we create here to access user definitions for other applications in the
PeopleSoft database. So COMPANY field can be the Set Control field that will con-
trol the display and access of user definitions from MY_USER_TABLE.

Parent record In the Parent record, you define a record definition that can serve as
a Parent record to MY_USER_TABLE. Parent/Child relationships help create
automatic hierarchical joins using the PS/Query tool delivered in PeopleSoft. For
example, in a PeopleSoft HRMS application, the PERSONAL_DATA record is the
Parent record for EMPLOYMENT. Common search keys between these two record
definitions define the Parent/Child relationship between them.

Related Language record — The Related Language record is used in a multilingual
PeopleSoft application. Let’s use MY_PROJECT_TBL as an example to better explain
this process. Suppose that, MY_PROJECT_TBL is accessed from offices all over the
world, and access to this table must be provided in multiple languages. We can create a
Related Language record that stores project information in different languages. The
Related Language record contains all search keys from the primary record definition as
well as LANGUAGE_CD field as an additional key. All other fields entered and stored
in multiple languages are also included in the record definition. As a user logs into the
application, the user options define the Base Language Code for the user. This allows
the user to enter language-specific information stored in the Related Language record.
This function is most commonly used in Human Resources applications where users
from different countries access employee information in different languages.

Query Security record The Query Security record provides row level security for
record definitions in PS/Query. When a Query is created using a record definition,
the record definition is automatically joined with the Query Security record to secure
the data that the user can view. For example, access to personnel information in a

CREATING A PEOPLESOFT RECORD DEFINITION 91

Licensed to James M White <jwhite@maine.edu>

92

PeopleSoft Human Resources database can be controlled using PERS_SRCH_GBL as
a Query Security record.

Record audit The Record Audit facilitates auditing online updates to data stored
in a record definition. By turning on the audit flags in a record definition, we can
record all inserts, updates, and deletes. You can either specify a record name defined
as a database table to hold the audit information, or if you do not specify a record
name and audit flags are turned on, PeopleSoft stores the audit information in a
generic audit table called PSAUDIT. Four audit flags may be activated. Each initiates
that audit based on user action:

* Add triggers the system to populate the audit table when new rows are added
to the audited table.

* Change triggers the system to populate the audit table when any row in the
audited table is changed.

o Selective triggers the system to populate the audit table when any one of the
fields in the audited table is changed.

* Delete triggers the system to populate the audit table when any row in the
audited table is deleted.

When we create our own audit table, we have to add three relevant fields to the
audit table. They are AUDIT_OPRID, AUDIT_STAMP, and AUDIT_ACTN fields. In
addition to these fields, any other field in the audited record definition can be added
to the audit table, but the default PSAUDIT table captures enough information
required for an audit.

MY_USER_TABLE does not contain any properties defined under the Use tab.

Type tab

Record Type The Record Type tab (figure 4.21) is where we define whether the
record definition is an SQL table, SQL view, Dynamic view, Derived/Work, Sub-
record, or a Query view. MY_USER_TABLE will be defined as an SQL table.

SQL View Select statement On the right hand side of the properties screen, we
define the SQL Select statement for an SQL view definition. (We will learn more
about SQL views in chapter 7 when we define an SQL view for use in inquiry panels.)

Non-standard SQL Table Name Through the non-standard SQL Table Name
option, we give the record definition a non-standard name, one that differs from the
normal PeopleSoft standard. PeopleSoft prefixes all tables with a “PS_" prefix. We can
override this standard by entering a non-standard SQL table name. All PeopleTools
tables follow a non-standard naming convention. The PeopleTools tables and views
with non-standard names are referred without the “PS_" prefix. The name still starts
with “PS” to identify it as a PeopleSoft catalog table. For example, PSRECDEFN is a
PeopleSoft catalog table where record definitions are stored. We will set the record
type as an SQL table for our MY_USER_TABLE definition.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

455

Record Properties B
Genad] Use Type |

SOL Yiew Select Statement:

C SOL View
€ Dynamic View
 DesivedMork
 SubRecord
 Quety View

Mon-Standard SOL
Table Name:

[=

[TI i | Figure 4.21

Record definition properties—Type tab

Define record field properties

The next step in creating a record definition is to define record field properties.
Record field properties contain search key, list box, audit, and default information for
a particular record field. We click on Edit/Record Field Properties to define proper-
ties for all the fields in our record. Record Field properties apply to fields only within
the purview of this record definition. When used in other record definitions, these
fields do not share the properties defined here. The record field must be highlighted
before we can edit record field properties. The record field properties screen contains
two tabs: the Use and Edits tabs.

NOTE Properties defined for a record field apply to the field only within the pur-
view of that record definition. The same field used in another record defi-
nition will not necessarily share the same properties.

Use tab

Keys Figure 4.22 illustrates the Use tab under the Record Field Properties screen.
Using the following options, a list of keys can be defined for the record field:

* Key defines a record field as a database key only.

* Duplicate Order Key defines a record field as a duplicate order key in the data-
base.

» Alternate Search Key defines a record field as an alternate search key in
PeopleSoft. Alternate Search Keys are automatically selected as list box items. A
non-unique index is created in the database for all alternate search keys.

CREATING A PEOPLESOFT RECORD DEFINITION 93

Licensed to James M White <jwhite@maine.edu>

* Descending Key makes a database key a descending key. Usually the EFFDT and
EFFSEQ fields are defined as descending keys to view the latest effective-dated
rows in the top of the scroll bar.

* Search Key defines the record field as a search key. All fields defined as search
keys are also defined as list box items. When the record definition is used as a
search record, all Search and Alternate search keys appear on the input dialog box.

 List Box Item defines the record field as a list box item. When search key values
yield multiple rows, the values of all list box item fields appear in the list box.

» From Search Field defines the record field as a From Search field. The search
process yields all entries that have values greater than or equal to the value sup-
plied in this field.

» Through Search Field defines the record field as a Through Search field. The
search process yields all entries that have values less than or equal to the value

supplied in this field.

Navigation: Edit —Record Field Properties from the Application Designer

Record Field Properties

Use |Edis |
Field Mame: MY_USER_ID
2o - Detault Value
F e Constant [
I Duplicate Drdet Key o
I~ Alteinate Seaich Key BecodName: [=l
I Descending Key Eield Name: l j'

¥ Searchkey T)
F List Box tem FECoU el Eoe N

I From Search Fisld [<Auto Assign |

| " Thiough Search Field

Asi— | Default Panel Conirot
™ Field Add ISystun Drefault 'I
I~ Field Change

| I Figd Delete

I~ AuoUpdate
Figure 4.22
[3ecordeie|d Properties screen—
se ta

We define MY_USER_ID field as a key, a search key and a list box Item. We define
NAME and EMPLID fields, from MY_USER_TABLE as alternate search keys. This
automatically defines them as list box items as well.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Let’s look at the Input dialog box for our applica-
tion. Figure 4.23 illustrates the input or search dialog
box that appears when users access MY_USER_TABLE

Cancel : . .)
e using our application. Notice that we are adding users
Figure 423 Input Dialog here, hence we have to specify a value for the
box during Add MY_USER_ID field defined as a search key.

Uses ID: 00001

In figure 4.24, you can see how alternate search key fields and list box items
appear when we try to access the application panel online using Update/Display
action. The list box provides users with values of key fields before they choose the item
that they want to view and edit.

USMID:[‘
| =] — |
Name: i

Search I
EmpliD: ——

User ID |Name 112]

(100 an Prakazh (06104 M
00002

New Query I

Figure 4.24
Input dialog box and list box
during Update/Display

We'll discuss From and Through search keys in greater detail in chapter 6.

Default Value We can specify defaults in the Record Field Properties screen
(figure 4.22) for a particular record field. We can either use a constant as the default
value or assign a value from another record field. Default values are populated into a
field only when the field is blank or zero. We can also use the FieldDefault
PeopleCode event to provide default values.

NOTE Default values specified in record fields are processed first before Field-
Default PeopleCode is executed.

Record Field Help Context Number The Record Field Help Context Number is
similar to the Field Help Context Number. The help text can be summoned when
the record field is accessed online. (The Help text explains the usage of a field
within a record definition.) The Help Context Number associates this record field

CREATING A PEOPLESOFT RECORD DEFINITION 95

Licensed to James M White <jwhite@maine.edu>

96

to a Windows-based Help text. As we mentioned previously, PeopleSoft reserves
Help Context Numbers up to 10,000,000, so we must use a number higher than
10,000,000. We can also assign this number automatically by using the Auto
Assign button.

Default Panel Control The Default Panel Control controls the appearance of the
record field on a panel. The options available here are Edit Box, Drop-Down List,
and System Default. If we choose System Default, the system selects the default panel
field type for this record field.

Audit Changes to the record field can be audited online using the Audit option.
When the Field Add option is chosen, any new values entered in record fields are
audited. When the Field Change option is chosen, any changes to record fields are
audited. When the Field Delete option is chosen, all deletes are audited. All audit
information is populated into a delivered audit table called PSAUDIT. The audit
record name can be overridden by specifying an audit record attached to record defi-
nition properties (figure 4.20).

System Maintained The System Maintained field is used for reporting purposes
only. We turn on this checkbox if we want the record field to be updated by the system.

Auto Update The Auto Update option is used for Date/Time fields. The system
updates the record field to the current date and time. Any user-changes to a field
defined for Auto Update will be overwritten with the current date and time. We can use
this option for the MY_PROBLEM_DTTIM field in the MY_PROBLEM_TRKG record
definition to automatically store the system Date/Time into that field.

Edits tab

After the options under the Use tab are completed, we can proceed to the Edits tab
under the Record Field Properties Screen (figure 4.25).

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Edit —Record Field Properties from the Application Designer —Edits

Use Edis |
FiskdName: EMPLID
Edit Type:
 MoEdit (% TableEdi
= Table Edit:

Tvpe: Prormgit Table Edit vI
Prompt Tsble: |PERSONAL_DATA -]
Set Control Field =l

Figure 4.25

- Cancel | Record Field Properties screen,
Edits tab

Required This option makes the field a “Required” field, meaning that the user has
to enter a value into this field on an application panel that contains this record field.
We will make MY_USER_ID a required field in MY_USER_TABLE.

Edit Type The Edit Type option edits the value entered in this field. If we specify
No Edit, then the field is not edited. If we choose the option Table Edit, then we have
to specify the edit type. Four different types of edits are associated with a record field.

* Prompt lable Edit The record field is attached to a prompt record that has the
list of valid values. The user is not allowed to choose any value outside the list of
valid values. EMPLID field in MY_USER_TABLE uses PERSONAL_DATA as the
prompt record. (To learn more about Prompt Processing, refer to chapter 6.)

* Prompt Table with No Edit This is the same as Prompt Table Edit except that
this option allows the user to enter values not in the list of valid values.

* Translate Table Edir This option edits the value entered into this field against
the XLATTABLE. Translate values are attached to field definitions. These trans-
late values are activated for the particular record by using this option. If this
option is not chosen, translate values attached to a particular field definition is
not used in editing. MY_USER_TYPE field has translate values that are activated
for MY_USER_TABLE record definition. (To learn more about translate values,
refer to chapter 6.)

* Yes/No 1able Edit This is used for fields that contain a Yes or No value. Usu-
ally record fields defined as checkboxes in panels use this option.

CREATING A PEOPLESOFT RECORD DEFINITION 97

Licensed to James M White <jwhite@maine.edu>

In figure 4.25, you can see the prompt record attached to the EMPLID field in
MY_USER_TABLE. Figure 4.26 illustrates the translate values attached to MY_USER_
TYPE field in MY_USER_TABLE.

Navigation: View —¥Translate from the Application Designer Menu

Field Properties

General Translate Values |

Field Name: MY_USER_TYFE

Value |Active |EH Dt |Lonig Name | Shart Name
Actve 01/01/1998 End Uszer nd Lizes il

2 Actrve | 01/01/1398 | Developer Develaper
3 |Actve |01/01/1998 |Consultant Consultant ﬂl
4 Active (014011998 |Vendar Wendar Dekele
~Last Updated

D ate/Time: 09/23/1958 33357PM

By Operator. ~ PS

Cancel | Figure 4.26

Translate values

Set Control Fields ~ Set control fields can be used only with prompt table edits. The
set control field specified here will override the set control field defined for the record
definition containing this field. The value of the set control field will be used in
prompt processing. The prompt record contains the SETID field and the value in the
set control field on the panel will be compared to the value of the SETID field from
the prompt record.

In PeopleSoft, Record Field Properties are shown in four display formats: Field
Display, Use Display, Edit Display, and PeopleCode Display. Figures 4.27 through
4.30 show all four display views as well as a brief description of their content.

Field Display shows the field type, field length, field format, short name, and long
name for the record fields.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: View —Field Display (MY_USER_TABLE is open)

1l MY_USER_TABLE {Record)

ame T Len H Ly
MY _USER_ID Char | 6 |Upper | [UseriD [Uszer 1D
NAME Char | 50 |Name Hame Name
EMPLID Char | 11 |Upper D EmpliD
PHOME Char | 24 |Custm Phone Telephone
MY_USER_TYPE Char | 1 Upper Uszer Type |Uszer Type

Figure 4.27
Record definition, Field Display

Use Display shows all the properties we entered under the Use tab using the
Record Field Properties screen.

Navigation: View —Use Display (MY_USER_TABLE is open)

1l MY_USER_TABLE {Record)

PHOME
MY_USER_TYPE

Figure 4.28
Record definition, Use Display

Edits Display shows all properties we entered under the Edits tab using the
Record Field Properties screen.

Navigation: View —Edit Display (MY_USER_TABLE is open)

1l MY_USER_TABLE [Record)

Field Name Type | Req| Edit Py Table | Set Conts

NAME Chat (Yes

EMPLID Char |No

PHONE Char |No

MY_USER_TYPE Char (No |Xlat

q | " Figure 4.29

Record definition, Edits Display
CREATING A PEOPLESOFT RECORD DEFINITION 99

Licensed to James M White <jwhite@maine.edu>

4.5.6

100

PeopleCode Display shows all Record Field PeopleCode in the record definition.
(We will discuss adding PeopleCode to record fields in part 3.) A record field which
contains a PeopleCode program attached to one of its PeopleCode events will show
a Yes against the PeopleCode event. In figure 4.30, you can see a PeopleCode pro-
gram attached to the FieldChange PeopleCode event of the EMPLID field.

Navigation: View —PeopleCode Display (MY_USER_TABLE is open)

reli MY_USER_TABLE [Record)

Field Name
MY_USER_ID
NAME

EMPLID
PHONE

Figure 4.30
Record Definition, PeopleCode Display

Perform Data Administration

Data Administration, a precursor to building an object in the database, is performed
in the database. SQL tables and SQL views are database objects and must be built in
the database. We use record definitions specified as SQL tables and SQL views to do
so. Database objects are built using scripts that use the Data Definition Language
(DDL) Model defaults. DDL is used to create data dictionaries in relational databases.
It is good practice to generate scripts to build objects and save the scripts in your dic-
tionary of DDL scripts. Not only will this practice prove useful if the record defini-
tions have to be rebuilt in the database, it also provides a record of all DDL statements
executed in the database.

Build objects

Let’s look at how we build SQL tables and SQL views using record definitions.
Figure 4.31 illustrates the screen in the Application Designer tool used to build
database objects.

When the Build —Project option is chosen, all records in the project are
included in the build scope list. In our example, we open MY_USER_TABLE through
the Application Designer, then choose Build —Current Object from the menu.

In the Build screen, we choose the Create Tables action. MY_USER_TABLE
is defined as an SQL table and included in build process. We choose the Execute SQL
Now option for MY_USER_TABLE. MY_USER_TABLE is a new object, therefore, it
does not yet exist in the database as a table. When we choose the Create Tables

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Build —Project or Current Object

Build [%]

Build Scope
MY_USER_TABLE

¥ Create Indexes
[T Create Views
™ Alter Tables

- Build Execute Options
€ Build script file
& Execute SOL now
" Execute and build script Figure 4.31

Building an object in the database

action, the Create Indexes option is also turned on automatically. This creates all
indexes for PS_MY_USER_TABLE in the database.

NOTE SQL tables and views are prefixed with the letters PS_. The
MY_USER_TABLE record is called PS_MY_USER_TABLE in the database
for example. This unique prefix helps the database administrator identify
PeopleSoft tables and views easily.

We will learn more about building SQL tables, views, and indexes in chapter 8.

4.6 CREATING A PEOPLESOFT PANEL DEFINITION

Panel design is a crucial step in building an application. Panels have to be designed
to facilitate easier and faster input online. While record design is important for stor-
ing data and for data integrity, panel presentation is the primary evaluation factor
for the online application. To build an application panel, we need to perform the
following steps:

* assemble record fields in the panel.
* define panel field attributes.

* check the panel layout.

* define panel properties.

* save the panel

Let’s start by building a simple presentation panel to enter users through the
Problem Tracking application.

CREATING A PEOPLESOFT PANEL DEFINITION 101

Licensed to James M White <jwhite@maine.edu>

4.6.1

102

Assembling record fields in the panel
We open our project and choose File -New from the Application Designer menu.
We can then choose Panel as the object type.

Figure 4.32 shows the blank panel that we use to assemble record fields. We begin
by placing fields in the order of input, starting with the highest level key from the
record definition. Since we are building a panel to enter users for our application, we
start by choosing fields from MY_USER_TABLE.

Navigation: File —New —Panel

§= Panell (Panel) Hi=l

Figure 4.32
- Panel designer screen in
4 Application Designer

We insert fields into our blank panel by choosing Insert from the Application
Designer menu and choosing the correct panel field type. The first field in
MY_USER_TABLE is the MY_USER_ID field that is an Edit Box field.

We choose the panel field type based on how the field will be used functionally.
In this example, we either add or update user IDs through our panel. The EMPLID
field will be a drop-down list panel field type simply because we attached a prompt
record to this field. Because MY_USER_TYPE has translate value attached to it, it can
be defined as a drop-down list panel field type. NAME and PHONE are Edit Box panel
field types. Let us take a look at how the panel appears with all the five fields from
MY_USER_TABLE placed in input order.

In figure 4.33, we have defined MY_USER_ID field as a display-only field. This
is because MY_USER_ID is used as the search field to access the panel. EMPLID and
MY_USER_TYPE fields have a drop-down arrow indicating that they are drop-down
list fields. This means that, by simply clicking on the drop-down arrow, a list of valid
values will be presented to the user.

In addition to the five different fields, a Static Text field exists in the panel. This
is the example telephone number format shown next to the PHONE field in figure 4.33.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

Figure 4.33
Assembled record fields
on a panel

4.6.2 Define pa

nel field properties

After placing the fields in a blank panel, we then define panel field properties. Default
panel field properties can be changed using three different tabs: the Record, the
Label, and the Use tabs. (See figure 4.34.)

To change the Panel Field properties for each panel field, highlight the panel field
and bring up the Panel Field Properties screen either by choosing Edit —Panel Field
Properties from the Application Designer menu or pressing CTRL-F from the keyboard.

Record tab
Navigation: Right Click on the panel field —Panel Field Properties

Panel Field Properties

Recoid | Label | Use |

Field Name:

IN.&ME - |

Style:

I“' Use Default Style = » I

rSige
© Average
C Magimum
(% Custom

& Auto
C Left
€ Right

Family Narme

Diieplay N ame;

I =l

Display Option
™ Display Zero
™ Password

[¥ Show Promgt Button [~ 1000 Separatos

™ AutoFill

I Display Cenpury
™ Cunency Symbel

I™ Auto Decimal

Fil Character: [

e

Figure 4.34

Panel Field Properties

screen—Record tab

CREATING A PEOPLESOFT PANEL DEFINITION

The Record tab (figure 4.35) defines the
source, size, and display options for our panel
field. The record name is MY_USER_TABLE,
and the field name is NAME (figure 4.34).
We can also control the size of panel fields
under this tab. The NAME field is defined as
Custom. This enables us to adjust the size of
the field on the panel. Panel field size can be
adjusted by using the right corners and drag-
ging them to the left to reduce the size or to
the right to increase the size.

103

Licensed to James M White <jwhite@maine.edu>

Panel Field Properties

Recod Label |Use |

Type
"rﬂm C Test € AFTShot & [AFT Long

r Label Text
Iest [Neme

Irvemat Line Feed

Shyle: |"‘Use Default Style =~ "I

- granert - Display Opbiors

* Leit ™ Use default position
" Centered ™ First occurs only
C Bight I™ No golon
|

Figure 4.35 Panel Field Properties
Screen—Label tab

Panel Field Properties

Recod | Label Use |
r~ Field Use Dptions

™ Multi-Currency Field
™ Invisible I™ Display Control Field

I™ Show Label ™ Relsted Display Field

Related Control Field:
 Popup Meru

| |

Field Help Context Number:
’V Iﬂ < Auto Assign I
|

_Corcel |

Figure 4.36 Panel Field Properties
screen—Use tab

Label tab

The Label tab (figure 4.35) defines the prop-
erties for panel field labels. There are two
components to a panel field: one is the panel
field itself, and the other is the label for the
panel field. Let’s take a look at the Label tab
for the panel field EMPLID from MY_USER_
TBL panel.

In figure 4.35, we have defined the
Label type to use the Long name from
EMPLID field definition. We can also
choose to use Short name, or Text as the
panel field label or define the panel field not
to use any label. Panel field labels can be
aligned to the panel field itself by using the
Alignment option.

Use tab

The Use tab defines the panel field usage
properties. Figure 4.36 illustrates the Panel
Field properties for the EMPLID field from
MY_USER_TBL panel.

Look back to figure 4.33. Notice that
MY_USER_ID field is a display-only field in
the panel. We were able to define that under
the Use tab for that panel field.

For more about defining Panel Field
Properties, see chapter 7.

104 CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

4.6.3 Checking the panel layout
Once all the fields are laid out on a panel, and the panel field properties have been
defined, it is time to check the layout of the fields in the panel. Checking the layout
of fields helps:
* check the input order of fields
o check if all key fields are assembled first before other non-key fields
* check if all Related Display fields are placed after their respective Display Con-
trol fields (For example, if EMPLID is the Display Control field and NAME is the
Related Display field, we have to make certain that EMPLID is before the NAME
field in the panel field layout.)
* (if there is a scroll bar in the panel) be sure all fields inside the scroll bar are from
one record definition except for Related Display and Derived fields
* make certain that key fields that facilitate prompts on prompted fields in the panel
are before the prompted fields themselves. (For example, in a PeopleSoft HRMS
application, there is a table called PAY_CALENDAR that contains payroll calendars
to process payrolls. This table has three key fields: COMPANY, PAYGROUP and
PAY_END_DT fields. In order to prompt on the PAY_END_DT field, values for
COMPANY and PAYGROUP must be available to facilitate the prompt.)
When we save the panel, these checks are enforced, and a message appears if the panel
is invalid. We can always change the layout of fields if the panel is invalid at save time.
4.6.4 Define panel properties
Navigation: File —Object Properties
The Panel Properties screen can be
brought up either by choosing File/Object
Berel | e Properties from the Application Designer
MY USER_TBL menu or right-clicking on any one of the
T panel fields and choosing Panel Properties
.. Porc from the pop-up menu. Two different
Conmerts tabs exist in the Panel Properties screen:
e ey s the General tab and the Use tab.
Figures 4.37 and 4.38 illustrate the two
tabs in the Panel Properties screen.
|
ot U General tab
paE L e The General tab displays the language, a
e B brief description, comment, and last
updated date/time/operator ID for the
=] panel. PeopleSoft allows language ver-
Figure 437 Panel Properties screen— sions of panels. Panels can be.stored in
General tab languages other than English. The
CREATING A PEOPLESOFT PANEL DEFINITION 105

Licensed to James M White <jwhite@maine.edu>

4.6.5

106

Comments section can be used to maintain a log of changes to the panel. All People-
Soft objects maintain the last updated date/time and the ID for the operator that last

updated the object.
Use tab
General Use I
- Panel Type
I™ ok | ! o
- Panel Sizg—
IS‘UK“BD full screen 'I
Wwhdih I Hesght !
~Panel Style
I Uze Default Stde == 'I
Panel Help Contest Number
IU Auto Assign |
~Popup Menu
I El
Coest_|

Figure 4.38 Panel Properties screen—
Use tab

Saving the panel

Save Name As:

= 0K
|MY_USER_TBL| [
Language: Cancel I

IEnghs‘h 'I

Figure 4.39 Save a panel

The Use tab contains the panel type,
panel size, panel style and pop-up menu
attributes. The panel can be defined as a
standard panel, SubPanel or a secondary
panel. Panel size attributes control the
panel resolution. We can design the panel
to suit VGA or SVGA resolutions. We can
define a style for the panel. The whole
panel will inherit the style defined here.
Panel Help Context Number is used to
link the panel with online help. A pop-up
menu can be attached to the panel.
When the user right clicks anywhere in
the panel, the pop-up menu is activated.

Our final step is to save the panel definition. We can
save the panel by choosing File/Save from the Appli-
cation Designer menu or by clicking on the Save
tool bar icon. Figure 4.39 illustrates the screen
brought up to save the panel definition.

We enter a name for the panel and click on OK

to save the panel. The Language drop-down list box
allows us to save panels in other languages for multilingual access. The base language
appears on this drop-down list. Panel definitions can be saved in languages other than
English by logging into the system as a user whose base language is the language in

which you want to save the panel.

CHAPTER 4 BUILDING YOUR FIRST APPLICATION

Licensed to James M White <jwhite@maine.edu>

1 PeopleSoft development is performed from bottom-to-top (i.e., People-
Tools objects are developed to reach the top—the fully developed applica-
tion of sub-systems).

2 User specifications and technical specifications are extremely useful for the
development process.

3 The Application Designer tool is an integrated tool delivered with People-
Soft applications to help in application development.

4 Projects are used to include all objects used to develop an application or
sub-system.

5 Fields are individual PeopleSoft objects.

6 Record can be specified as SQL tables, SQL views, Derived/Work records,
Query Views, Dynamic Views and Subrecords. Only SQL tables and views
are built in the database as objects.

7 Field attributes are the same across all record definitions. Record field
attributes apply only to a particular record definition.

8 A panel can be a standard panel, a subpanel, or a secondary panel.

9 Secondary panels are used to organize fields by their function. Subpanels
are used to separate repetitive fields, like address fields into a subpanel. Both
subpanels and secondary panels can be included in a standard panel.

CREATING A PEOPLESOFT PANEL DEFINITION 107

Licensed to James M White <jwhite@maine.edu>

»

I- -.;\c HAPTER 5

Providing user access
to the application

5.1 Creating panel groups in PeopleSoft 109
5.2 Creating application menus in PeopleSoft 113
5.3 Authorizing users 118

We have created all objects required to build the user interface and provide access to
our application. (Note, that panel groups and application menus can be termed as
user interface in PeopleSoft.)

A panel group can have one or more panels in it. Menu items provide user access
to functions available under an application menu. Panel groups are attached to menu
items. While providing access to a particular Menu Item, any one or all of the panels
in the panel group can be chosen. It is important to also note that other aspects of secu-
rity exist apart from the menu items that this chapter will discuss.

108

Licensed to James M White <jwhite@maine.edu>

5.1

5.1.1

5.1.2

CREATING PANEL GROUPS IN PEOPLESOFT

PeopleSoft panels are attached to application menus using panel groups. Prior to
PeopleSoft version 7, panel groups were part of the menu definition, but starting
from PeopleSoft version 7, panel groups are separate objects which nonetheless serve
the same purpose of linking panels to application menus.

Panel groups contain one or more panels. They can be created to make panels
look more organized. Instead of crowding a panel with fields, multiple panels can be
created and attached to a panel group. Panel groups can also be created to organize
fields by function. JOB DATA in the PeopleSoft HRMS application is a classic example
of one such panel group. Panel groups can be shared across menu items as long as the
menu items share the same panel. To create a panel group, we move through the fol-
lowing steps:

1 create a new panel group
2 insert panels into the panel group
3 define panel group properties

a save the panel group definition

Create a new panel group

We create a new panel group by choosing File/New from the Application Designer
screen and choosing panel group as the object. Figure 5.1 shows the blank Panel
Group screen that results.

Navigation: File 5New —Panel Group

it Panel Group1 (Panel Group) |- 1D %]
Panel Hame Itemn Hame Hidden Item Label Folder Tab

Figure 5.1

J J] New Panel Group screen

Insert panels into the panel group
We start by adding an already-built panel into our new panel group. We insert a
panel into the panel group by choosing Insert/Panel from the Application Designer
screen. Figure 5.2 illustrates this process.

All panels that match the selection criteria are displayed in the screen. Once we fin-
ish inserting all the required panels into the panel group, we close the Insert Panel screen

CREATING PANEL GROUPS IN PEOPLESOFT 109

Licensed to James M White <jwhite@maine.edu>

5.1.3

110

Navigation: Insert —Panel into Group

Inzert Panel E
Object Type: [Panel |
r~ Selection Criteria

Clase

Neme: [(ONISEDREN e

Description: | Broject: [A8 Projects =l MI

Type: I ﬂ Language: IEngIlsh ;I
Dbiects matching selection citeria

Narne | Type | Desciiption

MY_USER_TBL Standad ENG

« 2] Figure 5.2
[My_u

Insert panel into panel group

1_|Mv_UseR_TEL

[mv _User_TBL |

|users |

| | il

Figure 5.3 Panel inserted in a panel group

by clicking the Close button. Figure 5.3
illustrates the screen as it appears after the
panel is inserted into the panel group.
Item Name and Item Label can be
changed to fit the functional description
of the panel group. The Hidden flag is
used to hide panels in a panel group, a
useful option when more than one panel
exists in the panel group and one of those
panels must be hidden from user access.

The Folder tab is the label for the folder after the panel group has been brought up.

Define Panel Group properties

Before we save the panel group definition, we must define the properties for the panel
group. The Panel Group Properties window is brought up by choosing Edit/Object
Properties from the Application Designer menu. In figures 5.4 and 5.5, you can see
the two tabs under the Panel Group Properties window.

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

General tab

General I Usze |
E MY_USERS
Matket GBL
Description: m
Comments:

Thiz panel group holds all users that use the applications which are ;]
racked through the PROBLEM_TRACKING module.

E
rLast Updated
Date/Time: 02/02/00 10:31:05PM
By Opesator. ~ PS
Cocsl_|

Figure 5.4 Panel Group Properties—General tab

Use tab
General Use |
Search record: v Add
m 'I ¥ Update/Display
Add search tecord: I™ Update/Display Al
I 3 ™ Cotrection
™ DataEnty
Detad panst:
[MY_USER_TBL |
= 3-Tier Execution Location -
i~ Paned Group Buld—————— — Panel Gioup Saye
* Client + Chent
€ Applicabion server " Applicalion servet
(" Default (sppbcation setver] | | € Defauk (spplication server)
cocs_|

Figure 5.5 Panel Group Properties—Use tab

Under the General tab, we enter a brief
description and comments for the
panel group. The Comments section is
used as a modification log for the panel
group. The last updated Date/Time as
well as the ID of the operator who last
updated the panel group is also dis-
played in the General tab.

The Use tab holds the Search Record,
Add Search Record, Detail Panel
Name, Actions, Build, and Save
locations for the panel group. In our
example, we define MY_USER_TABLE as
the search record. Because we won't specify
an Add Search Record, MY_USER_
TABLE will be used for Add action as
well. Authorized actions are Add and
Update/Display for our panel group.
Update/Display A1l and Correc-
tion actions are used for panel groups
which access effective-dated record defini-
tions. When using the Tuxedo Application
Server in a 3-tier environment, the Panel
Group Build and the Panel Group
Save locations come into play. These two

parameters determine where the panel group is built and saved during online access.

CREATING PANEL GROUPS IN PEOPLESOFT

111

Licensed to James M White <jwhite@maine.edu>

5.1.4

112

Save the panel group definition

We can now save the panel group definition by choos-
Save Name As: o] ing File/Save from the Application Designer menu.
];w;:sms =y We will be prompted to enter a name for the panel
G = group (figure 5.6).

The Market field is used to provide custom

Figure 5.6 Panel Group save functionality to a panel group. The same panel group

can be saved for two different markets that serve two

different functions. For example, in a PeopleSoft
HRMS application, the New Hire process can provide the same functionality but with
subtle differences in different countries. We can create one panel group using different
Markets to suit those subtle differences. Essentially, the two panel groups are two dif-
ferent objects that serve a common function but in different ways.

Let’s look at a panel group which contains more than one panel. For this purpose,
we use the JOB_DATA_HIRE panel group from the PeopleSoft HRMS system. This
panel group has several panels which use the same search record, but display portions
of data from tables separated by functional areas. This allows the user to access fields
separated by function. Multiple records are also updated through this panel group.
The SQL tables updated using this panel group are PERSONAL_DATA, JOB,
JOB_EARNS_DIST, BEN_PROG_PARTIC, and EMPLOYMENT. These individual
panels contain fields from these records. The user is able to save all the information
for an employee in the database.

In figure 5.7, you can see the number of panels attached to the JOB_DATA_HIRE
panel group. Notice that two of the twelve panels are hidden. These are used to hold
Work/Derived fields used for calculation and panel processing. The user does not see
the hidden panels in the application menu. The Item Label is displayed as a subitem
under the Menu Item and as folder tab labels unless folder tab Labels are filled.

Navigation: File -Open —Panel Group —JOB_DATA_HIRE

X

Panel Name: em Hame Hidden | Iem Label Folder Tab Label

1_|PERSONAL DATA1|PERSONAL DATA 1 | [|shameiaddress

2_|PERSONAL DATA2|PERSONAL DATA 2 | [|Personal aProfile

3_|PERSONAL_DATA3|PERSONAL_DATA_3 g

4 |JOB_DATAY JOB_DATAL Swork Location

5 |JOB_DATA_JOBCO|J0B_DATA_JOBCODE | | |&Jobcode ~[3ob Information

6 |JOB_DATA2 JOB_DATA2) [[sFayron T

7 [JOB_DATAS JOB_DATA 3 SCompensation Compensation

B [JOB_DATA_ERNDIS|JOB_EARNINGS_DISTRI| Job Earrings &Ditr|

B [JOB_DATA_BENPR |BENEFIT_PROGRAM_P | &Beneft Program P

10 |EMPLOYMENT_DTA|EMPLOYMENT DATAT | | |aEmployment Data

11 |JOB_DATA1 WK |JOB_DATA_T WORK | [|Job Data 1 Work .

12 |SCRTY_TEL_GBL_ |[SCRTY _TBL_GBL_WRK| [V |Scrty Thi GbiWirk Figure 5.7
JOB_DATA_HIRE panel group
definition

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

5.1.5

5.2

Panel groups and process definitions

Process definitions are used to identify batch processes in PeopleSoft, which are exe-
cuted using the Process Scheduler. Just as menu item definitions are attached to panel
groups, so are process definitions. When the user chooses the Run icon (Traffic Light)
from an application menu, the Application Processor attempts to match the panel
group from the application menu item with Process definitions which contain the
same panel group. All matching process definitions are then presented to the user in a
list on a Process Scheduler Request panel. A panel group, therefore, is the common
link between a process definition and a menu item definition.

(To learn more on how to attach Process definitions to application menus, refer

to chapter 27.)

CREATING APPLICATION MENUS
IN PEOPLESOFT

Application menus serve as a gateway to the online application. Application menus
can either be data entry panels, inquiry panels, or process panels. Panels that deliver
common functions are usually linked to the same application menu. For example, all
panels related to setting up payroll tables are linked to a menu called Define Payroll
Process in a PeopleSoft Human Resources application. To create an application
menu, we

* create a new menu definition
* create new bar items

* create new Menu Items

* define Menu Item Properties
* define Menu properties

¢ Save the menu definition

5.2.1 Create a new menu definition
Navigation: File 5New —Menu
New Menu <] We create a new menu definition as illustrated in
~MenuT e ﬁgure 58
@ Btendad = Standard menus are application menus while
pop-up menus are linked to a panel or a panel field.
We choose “Standard” for our application menu,
) bringing up a blank Menu Definition screen
Figure 5.8 New menu
(figure 5.9).
CREATING APPLICATION MENUS IN PEOPLESOFT 113

Licensed to James M White <jwhite@maine.edu>

5.2.2

5.2.3

114

Navigation: File New —-Menu —OK

i Menul [Menu) M= E3

|Els Edt View Go Favorites © % Lapguage Help]

Figure 5.9
New standard menu screen

Create new bar items

The dotted lines, which appear on the blank screen in figure 5.9, represent a bar item.
Bar items are groupings of individual menu items. Lets start by defining a bar item
and its properties.

By default, a standard menu contains some standard bar items which are com-
ponents of every application menu. These bar items serve as general purpose items that
the end user can use when accessing the application menus. For example, the bar item
File is used for saving and canceling panels. The bar item Edit is used for editing func-
tions and other hot key functions used in the application panel. Go serves as a gateway
to other application menus in PeopleSoft.

Nﬂl/lg&ll’l‘ﬂﬂ.’ Double Click on the dotted Let’s Consider hOVV we can deﬁne a cus-
lines from a Standard menu. ¢4 bar jrem attached to an application menu.
screen We define Bar Item properties by double-

clicking between the dotted lines.
e In figure 5.10 we define a bar item named
i Neme: [sETUP SETUP with a label of &Setup. The character
‘ Lebet [1serm “&” denotes the hot key letter that accesses the
menu item using the keyboard without using
ok] _ cence | a mouse. In this example, by pressing ALT-S
from the keyboard, the user can access the

Figure 5.10 Bar Item Properties Setup bar item.

Create new menu items

Once we create a bar item we can add menu items under that bar item by double-
clicking on the dotted lines below the Setup bar item. Figure 5.11 illustrates the dot-
ted lines for new Menu Items. The Setup bar item is used to create setup tables for
our application. Likewise, we use the Tracking bar item to track all incidents and res-
olutions in our application. We can create all the menu items that functionally fall
under the Setup bar item (figure 5.12).

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —File -Open —Menu —Problem Tracking

i PROBLEM_TRACKING [Menu) M=l &

Fi= Edt Vew Go Favoles Seb | Foof Langusge Help |

Figure 5.11
Menu item properties screen

Navigation: Double-clicking on the dotted lines for Menu Items

~ Menu ltem
Name: ﬁ

Label: |&U 3815

~Type
' Panel Group
" PeopleCode
" Separator

— Panel Group
Name: MY_USERS

Market: GBL Select... |

Search Rec: MY_USER_TABLE
I™ Overide: | =l

[k] Cancel | Figure 5.12

Menu item properties screen

5.2.4 Define Menu Item properties

Figure 5.13 illustrates the Menu Item Properties screen. We start by giving the menu
item a name and a label. Then we define the menu item as a panel group item.

5§ PROBLEM_TRACKING [Menu)
Fi= Edt Vew Go Favotes Seb | I Language Help |

Appications

Ercjects
Figure 5.13
Standard menu screen with bar and
menu items

CREATING APPLICATION MENUS IN PEOPLESOFT 115

Licensed to James M White <jwhite@maine.edu>

5.25

116

Menu items can either be panel groups, Menu PeopleCode, or separator items.
When we define the Menu Items as Panel Groups or as PeopleCode items we have to
associate the menu items with a panel group. We can choose a panel group associated
with the menu item by clicking on the Select button from the Menu Item Properties
screen. In our example, we choose MY_USERS as the panel group. We can also over-
ride the search record associated with the panel group by clicking the override search
record checkbox on and entering an override search record from the Menu Item Prop-
erties screen.

TIP We can add more than one menu item under a bar item, and we can add
more than one bar item to an application menu.

Before we start adding new menu items to our application menu, we have to add
fields, records, panels, and panel groups to build the menu item. Once we design and
develop all these objects, we are ready to assemble them into a new menu item for the user.

Menu definitions are stored in tables which are language-related. For each lan-
guage used in the system, the bar item and menu item descriptions are stored sepa-
rately. This enables users to view these application menus in different languages.

NOTE Application menus are migrated as a whole from one database to another.
The individual bar and menu items cannot be chosen for migration. For
this reason, when application menus are migrated across databases, one has
to be careful not to overwrite another developer’s work in the same menu.

Define menu properties

Now that we have attached menu items
Genera |Use | to the application menu, it’s time to
ish FROREl IR define properties for the application
e S menu as a whole. Figures 5.14 and 5.15
Descrpfon illustrate the tabs under the Menu Item
Gk : Properties screen.
'Irm:w:nusewesanaouucanonwnaow for the FROBLEM TRACKING <] The Menu Properties window can
be brought up by choosing File/Object
Properties from the Application
Designer menu. The application menu
o 2 should be open to perform this
Date/Tine: 10/01/59 53544PH operation.
By Operatorr. PS
General tab

“ Cancel
[] o | The General tab contains a brief

Figure 5.14 Menu Properties—General tab description and Comments for the

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

5.2.6

5.2.7

application menu. The Comments section can be used to maintain a modification
log for the application menu. The General tab displays the last Date/Time the menu
was updated and the ID of the operator who updated it.

Use tab
General Use |

Menu Labek m

Menu Group

IPuanem Tracking

Define LBusness Rules
EDevelop Workforce
EAdmirester Workfoice
PeopleSolt

LEDI Manager

Moritor Eworkplace
Plaver Info
Froblem Tracking

= g g gy ey

Under the Use tab, we can provide a
label for the menu. This label will be
seen under the Go menu online. We
can also group one or more application
menus together in a menu group. The
menu groups appear as the first list
when we choose the Go menu. When
the names for the menu and the menu

Menarder il T roup are the same, the menu appears
Seguence |9i'£iﬂ Sequenge i IEiEv‘.'*'a g p R > pp

7 plphabetical rder 7 Alphabetical order as part of the list under the Go menu.
e O | [i We can also provide a sequence for how

¥ Menu installed

the menu groups appear under the Go
menu. In addition, the sort order for
both the menu and the menu group can
be specified under the Use tab.

[ox] _coxel |

Figure 5.15 Menu Properties—Use tab

Save the menu definition
Save As We are now ready to save our menu definition. Fig-
ure 5.16 illustrates the Save Panel window for a
menu definition.

We can name our application menu
PROBLEM_TRACKING and click the OK button to

save the menu definition.

Save Name &z
IPH OBLEM_TRACKING

Figure 5.16 Menu definition
save

Pop-up menus
Pop-up menus are used to access context sensitive information. For example, in fields
defined as dates, we can provide a calendar that will pop-up when the user right-clicks
on the Date field. Pop-up menus can either be attached to panels or panel fields. The
attached pop-up menu is activated when the user right-clicks on the panel field.
Pop-up menus can either be used for panel transfers or for executing PeopleCode.
Panel transfers require parameters such as menu name, panel group, panel, and action
which are required when transferring to a panel. PeopleCode is attached to the panel field
and the PrePopup PeopleCode event is executed before the pop-up menu is shown.
To bring up another panel using PeopleCode, we define the pop-up menu as
PeopleCode and attach a PrePopup PeopleCode event to the record field. When you
define the pop-up menu as a transfer, only one transfer panel can be defined. This is

CREATING APPLICATION MENUS IN PEOPLESOFT 117

Licensed to James M White <jwhite@maine.edu>

5.3

118

a Non-Modal transfer definition. When the pop-up menu is defined as PeopleCode,
the DOMODAL PeopleCode function can be used to transfer focus to different panels
for different panel field values. This is a Modal transfer definition. (To learn more
about PrePopup PeopleCode events, refer to part 3 herein.)

AUTHORIZING USERS

After we build menu items, we have to authorize user access to these menu items. We
can do so by using the Security Administrator tool in PeopleSoft (found in the
PeopleTools menu group under the Go menu).

Operator security in PeopleSoft is driven using two fields: the OPRID and the
OPRCLASS fields. OPRID is a unique identification given to a PeopleSoft user. Every
operator must have a password to log on to the application. An operator may belong
to one group or many groupings of operators, otherwise known as operator classes.

Prior to PeopleSoft release 7, an operator could be assigned only to one particular
operator class. This made it difficult for system administrators to define unique group-
ings of operators. System administrators either had to change the business needs or
create more classes. Starting with PeopleSoft release 7, an operator can be associated
with more than one operator class. All the security attributes of the operator classes
translate down to the operator. In other words, if the operator belongs to two operator
classes, attributes of both these classes are attached to the operator profile.

Attributes control the creation of operator classes. Every user needs an operator
ID to use the PeopleSoft application. It’s often a difficult task to find an operator class
that fits the user’s security profile. Let us look at the attributes attached to an operator
class to better understand the previous statement.

The following criteria are used to determine the creation of operator classes in the
system:

* Menu items Menu items that the operator can access determine the operator
class for the user. If a group of operators has the same set of menu items they can
access, then they can potentially be under the same operator class, provided all
the other criteria are similar.

* Sign-on times 1f the operators can have access to the system at similar time
durations, then they can belong to the same operator class. Sign-on times control
the time when a user can log on to the PeopleSoft application.

* Process groups Process groups are identifiers by which batch processes are differ-
entiated. These identifiers can either be functional identifiers or any other iden-
tifier by which the processes are separated. For example, identifiers in a
PeopleSoft Human Resources system can be PAYALL, HRALL, BENALL, and so
forth, differentiating the processes into functional areas. Hence, operators who
run similar processes can belong to the same operator class. When an operator
has security to a particular process group, that does not necessarily mean that the
operator can run all processes under that process group. The operator has to have
access to the menu items that run these processes as well.

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

* Functional security Functional security is row-level security which secures
application data in the PeopleSoft system. In a PeopleSoft HRMS application
certain fields such as Department, Business Unit and Pay Groups can be used to
provide row level security. Likewise in a PeopleSoft General Ledger application,
fields like Business Unit, Product, and Location may be used for functional secu-
rity. Each operator is able to access data based on these functional attributes. For
example, a group of operators in the Michigan plant can only access employees
who work in the paygroup which has all employees from the Michigan plant. So
all operators who have similar access based on functional criteria can belong to
the same operator class.

Now that we know the criteria by which operator classes are determined, let’s
build these classes using the Security Administrator tool.

5.3.1 General attributes

Let’s create an operator class called MYADMIN, which will be used to create operators
who can access our Problem Tracking application menu. We have defined the Secu-
rity definition type as Class of Operators. We can provide a Business process
map for the operator class under the General attributes. Business process maps are
graphical representations of application menus which the users can view to access
panels. We can control how the user views a Navigator display of menu items using
the Configuration Manager.

We can define the Background Disconnect Interval and Online Time-out min-
utes in the General Attributes screen. Background Disconnect Interval controls the
disconnection of icons which stay in the background and use system resources by not
getting disconnected. Online Time-out Minutes control the time out of the
PeopleSoft session as a whole after a certain amount of idle time. We now save this
operator class by choosing File/Save from the menu in the Security Administrator
screen. When we are prompted for a name, we name our operator class MYADMIN.

532 Menu items

By clicking on the Menu Items icon on the left side (figure 5.17), we start authorizing
user access to menu items. Select the menu which the user can access by choosing
Insert/Menu Name from the Security Administrator screen. All menu items which
belong to the user application menu appear on a list box. In our example, we choose
PROBLEM_TRACKING as the menu item. Then we can highlight the menu items
which the user can access or choose Select All to select all menu items in the applica-
tion menu. We can also provide Display Only access to a particular menu item by
clicking on the Change Display-Only button. Once we have chosen all menu items
which the user can access, we click OK to close the Select Menu Items window
(figure 5.18).

AUTHORIZING USERS 119

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —PeopleTools —=Security Administrator —File -New

s35 [Untitled) [Class of Dperators)

— Security Defintion Type: | Class of Operators ;I
Desctiption: [admintuaters
— General A
Wsins s Business Process Map: | |
Bach d Di 1 Interval Time-Out Minutes
 Use defaul from PeopleT ools Options panel & Never time-out
T e —
: & Never disconnect " Specific time-out (minules)
Signon Times " Specilic disconnect interval [seconds): |
B
Process
Groups
B o 3

Figure 5.17 Operator Security window—General view

Navigation: Insert/Menu Name under the Menu Items tab

Select Menu Items |
Menu Name: PROBLEM_TRACKING
BarName |ltem Mame

APPLICATIONS
PROJECTS

PROBLEM T PROBLEM T

Change DisplayOriy | 0K

Cancel | Figure 5.18
Menu items selection screen

Notice all the menu items (figure 5.18) have been highlighted for user access, and
the DispOnly column reads “No” on all the selected items. We can add more appli-

cation menus and menu items for user access by repeating the same steps using other
application menus from the Security Administrator screen.

120 CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

5.3.3 Sign-On Times
By choosing the Signon Times icon from the left side (figure 5.19), we can enter
logon times for users. Basically, we enter a sign-on time for each day of the week by
using Insert/Signon Times from the Security Administrator screen. Let us take a look
at the sign-on times for MYADMIN operator class. We can add more than one inter-
val of time when the user can access the system. For example, we can add 00:00 hours
as the starting time and 10:00 as the ending time on Sunday, and also add 13:00 and
15:00 as the starting and ending time on Sunday. This allows the user to access the
system only between those times on Sundays.
Navigation: Click on the Signon Times tab
20 MYADMIN [Class of Operators)
Sunday |00:(3:59
Monday |100:00-23:59
- Tuesday [100:00-23:59
Wednesday|00:00-23:39
——— Thursday 100:00-23:59
Friday |00:00-23:59
Saturday |00:00-23:59
Signon Times
o‘g
Process
Groups
KT T
Figure 5.19 Operator Security window—Signon Times view
5.3.4 Process groups
Process groups are groups of processes that identify process definitions in PeopleSoft.
Process groups control process security in PeopleSoft. For example, let’s say a process
named PER005 belongs to the HRALL Process Group. All operator classes, which
have access to the HRALL Process Group, will be able to run that process provided
they have access to the menu item that runs the process. So we include all the process
groups that the operator class can access by using Insert/Process Groups from the
Security Administrator screen.
In figure 5.20 we can see the process groups for the MYADMIN operator class.
AUTHORIZING USERS 121

Licensed to James M White <jwhite@maine.edu>

122

Navigation: Click on the Process Groups tab

2. MYADMIN (Class of Dperators)

BASALL
EE BENALL
General

PAYALL

Menu ltems

Signon Times

Gl |

Figure 5.20 Operator Security window —Process Groups view

Figure 5.20 indicates that the MYADMIN operator class can access all processes
defined under BASALL, BENALL, HRALL, and PAYALL process groups. The operator
class also needs access to the menu items that run these processes. If a hundred proc-
esses are defined under the HRALL process group, the user does not always have access
to all the menu items that initiate the hundred processes, so menu item access and
process group access work hand-in-hand to determine what processes a user can run.

Figure 5.21 illustrates how a process definition is defined and how the process
definition attributes are linked to operator security.

The process definition in figure 5.21 belongs to the HRALL and HRCAN process
groups. Also the panel groups which are attached to menu items are defined. The com-
bination of both these attributes gives the user access to this process.

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —PeopleTools —Process Scheduler —Use-Process Definitions

Process Scheduler - Use - Process Definitions
Fle Edt View Go Favoites Use Process Help

ale(@x| olae slel = S=] @lcl=] *le|vsle|

Process Definitions | Process Defiition Options | Panel Transfers |

Process Type: SOR Report
Process Name: PEROOS
LTI Wl E mployees on Leaves of Abzencel
Process Class: ISQH Report il ¥ Log client request
& o I— J [~ SOR Runtime
erver Name: +
[V API Aware
Priority: Low -
Run Location: |Both | Recumence Name: ﬂ
Long i, |This repoit lists all employess designated as being on a leave of absence. This list is alphabetical and :l
Description: =
-Panel Group i Process S ty Group 7
[PRCSMULTI + [HRALL 3 :I
PRCS_ADHOC_CNTL + HRCAN *
LRI d]4 []y
[| |Process Definitions |Update/Display s

Figure 5.21 Process definition

5.3.5 Process profiles

Every operator class has a process profile which controls certain processing parame-
ters. We can change the process profile for an operator class by choosing Edit/Process
Profile from the Security Administrator screen.

Process profiles control printer, output destinations, and process view/update
parameters for an operator class. These are default parameters for an operator class,
and the operator can override these parameters at the time of running a process. Let
us take a look at the process profile screen for MYADMIN operator class (figure 5.22).

In figure 5.22, we can notice that the file and printer destinations are separated
by Client and Server destinations. The Server destination is the server where the
PeopleSoft Process Scheduler is currently running. Let’s review the parameters which
control how the operators who belong to this operator class view and update processes
and run controls:

» Allow Process Request—View By—controls the processes that the operator class
can view on the Process Monitor.

o Allow Process Request—Update By—controls the processes that the operator class
can update on the Process Monitor.

» Allow Requestor to Override Output Destination—allows the operator class to
override the default output destination in a process request.

AUTHORIZING USERS 123

Licensed to James M White <jwhite@maine.edu>

5.3.6

124

» Allow Requestor to Override Server Parameters—allows the operator to override
the Server parameters in which the process runs.

* Allow Requestor to View Server Status—allows the operator class to view the status
of the Process Scheduler.

» Allow Requestor to Update Server Status—allows the operator class to stop, sus-
pend, or restart the Process Scheduler.

» Allow Requestor to Update Recurrence Definition—allows the operator class to
define and update Recurrence in a process request.

Navigation: Edit —Process Profile (MYADMIN operator class is open)

Process Scheduler - Operator Profile [x|

Operator Id/Class: MYADMIN Allow Process Request:
r~ Client Destinations - View By 1~ Lpdate By—

File: &+ Dwner & Owner

: C Al Al

Printer: Iluﬂ 'i " Nore " None
—Server Destinations————— — Allow Requestor To

Fille: |.-"DUIDU[."’prOd.l'l vi IV Overide Output Dest

Pinter. [anisprt0] | [V Overide Setver Pams

IV View Server Status

¥ Update Server Status
¥ Update Recunence Defn

—MySidob Controte

I arme:

Lcoount:
Cm = ﬂ] Figure 5.22

Operator Process Scheduler
profile screen

Now we need to save the operator class once again. We do so by choosing File/
Save from the Security Administrator screen. All attributes defined are now attached
to MY_ADMIN operator class.

Creating operators using operator class definitions
From now on, MYADMIN operator class can be used as a template to create actual
operators in the system. We can bring up a new screen by choosing File/New from
the Security Administrator screen, but first we have to make sure the security defini-
tion type is set to Operator in order to save an operator definition (figure 5.23).
Only the General tab and the Classes tab are necessary to create an operator def-
inition. The other tabs translate from the operator class attributes for the operator. We
now enter the operator attributes to complete the operator definition. Some attributes
are required in order to save the operator definition.

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open -MYOPER

2. MYOPER [Operator) [_[Of x|

Security Definition Type: | Operator 1ot
== E B
Descrplion: IPJakash Sankaran
r General Altibutes
Business Froc I

Menu ltems

Backgrour et Irterval
€ Usede om PeopleTiools Options panel
@ = Never disconnect
Signon Times | Specih yect interval (seconds) I
0“2 r~ Operator Attri
= Options
Process DPS(E E it I
Groups el Bt I ™ Allgwed to start application server
Language Preference: |English ;I I™" Enable Mukiingual support
@
Sl Access Profie: svsaDM =l
Emplogee ID: |

o |

Figure 5.23 Operator definition for MYOPER

General tab
Operator Password The password that the operator uses to sign on to PeopleSoft.
Confirm Password A confirmation to save the password for the operator.

Language Preference The base language with which the operator signs on to
PeopleSoft. This plays a significant role, controlling the language used to display
descriptions when the operator signs on to PeopleSoft.

Access Profile The access ID the operator needs to login to the database. PeopleSoft
uses the access ID to create a session in the database. Access IDs are the only IDs
which have access to database tables and views. Using the access ID, operators in the
system can access database tables and views. One access ID can be used to provide
entry by all users in the system. Therefore, the Database Administrator needs to
maintain grants and permissions only for that one access ID in the system. When the
operator logs into the system, the operator’s access to the system is verified, after
which the access ID is used to retrieve data from tables and views.

Employee ID 1f the operator is also an employee and the Human Resources system is
maintained using PeopleSoft, then we can enter the Employee ID for the operator
here. In a PeopleSoft Human Resources system, entering the Employee ID prevents
operators from changing their own data.

AUTHORIZING USERS 125

Licensed to James M White <jwhite@maine.edu>

126

Allowed to Start application server This option allows the operator to start a
PeopleSoft application server. For example, a Tuxedo server is an application server
running the PeopleSoft application.

Enable Multilingual Support This option lets the operator edit data in multiple lan-
guages. By simply accessing the Language menu item from any application menu, the
user can switch the language to edit fields in panels that are stored in multiple lan-
guage or related language tables.

Classes tab

This attribute is used only for operator definitions. As mentioned before, starting
from PeopleSoft release 7, an operator can be included in more than one operator
class, making it easy for system administrators to create operator classes.

System administrators can create operator classes which define panel access sep-
arately. They can also create operator classes which define function security. Then,
they can attach these operator classes to the operator. The operator class that defines
the panel access provides the operators with the appropriate menu items. The class that
defines the functional security secures the data that they will access. For example, in
a PeopleSoft HRMS implementation, we can create an operator class which has menu
items/panels which a typical HR user can access. This one class provides panel access
to all HR users throughout the system. At the same time, we also need to create indi-
vidual classes that contain the appropriate application security for these users. Let’s
take a look at the following matrix to better understand this process. We assume that
all these users are HR users, and that they belong to different locations processing var-
ious paygroups and departments.

In table 5.1, the column on the left contains the actual operator IDs in the system.
All three users access the same set of panels and menu items. Hence, they are attached
to the HRADMIN class. They will, however, be able to access only the departments
and paygroups in their respective locations. So they are also each attached to individual
classes (NYCHR, SFOHR, and WDCHR) which contain the respective departments
that they are able to access. The same theory can be used across all PeopleSoft appli-
cations to arrive at the number of operator classes needed in the system.

Table 5.1 Operator security

Operators Location Panel Class Security Class
SOSGOOD New York HRADMIN NYCHR
CFINNIGA San Francisco HRADMIN SFOHR
GMORDIN Washington, D.C HRADMIN WDCHR

To attach the operator to an operator class we choose Insert/Classes from the
Security Administrator screen. We also choose the primary operator class for the oper-
ator by clicking on the Primary checkbox (figure 5.24).

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Click on the Classes tab

General
Menu Items

Signon Times

Classes

K1 i

2o MYOPER [Operator]

Class I Description Primary?
1_[MYADMN | Administrators |2
r— Row-Level Secusity
Dperator Class: IM‘(ADMIN v|

{0 x]

Figure 5.24 Operator Security window —Classes view

The primary operator class controls the application data security for the operator.
The primary operator class can also provide panel and menu access for the operator.
If we follow this path, we will end up creating more operator classes than necessary,
but if we can separate the application data security and the panel security attributes,

we can reduce the number of operator classes created in the system.

Row-level security

Navigation: File —>Save

Save Operator Profile

Enter the operator profile information:
Operator Profile 1D: |MYDFEFI

Figure 5.25 Save an operator definition

AUTHORIZING USERS

Licensed to James M White <jwhite@maine.edu>

To secure data, PeopleSoft uses the primary
operator class for the user. PeopleSoft release 7
offers a new feature, ROWSECCLASS. This is
the row-level security class for the operator.
ROWSECCLASS requires a change in the
search view definitions that PeopleSoft delivers
in its application. Currently, all search views
contain either OPRID or OPRCLASS fields.
PeopleTools automatically uses the primary
operator class at search time. It attaches an
extra condition to the WHERE clause of the search view to control the selection of data from

127

5.3.7

128

the system. If we replace the OPRCLASS or OPRID fields in security views with the field
ROWSECCLASS, PeopleTools now uses that class for the operator to control data access.

We now save the operator definition by providing a name. In our example, we
provide MYOPER as the name for the operator (figure 5.25).

Understanding functional security (Trees)

We have discussed creating functional security and controlling the data the user can
see in the system. Now let’s see how we can define the data which the operator class
can access. We do this by using the ADMINISTER HR SYSTEM menu in a PeopleSoft
HRMS application. In PeopleSoft HRMS, the DEPARTMENT field is used as a key
field to control data access.

The system contains a department security tree which contains the organization
structure. This security tree contains organization groupings of departments.

A group of departments may report to a location, and a group of locations may
report to a divisional office. The divisional office ultimately reports to a corporate office.
This organizational hierarchy is built using the tree manager, which, in turn, is used to
build the department table in PeopleSoft HRMS. Each node in the tree is an entry in the
PS_DEPT_TBL record. All employees in the system are assigned to a department.

Before we see how we can define the departments which an operator class can access,
let’s look at the department security tree in a PeopleSoft HRMS system (figure 5.26).

Navigation: Go —PeopleTools —Tree Manager

zUSA-DEPT_SECURITY-01/01/1997-00001 - Tree Manager

Fie Edt View Go Favoriles Stucture Level Node Help

Dlc(B[2] &] Xl 2|
& wf* COMPENSATION |
== COMPETENCY

== DEPARTMENT

=-4@ DEPT_SECURITY
(2-¢2 USA 01/01/1997
=3¢ 00001
= -:ﬁ 00001 - Corporate Headquarters
£-<%) FIN - Financial Services
B8 F-AMERICA - North America
BRI} CCE - Unite

ice of the President
{_] ARET - Retiree Department
{1 TER - Term Deferred Department
~{_] E90100 - Office of the President
{7 ES0200 - Sales-Main Office
B NCS
-] PST - Payroll Services
@] MDE - MDB
] HLC - Health Care Services
BC
=]

{1 LOC - Local Counties

i
B UTIL - Utilities >

- s

Level: COMPANY A

Figure 5.26 Department security tree in PeopleSoft HRMS

CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

If we look at the tree in figure 5.26, we see that it has a structure called
DEPARTMENT, which contains the DEPT_SECURITY trees. 00001 denotes corpo-
rate headquarters, and FIN, HLC, LOC, and UTIL represent different divisions pro-
viding different services within the organization. USA is the set ID for corporate
headquarters and all the divisions (services) and departments underneath them.

Now, let’s look at the data security screen where we define these values to control
data access for an operator class. The Maintain Data Security screen in figure 5.27 has
two rows for operator class MYADMIN. The first row provides MYADMIN access to
all services, divisions, and departments under 00001 (Corporate). The second row
excludes access only to department 10100 (Office of the President). This means
MYADMIN can access all employee records for employees who report to 00001 (Cor-
porate), except for those employees who report to 10100 (Office of the President).

These values are saved in PS_SCRTY_TBL_DEPT. This table is used in all the
search views in PeopleSoft HRMS which control department security.

Navigation: Go —Administer HR System —Use —Maintain Data Security

Administer HR System - Use - Maintain Data Securily
File Edt View Go Favoiles Use Selup Process Inguie Help

glelelx| mlae ee 5= g8 @2 *|v|vsll]|

Department | Global Panels |

| Operator Id: MYADMIN Name: |
SetiD DeptiD Access Code i’
I :] IlJI]I][H :] Corporate Headquarters |HeadM ite 'I
[osa™ s| [10100 #| Difice of the President [No Access -]

[| |Department [Update/Display y

Figure 5.27 Maintain data security in PeopleSoft HRMS

AUTHORIZING USERS 129

Licensed to James M White <jwhite@maine.edu>

1 Panel Groups can contain one or more panels in them. Panel Groups are
used to separate panel fields by function. Panel Groups are also used to
update multiple record definitions at the same time.

2 DPanel Groups attach an application panel to a menu item.

3 Menus can be standard or pop-up menus. Standard menus come delivered
with standard bar items. More bar items and menu items can be added to
the standard application menu.

4 A menu item is a single unit used to provide access to applications.

5 A panel group containing one or more panels is attached to a menu item.
Access can be provided to any one or all of the panels in the panel group.

6 The Security Administrator tool is used to authorize users for access to
menu items. OPRID and OPRCLASS fields are the two primary fields used
to define Operator Security.

130 CHAPTER 5 PROVIDING USER ACCESS TO THE APPLICATION

Licensed to James M White <jwhite@maine.edu>

6.1

J l;'
IN\NC HAPTER &6

Enbhancing your
application

6.1 Creating and using prompt 6.4 Working with Derived/Work
records 131 records 154

6.2 Creating and maintaining translate 6.5 Using push buttons 160
values 140

6.3 Creating and using search
records 144

CREATING AND USING PROMPT RECORDS

Prompt records can be either database tables or database views. We utilize a prompt
record to create a drop-down list that contains the possible list of values for a field. A
user entering values into such a field will be restricted to the values produced by the
prompt record. Drop-down lists work only on character fields. (Usually fields that are
used as codes have drop down lists behind them.)

Prompt records are attached to record fields, which means only one prompt
record can be used for a record field at a given time. This is important because prompt
records for a record field can be changed dynamically during panel processing. Before
we learn more about dynamic prompt records, let’s cover the basics.

Prompt records, which are similar to search records, are primarily put to work using
search and database keys. A key difference between prompt records and search records

131

Licensed to James M White <jwhite@maine.edu>

6.1.1

6.1.2

132

is the input mechanism. While prompt records are supplied with inputs from fields in
the panel, search records are supplied with inputs from input dialog boxes. Nevertheless,
the principle behind the workings of prompt and search records is the same.

Principles of prompt records

Prompt records contain fields defined as key fields. The fields prompted are defined as
key fields in the prompt records. The prompted field can either be the first key field in
the prompt record or any other field in the key field list. When the prompted field is
not the first key field on the prompt record, the fields that precede the prompted field
must be populated for the prompt to work. Since prompt fields are database keys, they
facilitate faster searching during prompt processing. Let’s consider a few examples:

Prompt records with a single search key

Prompt records with a single search key are simple enough to understand. The
prompted field is the only search key on the prompt record. In this case, no reason
exists to supply an input to the prompt record. The prompt list is brought up by
clicking on the drop-down arrow or by pressing F4.

In our application, we can create a single key prompt field. In MY_PROJECT_TBL,
we can define a prompt record behind MY_APPLICATION_ID field.

Let’s walk through this process of defining the prompt record in MY_PROJECT_TBL.
First, we have to open the record definition for MY_PROJECT_TBL using the Application
Designer (figure 6.1).

Navigation: Edit =Record Field Properties

T S |
Use Edits]

FieldName: MY _APPLICATION_ID

I Bequired
— Edit Type:
" NoEdit % Table Edit
Table Ed:

Type: IPlompt Table Edit 'l
Prompt Table: JMY_APPLCTN_TBL -
Set Control ekt |

Corecel_| Figure 6.1

Defining prompt records

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

We used MY_APPLCTN_TBL as the prompt record, so let’s take a quick look at
the search key definition for this prompt record. In figure 6.2, we can see that the only
search key in the prompt record is the MY_APPLICATION_ID field. This is an exam-
ple of a simple prompt record: the prompt list appears without any input from the
panel, and once the prompt record is defined for a record field, the prompt record can
be used on any panel that contains that record field.

In figure 6.2, we can see that MY_APPLICATION_ID is marked as a search field
on MY_APPLCTN_TBL. All fields that are marked as List Items also appear on the
prompt list. Now, let’s look at the prompt field and the prompt list as they appear on
an online application panel.

Figure 6.3 illustrates the drop-down arrow on MY_APPLICATION_ID field.

Navigation: File -Open —Record -MY_APPLCTN_TBL

=il MY_APPLCTN_TBL [Record)

Field Name | Type |Key |Dir |CwiC |Sich |List |Sps |Audt |H
MY APPLICATION 1D |Char [Key [Asc | [Yes [Yes [No | [|
DESCR Char [Alt |Asc No |Yesz |No
DESCRSHORT Char No |No |Ne

Figure 6.2
Prompt record —Key display

Navigation: Go —Problem Tracking —Setup —Projects (User Application)

Problem Tracking - Setup - Projects

Eile Edt Miew Go Fgvortes Setup Iracking Help

gl @@ x| al-ala| e =|e| Sl=| @]c=] *|e]|salf]
My Project TH |

Project 1D: |num1

Description: IPeopIeSult HR Implementation

Application ID: [s

Start Date: I ﬂ

End Date: | ﬂ

Contact Name: |

Phone: |

(eg. 914-555-1212)
1 | My Project Thl [Add A4

Figure 6.3 Prompt records on an application panel

CREATING AND USING PROMPT RECORDS 133

Licensed to James M White <jwhite@maine.edu>

6.1.3

134

We press F4 from the field to bring up the prompt list. Now, consider the actual
prompt list generated from this field (figure 6.4).

Navigation: F4 from the field (or) Clicking on the drop down arrow

Application Identilil:alinnzl .
] Cancel I

Description: | I
escription: | || s

HR PeopleSoft Human Hesoures
MFG SAP Manufacturing Systems

Figure 6.4
Prompt list from the
Projects panel

In the prompt list of valid values, both the search key and all the list box items
appear. In figure 6.2 we saw the key definition for MY_APPLCTN_TBL. In addition
to the MY_APPLICATION_ID field defined as the search key, the DESCR field is
defined as a list box item. Since MY_APPLICATION_ID is a code, the DESCR field
provides a description to help the user choose the correct application ID from the
prompt list. By highlighting any one of the valid values from the prompt list and
choosing OK, we are able to populate the panel field with that value.

Prompt records with effective dates

Some prompt records are effective-dated. Every time the characteristics of the stored
information changes, a new row is inserted in the prompt table with a new effective
date. In PeopleSoft, the Application Processor automatically returns the list of valid
values as of the effective date on the panel.

Since we do not have such an example in our application, let’s look at an example
from the PeopleSoft HRMS application. Let’s say that employee job-related informa-
tion is stored in a record named JOB. This record has two fields in particular that store
the COMPANY and the PAYGROUP for the employee. The prompt record for
COMPANY is COMPANY_TBL, and this record has an effective date and an effective
status. These fields—special fields that the Application Processor treats differently—
are named EFFDT and EFF_STATUS in PeopleSoft. The COMPANY field is prompted

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

from the JOB DATA panel group. Let’s take a look at the panel for further explanation
on how the EFFDT field affects the prompt.

The panel in figure 6.5 has an effective date which controls the prompt list on
the COMPANY field. The effective date on this panel is compared with the effective
date on COMPANY_TBL to provide the prompt list. All companies active and effective
as of 9/1/1996 appear in the prompt list. EFF_STATUS field on the COMPANY_TBL
controls the active and inactive status of the company, and EFFDT field controls the
effective date. Now let’s look at the key definition for COMPANY_TBL (figure 6.06).

Navigation: Go —Administer Workforce (U.S) —Use —Job Data (PeopleSoft HRMS)

Administer Workforce [U.5.] - Use - Job Data H[=] E3
Fle Edt View Go Favoites Use Setup Process |nguie Repot Help

ale|@x| 00| sle| o] alE| @l +elwle]

Work Location | Job Information | Payroll| Compensation | Job Eamings Distibution | Benefit Program Participation | Empk 4[|
| SchumacherSion ID: 001 I™ 1L Contioctor Empl Redti: 0 |
Employee Status: Active I™ Pasition Management Record il
Effective Date: I[IS!IHHSSB ﬂ Effective Sequence:l 0 Curent uso
Action / Reason: [Data Chg ~] [RED 3| Redesignation Action Dt: 09/16/1936
Entiy Date

Position Number: [4| [

[Position Data Ovenide

Regulatory Region:[USA #| United States

Company: |CCB :] Continental CommercetBusiness

Business Unit: |USADH ﬂ Urited States Administration

Department: |1 0100 :] |I]9J’01 /1996 Office of the President

Location: 001 #| capHo 0
| | |'wiork Location | Conection 4

Figure 6.5 PeopleSoft HR panel—Prompt record with EFFDT

Navigation: File -Open —Record -COMPANY_TBL (Application Designer)

2t COMPANY_TBL [Record)

Field Name | Type |Key |Dir |CwiC |Srch [List |5 Audt |F
COMPANY ________ [Char |Key |Asc | |Yes |Yes INo | ||
EFFDT Date |Key |Desc No |No |Ne
EFF_STATUS Char No (Mo |No
DESCR Char | Alt Aszc Ho |Yes |No
DESCR_AC Char No (No |No
DESCRSHORT Char No (Mo |No
ADDRESS_SBR SRec No [Mo |No
ADDRESS1_AC Char No (Mo |No
ADDRESS2_AC Char No (Mo |Neo
ADDRESS3_AC Ch N N N H
CITY_AC Char No |No [No Figure 6.6)
FEDERAL EIN Nbr No [No |No ~|| Search keys of a prompt record with
i B EFFDT and EFF_STATUS
CREATING AND USING PROMPT RECORDS 135

Licensed to James M White <jwhite@maine.edu>

6.1.4

136

Notice that COMPANY is the only search key in this prompt record. The effective
date on the JOB DATA panel is compared with the effective date on the
COMPANY_TBL. Also, the effective status on COMPANY_TBL should be active as of
the effective date on JOB DATA. In table 6.1, we can see combinations of EFFDT from
JOB and EFFDT, EFF_STATUS from the COMPANY_TBL. The last column on the
matrix here denotes whether the company appears on the promprt list.

Table 6.1 Effective date comparison

COMPANY EFE Prompt
COMPANY COMPANY EFFDT STATUS JOB EFFDT List
CccB 1/1/1996 Active 9/1/1996 Yes
CcCB 5/1/1996 Active 9/1/1996 Yes
CCB 11/1/1996 Inactive 9/1/1996 No
CCB 1/1/1997 Active 9/1/1996 No

The first two combinations satisfy the prompt list; the last two entries do not. The
COMPANY_TBL entries for the last two entries are either inactive, or, the effective
date is in the future. We can deduce that the row in the prompt record should be active
on or before the effective date on the panel that contains the prompt field. If there is
no effective date on the panel that contains the prompt field, then the system date is used
Jfor comparison.

Prompt records with multiple search keys

Now, let’s consider a situation where a prompt record has more than one search key;
using the PAYGROUP field from the JOB DATA panel as an example. This field has
the PAYGROUP_TBL as the prompt record. Let us take a look at the search keys on
the PAYGROUP_TBL (figure 6.7).

The rules for effective date and effective status still apply to this prompt record.
The only difference is the additional search key. PAYGROUP is the field being

Navigation: File -Open —Record -PAYGROUP_TBL (Application Designer)

"-l PAYGROUP_TBL (Record)

Field Name |Type |Key |Dit | CurC |Sich |List |Sys |Audt
COMPANY |Char [Key |Asc | [Yes [Yes |No | |i=
PAYGROUP Char |Key |Asc Yes |Yes |No
EFFDT Date |Key |Dezc No |No |No
EFF_STATUS Char No [(No |HNo
DESCR Char |ARt |Asc No |[Yes |No
DESCRSHORT Char No |No |No
PAY_FREQUENCY Char No |No |No
RETIREE_PAYGROUP |Char No [(No |No
COUNTRY Char NHo [(No |No
TRANSIT# Char Ne |No Mo Figure 6.7
ACCOUNTH Char No (No |HNo .
FORM_ID_CHECK Char No [No [No % Prompt records with
(] » .
| | multiple search keys

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

prompted, and it is not the first key on this prompt record. COMPANY is the first
search key here.

It is a simple task to make this prompt record work efficiently. The COMPANY
field has to be populated with a valid value for the prompt on the PAYGROUP field
to work correctly. For this reason, the panel fields have to be laid out in such a way
that the search keys appear in the correct order. The COMPANY field can be an input
field, a display-only field, or even a hidden field in the panel. Simply by populating
the COMPANY field, we are supplying an input to the prompt. The prompt search
uses the value entered in COMPANY and produces a list of PAYGROUPS that belong
to the COMPANY.

The same rules apply for any number of search keys. All high level keys have to
be populated in order for a prompt field to work correctly. In PeopleSoft HRMS,
another record, the PAY_CALENDAR, is used as a prompt record to produce a list of
payroll end dates. Let’s look at the keys on this record to understand how a prompt
list is provided for the PAY_END_DT field.

In figure 6.8, we see three search keys: COMPANY, PAYGROUP, and
PAY_END_DT fields. In order for the prompt to work correctly on the PAY_END_DT
field, the COMPANY and PAYGROUP fields have to be populated with valid values.

Navigation: File -Open —Record -PAY_CALENDAR (Application Designer)

= PAY_CALENDAR [Record)
Field Name [Type|Key |Dir |CuiC|Srch |List |Sys |Audt|
COMPANY ~ |Char [Key [Asc | | Yes [Yes [No | | -
PAYGROUP Char |Key |Asc Yes |Yes |No 'l
PAY_END_DT Date |[Key |Asc Yes |Yes |Mo
RUMN_ID Char |Alt |Asc No [Yes |No
PAY_OFF_CYCLE_CAL |Char No |No |Neo | |
AGGR_ID Char No [No |No
PAY_BEGIN_DT Date No [No |MNo
CHECK_DT Date No [No |No
PERIOD_WEEKS Nbr No [No |No
PAY_PERIOD Char No [No |No i
PAY_PDS_PER_YEAR |Nbr No [No |No Figure 6.8 . .
ACCRUAL_PCT Mbr No |No |Ne z Prompt records with multiple
4 *
I | search keys (more than two)
TIP Values for all higher level key fields must be supplied for a prompt list to

work. If the prompted field is the third key on the search record, the first
two key fields must have values for prompt processing. The Application
Processor verifies whether any rows in the prompt record satisfy the values
in the key fields. If rows are found, a prompt list is provided to the user.

6.1.5 Dynamic prompt records

Sometimes, the prompt record behind a field cannot be determined until runtime.
The data contained in the panel dictates the prompt record to be used. The prompt

CREATING AND USING PROMPT RECORDS 137

Licensed to James M White <jwhite@maine.edu>

138

record has to then be chosen dynamically through a PeopleCode event. Let’s walk
through an example from the PeopleSoft HRMS application, a variable prompt record
defined on the HEALTH_BENEFIT record. This record stores health benefits enroll-
ments. The field that uses the variable prompt is BENEFIT_PLAN.

The first prompt record is an SQL view that contains all benefit plans not defined
for COBRA. The second prompt record is also an SQL view that has all benefit plans
defined for COBRA. A flag called COBRA_PLAN (in the BEN_DEFN_PLAN record)
is set to a value of ¥ for COBRA. Both the SQL views are built using the
BEN_DEFN_PLAN record.

We set the variable prompt records using a RowInit PeopleCode event in
HEALTH_BENEFIT. Any field from the DERIVED record can be placed on the panel,
and this field will be populated with the actual prompt record name through a
PeopleCode event. The prompt record name on the record field definition is a % sign
and the actual field name from the DERIVED record.

For example, if the field name on the DERIVED record is EDITTABLE, then the
prompt record name is defined as $EDITTABLE. The % sign is recognized as a field
from the DERIVED record. As long as this field is populated with the correct record
name, the prompt list works correctly. Let’s look at how the prompt record is defined
on the HEALTH_BENEFIT record (figure 6.9).

Navigation: File -Open —Record -HEALTH_BENEFIT (Application Designer)

i HEALTH_BEMNEFIT (Record) =] E3

| Type | Req| Edit | Prompt Table
ss Prompt PERSDMNAL _DATA

| Set Control Fiel

EMPL_RCD# Nbr [Mo |[Prompt |EMPLOYMENT
COBRA_EVENT_ID Nbr |Neo

PLAN_TYPE Char |Yes | Xlat

BENEFIT# Nbr |No

EFFDT Date |Yes

DEDUCTION_END_DT |Date (No
COVERAGE_BEGIN_DT |Date |Yes
COVERAGE_END_DT Date |No

COVERAGE_ELECT Char |Yes |Xlat

COVERAGE_ELECT_DT [Date |Yes |

BENEFIT_PLAN Char [No |Prompt |ZEDITTABLE Figure 6.9

COVRG_CD Char [No |Prompt |BEN_PROG_BENCYC 9 .

:“IPM_BEPURLDT Date |No I . | Variable prompt record
definition

The prompt record is defined as $EDITTABLE, which means that the field EDIT-
TABLE from the DERIVED record has to be placed on the panel for the prompt to
work correctly. The PeopleCode event that populates this work field appears in
figure 6.10.

Figure 6.10 illustrates how the PeopleCode event populates the EDITTABLE
field with two different values based on the panel name being used. Also, notice that
the RowInit event populates this field before the user gets a chance to access the
prompt list.

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open —Record -HEALTH_BENEFIT —View —PeopleCode Display

B HEALTH_BENEFIT (Record PeopleCode)
|emPuD] [Rowlnit

- for COBRA entry allow for selection of all dependents */
If %PanelGroup = PANELGROUP.HEALTH_BENEFITS Then

-
=

/* Begin changes for Retro Deductions */

DERIVED _HFR.ORIG_EFFDT = EFFDT:

DERIVED_HF.ORIG_BENEFIT PLAN = BENEFIT_PLAN:

If ALl(EENEFIT PLAN) Then
DERIVED_HR.ORIG_PLAN_TYPE = PLAN_TYPE:

End-If:

/7 End changes for Retro Deductions */

Else
If %PanelGroup = PANELGROUP.COERA_HEALTH Or
sPanelGroup = "MANUAL_HEALTH" Then

DERIVED.RECNAME_EDIT = "DEP_BEN_CER_VU": Figure 6.10
DERIVED.EDITTABLE = “CBR_PROG_BENPLE"; || .
End-If: RowInit PeopleCode event to set
End-If: = variable prompt record

The search keys on the prompt record still work the same way as we have seen
before. The search keys have to be the same on all prompt records. The rows returned
in the prompt list are different. Let’s finish this section by looking at the search key
definition for the two prompt records used in the example (figures 6.11 and 6.12).

Navigation: File -Open —Record -CBR_PROG_BEN_PLN

=i CBR_PROG_BENPLN (Record)

Dir__|CwiC |Srch |List |Sys |Audt
Asc No_I¥es |No | H
PLAN_TYPE Char |Key |Asc No |Yes |Me
BENEFIT_PLAN Char [Key |Asc No |Yes |No
EFFDT Date |Key |Desc No |Yes [No
DESCR Char |Alt |Asc No |Yes |No
DESCRSHORT Char No |No |Neo
PROGRAM_TYPE Char No [No |[No
OPTION_CD Char No [No |No
DEPENDENT_MARRIAGE| Char No [No |No]
DEP_AGE_LIMIT Nbr No |[No |No .
EXCL._DISABLED_AGE | Char No |No |No | Figure 6.11
STUDENT_AGE_LIMIT |Nbr No [No |[No | Variable prompt record—
Key display
CREATING AND USING PROMPT RECORDS 139

Licensed to James M White <jwhite@maine.edu>

6.2

140

Navigation: File -Open —Record -BEN_PROG_BENPLN

124 BEN_PROG_BENPLN (Record) _ O] <]
Field Name | Type |Key |Dir |CuwiC |Srch |List |Sys |Audt |H |
BENEFIT_PROGRAM. _ |Char [Key lAse [.| No |No [Ne | . l..
Date |Key |Desc Ho |No |Me
Char |Key |Asc No |No ([No
Char |Key |Asc HNo |Yes |Mo
DESCR Char [Alt |Asc No |Yes |No
DESCRSHORT Char No |No |Neo
PROGRAM_TYPE Char No |No |No
OPTION_CD Char No |No |Neo
DEPENDENT_MARRIAGE| Char No |No |No
DEP_AGE_LIMIT Nbr No |No |No
EXCL_DISABLED_AGE |Char No |No |No
STUDENT_AGE_LIMIT (Nbr No |No |No Figure 6.12 Variable
prompt record —Key display

The key structures are exactly the same on both prompt records. Because the
SQL views return different rows based on application context, a variable prompt
record is necessary.

TIP Variable prompt records are used with the help of a field from the
DERIVED record. For example, if the field from DERIVED record is called
RECNAME_EDIT, the prompt record is defined as $RECNAME_EDIT in
the record that uses the prompt record. A PeopleCode event will populate
the variable prompt record name at run time.

CREATING AND MAINTAINING
TRANSLATE VALUES

PeopleSoft provides objects that can be used to store a list of valid values for a field.
Translate values are different from prompt values in the sense that translate values do
not need an individual database table for storage. While each prompt list has its own
record, all translate values are stored in one PeopleSoft tool table, called the
XLATTABLE. Let’s take a look at the fields from XLATTABLE to see how they store
translate values (figure 6.13).

XLATTABLE has four database keys to store unique translate values. Let us
describe the fields in XLATTABLE.

* FIELDNAME The actual field name in PeopleSoft for which translate values
are stored.

* LANGUAGE_CD The language in which translate descriptions are stored,

e FIELDVALUE This is the actual translate value code.

e EFFDT The effective date for the translate value.

* VERSION PeopleSoft maintains version number for caching and upgrading
translate values.

e EFF_STATUS Denotes the active or inactive status of the translate value

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

* XLATLONGNAME The location where a long description can be stored for
the translate value.

* XLATSHORTNAME The location where a short description can be stored for
the translate value.

* LASTUPDDTTM The last Date/Time the translate value was updated.

* LASTUPDOPRID The ID of the operator that last updated the translate value.

Navigation: Go —Open —Record -XLATTABLE

i XLATTABLE (Record) _ O] x|
| Field Name | Type |Key |Dir |CuiC |Srch |List |Sys |Audt |H |
FIELDNAME Char |Key |Asc No |Yes [No
LASTUPDDTTM DtTm Mo |No |Me
LASTUPDOPRID Char No |No |No

Figure 6.13
Key structure of XLATTABLE

Translate values can be a maximum of four characters. So fields that are one to
four characters long and used as codes can be stored in the translate table. Translate
values are also effective-dated. The long and short descriptions can be different on dif-
ferent effective dates.

Translate values are associated with a field object. After you have created character
fields, you attach translate values to them. Let’s look at how we can attach translate
values to a field (figure 6.14).

A field must be open in order to add, change, or delete its translate values. The
buttons Add, Change, and Delete are used to add, change, and delete translate val-
ues respectively.

We also see the last updated Date/Time and the operator ID. Even though trans-
late values are attached to a field object, this does not mean translate values are always
used for a field when it is attached to a record definition. The translate values edit can
either be turned on or off for a record field. This can be accomplished using the Edits
tab in the Record Field Properties screen. Figure 6.15 illustrates the edits defined for
fields from MY _USER_TABLE record.

xXlat in the Edit column indicates that the translate values edit has been turned
on for the record field MY_USER_TYPE in the record definition MY_USER_TABLE.
The same field can be used in another record definition without the translate values
edit. Figure 6.16 illustrates how translate table edit is turned on for MY_USER_TYPE
field in MY_USER_TABLE

CREATING AND MAINTAINING TRANSLATE VALUES 141

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Object Properties —Translate Values tab (MY_USER_TYPE field is open)

Field Properties [x|
General Translate Values |

Fiedd Name:

MY_USER_TYPE

|Eff Dt |Long Name

i End User End Jser
2 5 | Developer Developer
3 01}01!1333 Consultant Consultant _.g‘_ange._l
4 01/01/1998 |Vendor Wendor
Delete |
—Last Updated
Date/Time: 09/23/1938 3:33.57PM
By Operator. ~ PS

Figure 6.14 Translate Values for a field

Navigation: File 5Open —Record -MY_USER_TABLE —View —Edit Display

PHONE
MY_USER_TYPE

<]

Char |No
Char |No
Char |[No |Xlat

Prompt

PERSONAL_DATA

el MY_USER_TABLE (Record) =1 &3
Field Name Type | Req| Edit | Prompt Table | Set Contr
MY USER 1D | Char | Yes | |
NAME Char |Yes

Figure 6.15
Edits display for a record

-

definition

Translate values can appear on a panel either as an edit box or a drop-down list
box. Drop-down list boxes can display the Translate long name and short name in the
drop-down list. If an edit box is used, then the Translate short or long names can be

displayed using a related display field. Figure 6.17 illustrates how translate values
appear on a drop-down list within the online application.

142 CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Highlight Field -Edit —Record Field Properties

Record Field Properties
Use Edits |
Field Name: MY_USER_T'YPE
I™ Begqured
— Edit Type:
€ MNoEdt & Table Edit

- Table Edit

Type: | Translate T able Edit "'
Prompt Table: | X I
Set Control Field: | X I

) I Figure 6.16

Record Field Properties—Edits tab

Navigation: Go —Problem Tracking —Setup —Users

Bl8(@x| e8| slel o= SE] @l #Helale |

Users I

Uszen 1D 000

EmpliD: [=

Mame- |5ankalan.l-'lakash
Fhone: |3| 4/641-2222 leg. Y14-555-1212)
User Type: =l
none]
Conzultant
Developer Figure 6.17
End Uzer .
Vendor User panel with a
drop-down list box
il [Osms [Opdsle/Display 4 for translate values
CREATING AND MAINTAINING TRANSLATE VALUES 143

Licensed to James M White <jwhite@maine.edu>

6.3

6.3.1

144

TIP Effective dates on translate tables work the same way as in prompt records.
The value of the effective date in the application panel is compared to the
effective date in XLATTABLE. All translate values for the record field that
are active on or before the effective date in the application panel are includ-
ed in the translate list.

NOTE Translate values are attached to field definitions. They can be included in
records with or without the Translate Table Edit.

CREATING AND USING SEARCH RECORDS

Search records are used to control and limit the data displayed on a user panel. Search
records can be either SQL tables or SQL views. When you create a panel group, you
must specify the search record to be used. A search dialog box appears when the user
tries to access the panel group, and search values may be entered into fields from
search records designated as a search keys or alternate search keys. After the search
keys are entered, any matching entries from the search record are displayed in a list
box. Besides the search keys themselves, additional fields defined as list box items also
appear in the list box.

Search records are specified in panel groups. A panel group, no matter how many
panels it contains, needs a search record. The same search record can be specified in
more than one panel group. For example, in PeopleSoft HRMS, the same search record
is used for employee lookup. These panel groups are designed to look up employees
either by using an employee ID or employee’s last name. Search records are designed
to limit the number of rows the user can access at any given point of time.

As we saw in chapter 4, a field has to be a database key in order to be a search
key. Also, not all database keys are defined as search keys in PeopleSoft. This concept
leaves us with four different types of search records:

* search records without any keys

* search records with search keys

* search records with search keys and database keys

* search records with From and Through search keys

Search records without keys

Sometimes, search records do not have any search keys or database keys. We see this
only in instances when we do not want users to be prompted for any input. This
means data selection can be performed without any input.

INSTALLATION table (from the PeopleSoft HRMS application which contains
general information about the application) is an excellent example. It has fields such
as the last employee ID assigned, default country, default currency code, commit
counts, and so forth. This table has only one row and does not contain any database
keys or search keys, making it possible to look up data from the INSTALLATION table

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

without any input. We may encounter other instances where we may want to bring
up panels without providing any input. In such instances, we can use the
INSTALLATION table as the search record. One example in the PeopleSoft Benefits
Administration application is the BAS ACTIVITY panel. This panel retrieves all rows
from the BAS_ACTIVITY table without any input.

6.3.2 Search records with search keys

Search keys are fields that appear on the input dialog box. Fields from the input dia-
log box determine the rows that appear as list box items. Fields from the Input dialog
box may be display-only items on the panel.

If values are entered on all search keys, and an entry is found in the search record
matching those values, the Application Processor brings up the panel directly without
providing a list box. If values are entered only in certain fields, then a list box appears
matching the items entered in the search fields. Fields defined as search keys are always
defined as list box items, but list box items are not all search keys. List box items help
the user identify data that will appear on the panel.

Let’s take a look at how search records are built and how they control the data
selection. To do so, we will take a look at our Problem Tracking application and see
how users are added and updated. By looking at the underlying table, we can easily
determine the keys that can be used in the search.

In figure 6.18, MY_USER_TABLE is used as a search record to add and update
users. Here we are using the data record itself as the search record. We see that
MY_USER_ID is the only search key field in this search record. When we perform a
partial search on the MY_USER_ID field, the Application Processor retrieves all entries
that match the value entered in MY_USER_ID field. NAME and EMPLID fields are
used as alternate search keys. Alternate search keys work the same way as search keys,
except that they are not unique.

In figure 6.19, we input a “0” in the MY_USER_ID field. We have all entries that
matched the partial key search in the list box. Let us try the same search with no input.

Navigation: File -Open —Record -MY_USER_TABLE

i MY_USER_TABLE (Record) M=K

Field Name | Type |Key |Dir | CuiC |Srch |List |Sys |Audt |H |

(MY USER_TD___ i Char |Key |Ase | . | Yes |Yes [No | .. |.|

MNAME Char |Alt |Asc Mo |Yes |Mo

EMPLID Char [Alt |Asc No |Yes |No

PHONE Char Mo |No |MNe

MY_USER_TYPE Char No |No |[No
Figure 6.18
Search keys on a
search record

CREATING AND USING SEARCH RECORDS 145

Licensed to James M White <jwhite@maine.edu>

146

Navigation: Go —Problem Tracking —Setup —Users

s e[T |
= |
Name: i
Semch l
EmpliD: [:]
User 1D |M 1l2]
|I|I|I1 s M
00002 Landres Galina 01856
Hew Query i
4 | 2l

Figure 6.19
Search keys and list box
items (partial search)

When no input is supplied, all rows from MY_USER_TABLE are listed in the list

box (figure 6.20).

Update/Display - Users

Figure 6.20
Search keys and list box
items (no input)

NOTE The number of entries retrieved for the list box is limited to the first 256
rows returned by the Application Processor. Only the first 256 rows are dis-
played in the list box. When the number of entries exceeds the limit, mes-
sage is issued to the user specifying that there are more than 256 rows that

match the input supplied.

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Now let’s look at a search record that has more than one search key. In PeopleSoft
HRMS the pay calendar table uses more than one search key as input.

Only the COMPANY field was entered in the search dialog box. The Application
Processor retrieved all pay calendar entries that belong to company CCB. The message
at the bottom in figure 6.21 indicates that more matching entries exist than those dis-
played in the list box.

Navigation: Go —Define Business Rules —Define Payroll Process —
Setup 2 —Pay Calendar Table

Correction - Pay Calendar Table

Company: [cce ﬂ

|
Pay Group: | 1' ‘
Pay Period End Date:| K i Search
Detai
Pay Run 1D: | _GJ : =
')

Use Query
|End Date
15550102
1996-01-16
1996-01-30
1996-0213
1996-02-27
19960312
1996-03-26
1996-04-09
1996-04-23
1996-05-07
1996-05-21
1995-06-04
1996-06-18

[PayRuniD ____|Sheets Aun___ICalc Aun__|Conk

N

EELEEED

New Query

ZZZZTZZZTZZZZ =N

EZEZEEZEEZEEZEZEZEE

EZZEZZZZZZZZZH
-
HL

More matching entries were found than can be displayed.

Figure 6.21 Search records with more than one search key

We can narrow the search by inputting a value into the PAYGROUP field. When
a value is input into the COMPANY, PAYGROUP, and PAY_END_DT fields, the
Application Processor attempts to match the values with entries in the search record.
If a match is found, the Application Processor proceeds to display the panel without
providing a list box.

RUNL_ID field is an alternate search key field. It is a duplicate key that may list
more than one entry in the list box. Let us take a look at the key definition for the
PAY_CALENDAR record (figure 6.22).

CREATING AND USING SEARCH RECORDS 147

Licensed to James M White <jwhite@maine.edu>

6.3.3

148

Navigation: File -Open —Record -PAY_CALENDAR

=l PAY_CALENDAR (Record) M= &3
Bttt ettt i D el o]

Field Name | Type |Key |Dir |CwiC |Sich |List |Sys |Audt |

[COMPANY T Lhar [Key [Asc | .| Yes IYes |No | . |

PAYGROUP Char |Key |Asc Yes |Yes |Mo Il

PAY_END_DT Date |Key |Asc Yes |Yes |No

RUN_ID Char |Alt |Asc No |Yes [No

PAY_OFF_CYCLE_CAL |Char No |No (Mo =

AGGR_ID Char No |No (Mo

PAY_BEGIN_DT Date No |No |Me

CHECK_DT Date No |No ([No

PERIOD_WEEKS Mbr Mo |No |Me

PAY_PERIOD Char No |No [No .
PAY_PDS_PER_YEAR |Nbr No |No |No Figure 6.22
ACCRUAL_PCT Nbr No |No |[No = Search record with
< &l search keys

Search records with search keys and database keys

Some search records use search keys as well as database keys that are not defined as
search keys in the search. In the PeopleSoft HRMS application, the record
EMPL_COMP_SRCH is used to look up employee details based on the company for
which they work. All payroll balances and tax data panels use this as the search
record. This search record, in addition to two search keys, also has a database key that
controls the search. This database key is the OPRCLASS field which narrows down
the search based on the department security setup for the operator.

Figure 6.23 illustrates the key definition for EMPL_COMP_SRCH record. The
Application Processor automatically includes certain fields in the search criteria. Two
such fields, the OPRID and the OPRCLASS fields, when included in a search record,
are automatically included in the search.

Navigation: File -Open —Record -EMPL_COMP_SRCH

= EMPL_COMP_SRCH [Record) =10O] x]
[e AR

OPRCLASS
ACCESS_CD

LAST_NAME_SRCH
NID_COUNTRY
NATIONAL_ID_TYPE
NID_DESCRSHORT
NATIONAL_ID

Figure 6.23
Search records with search

keys and database keys

PeopleSoft uses OPRID and OPRCLASS fields to provide application security.
Department security in a PeopleSoft HRMS application is controlled using these two
fields. Security definitions are attached to the OPRCLASS field, while search views
include the tables that store these security definitions. When the Application Processor

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

6.3.4

automatically includes OPRCLASS in the search, security definitions for that particular
OPRCLASS secure the data which the user can access. Each PeopleSoft user, or OPRID,
is attached to an operator class or OPRCLASS.

Since OPRCLASS and OPRID fields are available as system variables during the
panel session, it makes sense to use them automatically in the search. In figure 6.24,
we can see that OPRCLASS does not appear in the input dialog box.

Navigation: Go —Compensate Employees —Maintain Payroll Data U.S. -Use —

Employee Tax Data
Conrection — Employes Tax Data
EwpiD: [s '
S Carce_|
| e |
Mame: —
D Co |Name Use Query [
MNew Qusry !
Figure 6.24
4 e | Search records that use search
keys and database keys

Search records with From and Through search keys

PeopleSoft 7 introduced a new feature that allows From and Through search keys to be
defined in search records. All rows that are greater than or equal to the From value and
lesser than or equal to the Through value are fetched from the search record. For exam-
ple, we can define the MY_PROBLEM_STATUS field from MY_PROBLEM_TRKG
record as a From or Through search key.

The MY_PROBLEM_STATUS field is defined as an alternate search key. Figure 6.25
illustrates the results returned in the list box when a value of 3 is entered in that field.

The Application Processor found an exact match and displayed the application
panel directly without providing a list box. Let’s define the MY_PROBLEM_STATUS
field as a Through search key in MY_PROBLEM_TRKG record (figure 6.26).

Under the Edits tab in Record Field Properties, we can define the
MY_PROBLEM_STATUS field as a Through search field. Figure 6.27 illustrates the
rows retrieved using the same input value of 3.

The Application Processor retrieves all entries from MY_PROBLEM_TRKG
record which have a value less than or equal to 3 in the MY_PROBLEM_STATUS field.
Because MY_PROBLEM_STATUS field is defined as a Through search key, more than
one entry is found to match the entries in the search record. The Application Processor
provides a list box with all matching entries.

CREATING AND USING SEARCH RECORDS 149

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —Problem Tracking —Tracking —Track Problems —Update/Display

Problem Tracking - Tracking - Track Problems | _ O] x|
Fle Edt View Go Favoites Setup Tracking Help

gl @@ x| alas| sle e 2= @lel] Hlelsle]|

My Problem Trkg]

Problem ID: 000003

ProjectID: [00001 & pooicoi R Implementation
Application ID: HR PeopleSoft Human Resources Date/Time Reported:

Status: [3— il In Progress
Pioit: [1 yserip: 00002 | oo Geina
[T Document? Open | Tracker I :]

File Name: |

Prablem: |F‘ayroll Summary Report with Month/YTD totals :]
Resolution: | j
| | |My Problem Trkg |Update/Display 7

Figure 6.25 Search key—exact match

Navigation: File -Open —Record -MY_PROBLEM_TRKG —
HighLight MY_PROBLEM_STATUS — Edit — Record Field Properties

Record Field Propeities [x|
Use |Edis |

Field Mame: My_PROBLEM_STATUS

’Ku_v_v ~ Default Valus
kel Constant [i
™ Duplicate Drder Key of

IV Alemate Search Key Becord Name: | j"
I” Descending Key EieldName: | =]

™ Search Key
—Record Field Help Context Number
IV List Box Item i 5

I From Search Field o < Auto Assion |
' ThoughSearchField |
Audt— | Defaul Pane Contiol

™ Field Add |Sy:lem Default vl
™ Field Change —
™ Figld Delete

™ System Maintained

I Autollpdste
' Figure 6.26
Concel_| Search record with
Through search key
150 CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Update/Display -- Track Problems

| Problem Identification: I

il

Incident Date: [B

Project Identification: [4| Sonch
| Problem Status: |In Progress =]

User ID: I— :]
| Problem Tracker: I_ﬂ Lse Queiy

Hew Query

1

Figure 6.27
Through search key results

6.3.5 Create and define search records

To create and define search records, we must:

e create a record definition for the search record

* define search keys and list box items

¢ build the search record definition in the database as a table or view
* attach search records to panel groups

Let’s create and define a search record, using the Problem Tracking application.
We will add and update incidents and problems using the application. The database
table that is being updated is the MY_PROBLEM_TRKG table. We already created the
MY_PROBLEM_TRKG record prior to this. Let’s look at the search keys for this table
and determine if we can use it as a search record.

Navigation: File 5Open —Record -MY_PROBLEM_TRKG

i MY_PROBLEM_TRKG (Record) _ O] x|

INCIDENT_DT Date |Alt |Asc Ho |NHo |Me

MY_PROJECT_ID Char |Alt |Asc No |No |No

MY_PROBLEM_STATUS |Char (At |Asc Mo |No |MNe

PRIORITY Nbr No |No (No

MY_USER_ID Char |Alt |Asc No |No ([No

MY_PROBLEM_TRACKEF Char [Alt Asc No No Mo

CLOSE_DT Date No |No ([No

MY_DOCUMENT_ATTACI| Char Mo |No |Me

DESCRLONG Long No |No (No .

MY_PROBLEM_RESOLTI| Long No |No |[Ne Figure 6.28

MY_PROBLEM_DTTIM |DtTm No |No ([No Record definition showing

database keys

CREATING AND USING SEARCH RECORDS 151

Licensed to James M White <jwhite@maine.edu>

152

MY_PROBLEM_ID is the only unique key field in MY_PROBLEM_TRKG record.
We define this field as a search key. In addition to defining search fields, a number of
other fields can be used as alternate search keys in this table. You can see the final
search key and list box definition in figure 6.29.

Navigation: File 5Open —Record -MY_PROBLEM_TRKG

= MY_PROBLEM_TRKG (Record)

Field Name |T!)e |Key |Dir |CurC |Srch |List |Sys |Audt |H |
[Char |[Key |Ase | .| Yes |Yes |No | .
INCIDENT_DT Date |Alt |Asc HNo |Yes |Mo
MY_PROJECT_ID Char |Alt |Asc No |Yes [No
MY_PROBLEM_STATUS |Char |Alt |Asc No |Yes [No
PRIORITY Nbr No |No |Ne
MY_USER_ID Char |Alt |Asc No |Yes |No
MY _PROBLEM_TRACKEF| Char |Alt |Asc No |Yes |No
CLOSE_DT Date No |No ([No
MY_DOCUMENT_ATTACI| Char Mo |No |Me
DESCRLONG Long No |No |Neo -
MY_PROBLEM_RESOLT! Long No |No |No Figure 6.29
MY_PROBLEM_DTTIM DtTm No No No Record definition showing
search keys and list box items

Let’s look at how we defined the search keys and the list box items.

Navigation: Highlight Field —File -Edit —Record Field Properties —Use Tab

Record Field Properties

Use | Edis |

Field Name: Wv_PROBLEM_ID

rKeys———————— Defaul Value
W ey Constant [
™ Duplicate Qrder Key

or
I™ Alemate Search Key BecordName: [|
I~ Descending Key Field Mame: | fd I

¥ Search Key
r Record Field Help Context Number
IV List Bos ltem = e Conteg)

I™ Fiom Search Field o <Aulo Assign |

™ Though Search Field

pudl—— | Defaud Panel Controt
™ Field Add W
™ Field Change
™ Figld Delete

™ System Maintained
I Aol pdate

Concal] Figure 6.30

Define Record Field properties

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

All the fields can be highlighted one at a time, and the properties can be defined
under the Use tab.

Our next step is to build the search record in the database. If the search record
is an SQL table and the table already has data, we do not want to recreate the table.
If the search record definition is an SQL view, however, then we can go ahead and rec-
reate the SQL view any time.

In this next step, we attach the search record to the panel group definition using
the panel group MY_PROBLEM_TRKG. After opening the panel group, we define the
search record for that panel group under the Use tab.

Navigation: File -Open —Panel Group -MY_PROBLEM_TRKG —File —
Object Properties

Genedl Use |
Access- Actions -
v Add
¥ Update/Display
™ Update/Display Al
- ™ Comection
! 2 | ™ DataEnty
Detad panet L
|MY_PROBLEM_TRKG =
r 3-Tier Execution Location
Panel Gioup Buld—————— ~Panel Group Save
+ Chent @ Client
€ Application server Apphcation server
1 Default [application server] € Defauk [apphcation server]

T | Figure 6.31

Panel Group Properties—Use tab

We attach two search records to the panel group definition. Add Search Record
is used for Add action and the regular search record is used for Update/Display,
Update/Display All, and Correction. If the Add search record is not specified,
the regular search record is used for Add action as well.

When the panel group is attached to a menu item, the search record can be over-
ridden at that time using the Menu Item Properties screen to accomplish this task. Fig-
ure 6.32 illustrates how we can override search records defined in panel groups. By
turning on the Override checkbox, we can define the override search record on the
drop-down box located to the right of the checkbox.

CREATING AND USING SEARCH RECORDS 153

Licensed to James M White <jwhite@maine.edu>

6.4

154

Navigation: Edit 5Menu Item Properties (PROBLEM_TRACKING menu is open)

Menu ltem Properties

 Menu ltem

Mame: IPROBLEM TRACKING

Label:]&Track Problems

~ Type
& Panel Group
" PeopleCode
" Separator
Panel Group
Name: MY_PROBLEM_TRKG

Market: GBL Select.,,

Search Rec: MY_PROBLEM_TRKG
[T Ovenide: I L]

[ox] Cancel | Figure 6.32

Menu Item Properties

NOTE Search keys are database keys as well. Alternate search keys are defined as
non-unique database keys.

NOTE Values input in search fields are matched with entries in the search record.
When only one entry is found matching the input, the Application Proces-
sor displays the application panel without providing a list box. When the
number of entries found matching the input is more than one, then a list
box is provided with the matching entries.

WORKING wiTH DERIVED/WORK RECORDS

Derived/Work records are used as temporary storage records during Application
Processing. Derived records can be used for a number of other purposes such as:

* counters and totals

* push buttons and command fields
* display messages

* temporary holding fields

to define dynamic prompt records

The most common uses of Derived/Work records, however, are as command
fields, counter fields, and total fields. Derived records are also called work records. For
the purpose of this section, we will refer to them as derived records.

Derived records are record definitions which are relevant only to the online appli-
cation. They do not exist in the database as an object. Only records defined as SQL
tables and views are stored in the database. Derived records are populated only during

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

the panel session. Once the panel is cancelled, data stored in the derived record is lost.
Derived records may be shared across application panels. Because they are not stored
in the database, they can also be used across multiple panel sessions at the same time.
Only the field placed on the application panel remains in memory. The other fields
from the derived record are not available in the panel buffer. Let’s look at a few exam-
ples of derived records in use.

6.4.1 Using derived records as counters and totals
Fields in derived records can be used as counters and totals. The fields can either be
displayed on the panel or hidden and used only for calculations. PeopleCode events
can be attached to these derived fields just like any other record field. We have a panel
that shows totals by status in our Problem Tracking application. Figure 6.33 illus-
trates an application panel from our Problem Tracking application that makes use of
derived records.
Navigation: Go —Problem Tracking —Tracking —Problems—Totals by Status
Problem Tracking - Tracking - Problems - Totals by Status !Elﬂ
File Edt View Go Favontes Setup Tracking Help
alel@x| alnla| e o= 8] @le]=| +lelsle ||
Problerns - Totals by Status |
Problems - Totals By Status
Problem Status Total Count |
1; Initiated 1 il
4 User Testing 2
5 Resolved 1
[| |Problems - Totals by Status |Update/Display 4
Figure 6.33 Application panel using a derived record
WORKING WITH DERIVED/WORK RECORDS 155

Licensed to James M White <jwhite@maine.edu>

156

NOTE Fields from derived records can be used across multiple panels. Only the
fields that are placed in the application panel are available in the panel buff-
er. Other fields from the derived record are not available for access. One in-
stance of a derived field in a panel session does not interfere with another
instance of the same field in another panel session.

The panel in figure 6.33 shows the total number of problems by status code. We
can use a derived field to compute the total number of problems/incidents tracked
using our application by following these steps:

* add a derived field that can hold the grand total to MY_DERIVED record
* place the derived field in MY_TRKG_STATUS panel
* create a PeopleCode event to compute the grand total

These three simple steps will give us the total number of problems/incidents tracked
in the system. In PeopleSoft, already defined fields can be reused. We can add any field
that accommodates totals to our derived record. We do not have to necessarily create a
new field in the system. Let’s see how we can find such a field in the system. First, we
open the MY_DERIVED record definition. We then retrieve a list of fields (defined in
the system) that start with the letters TOT. Figure 6.34 illustrates this process.

We can use any field already available in the system. We choose TOTAL_COUNT
field for this purpose. In figure 6.35, we can see the TOTAL_COUNT field included in
MY _DERIVED record definition.

In our example, we use a record defined as an SQL view to compute the total
number of problems by problem status. Let’s take a look at the definition for the SQL
view used in our example (figure 6.36).

Navigation: Insert/Field (MY_DERIVED Record Definition Open)

Inzert Field E3
— =
— Ealechion Cilada .
Close |
Hame: Iﬁ
Long Marme: [Project: |AII Pioects EI —INey_rSeardn
Type: IAI Fields 'I
DObyects matching selection critena:
Name | Type | Long Name: Al
TOTAL_CCS Number Total Competencies
TOTAL_CHARGE Signed Mumber Total Charge
TOTAL_CHARGE_SUM Signed Number Total Charges = |
TOTAL_COMPENSATION Character Total Compensation
TOTAL_COST MNumber Total Computed Cost
TOTAL_COUNT Humbet Total Count
TOTAL_COVRG_RATE HNumber Total Coverage Rate
TOTAL_CSB_DEDUCT Humber Total CSB Deduction
TOTAL_CSB_GOAL Humber Total CSB Goal
TOTAL_CSB_WALUE Murrber Total CSB Value _lﬂ
4 | ® .
Figure 6.34
108 obyject(s) found - - .
fro Fields defined in the system

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open —Record -MY_DERIVED

7zl MY_DERIVED [Record) I[=] B3
Field Name |Type|Len |Format |H | Shoit Name| Long Name
MY_DOCUMENT Char 1 Upper Document E| Document Butt

MY _USER_ID Char | b Upper User ID User ID
U TA b 3

Figure 6.35
Adding a derived field

Navigation: File 5Open -»MY_TRKG_STATUS

Record Properties [%]
Genetdi Use Type]
-Record Type SOL View Select Statement:
select _:J
rmy_problem_status,
count(*]
from pz_my_problem_trkg
group by my_problem_status
" DerivedwWork
" SubRecord
" Query View
Mon-Standard SOL
Table Name:

[ok] cancel | Figure 6.36

SaL view definition

MY_TRKG_STATUS has a TOTAL_COUNT field that contains totals by problem
status. Our goal is to produce a grand total of all problems/incidents tracked in the system.

In order to compute the grand total, the individual totals from the scroll bar have to
be added together. We can populate the computed grand total into the TOTAL_COUNT
field from MY_DERIVED record. First we need to place the field from the derived record
on our panel.

TIP The same field definition can be used in multiple record definitions. A field from
different record definitions can be used in the same application panel as well.

WORKING WITH DERIVED/WORK RECORDS 157

Licensed to James M White <jwhite@maine.edu>

Navigation: File 5Open —Panel > MY_TRKG_STATUS

s MY_TRKG_STATUS.ENG [Panel)

In figure 6.37, we see an additional field in the bottom of the panel. This is the
physical location of the TOTAL_COUNT field from MY_DERIVED record where the
field is displayed when the panel is brought up.

o

MY_DERIVED record is placed above the scroll bar.)

Figure 6.37
Panel definition with derived
record field

Because we are using this field as the grand total, we need only one instance of
this field. If we place it below the scroll bar in the panel field layout, we will have many
instances of this field. (Figure 6.38 illustrates how the TOTAL_COUNT field from

Now let’s create a RowInit PeopleCode event on MY_TRKG_STATUS record
to populate the grand total field. As rows are loaded on the scroll bar, we can add the
totals from each row in the scroll bar to the TOTAL_COUNT field in MY _DERIVED
record. We access level zero fields from inside the scroll bar by referring to them with

Navigation: Layout =Order (MY_TRKG_STATUS panel is open)

Order Panel [%]
NumiLvl|Label Type Field |Record
L dErTopotlist®=> |l
1| O |Problems - Totals By Stah Test
2| 0 |Frame Frame
3 0 |Grand Total Edit Box TOTAL_COUNT MY_DERIVED
4 1 |Status Scrol Bar
5 1 |Problem Status Edit Box MY_PROBLEM_STATUS [MY_TRKG_STATUS
B 1 |Status Edit Box HLATLONGNAME HLATTABLE
7] 1 |Total Count Edit Box TOTAL_COUNT MY_TRKG_STATUS
***End of List "= *
Figure 6.38
Panel field layout for
OK | Cancel| ' Select | bove | Unsclect| Detour | MY_TRKG_STATUS

panel

158

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

the proper record name prefix. (Figure 6.39 illustrates the PeopleCode program that
computes the grand total.)

Navigation: Highlight TOTAL_COUNT —View —View PeopleCode
(MY_TRKG_SATUS record is open)

M MY_TRKG_STATUS (Record PeopleCode)
|ToTAL_COUNT x| [Rowinit ~|
hYHDERIVED‘TDTAL_CDU'l\TI' = MY_DERIVED.TOTAL_COUNT + TOTAL_COUNT:

Figure 6.39
PeopleCode which computes
grand total

We refer to the field in MY _DERIVED record as MY_DERIVED.TOTAL_COUNT.
Notice that the TOTAL_COUNT field from MY_TRKG_STATUS record appears without
any record prefix. PeopleCode can refer to all fields from one record without using any record
prefix. (Figure 6.40 illustrates the application panel with the grand total field.)

Navigation: Go —Problem Tracking —Tracking —Problems—Totals By Status

Problem Tracking - Tracking - Problems - Totals by Status _ O] x|
Fle Edt View Go Favontes Setup Tracking Help
ale(@x| olalE| &8 2o 28] @lcl=] *|v|a2]|
Problems - Totals by Stalus |
Problems - Totals By Status
| Problem Status Total Count
1 Iitiated 1 L
4 Uset Testing 2
b Resolved 1
Grand Total: 4
[[[Problems - Totals by Status | Update/Display o
Figure 6.40 Application panel using derived record
WORKING WITH DERIVED/WORK RECORDS 159

Licensed to James M White <jwhite@maine.edu>

6.4.2

6.5

160

Using derived records to display messages

In our next example, we see how a derived field is used as a message text field. The
JOB_DATALI panel in PeopleSofts HRMS application contains the JOB_PANEL_MSG
field from the DERIVED_HR record. This field helps the user determine whether the row

being displayed is a current, a future, or a historical row. In figure 6.41, this display mes-
sage appears in the application panel.

Navigation: Go —Administer Workforce U.S. -Use —Job Data —Correction

Administer Workforce [U.S5.] - Use - Job Data H[=] &
File Edt View Go Favoites Use Selup Process Inquire Bepot Help

ale(@x| Bl el cl=| S8 @] +lelele |

Work Location | Job Information | Payrol| Compensation | Job E atnings Distibution | Benefit Program Participation | Empl 4 | » |

[”ScMnachel.Simon ID: 800 [T TL Contractor Empl Rcdi: U|
Employee Status: Aclive ™ Position Management Record il
Effective Date: +| Effective Sequence: [0 e UsD
Action / Reason: [DataChg ~| [RED | Redesignation Action Dt 03/16/133

Entiy Date
Position Number. [00000001 | [09/0171996 President & CEQ

" Position Data Overide

Regulatory Hegian:lUSA :] United States

Company: |l:l:B ﬂ Continental CommercefBusiness

Business Unit: [USADM | Uited States Adrinistiation

Department: [10100 +| [09/0171996 " Oifice of the President

Location: |UU! ﬂ Corp HO ;I
[[|Work Location | Corection 4

Figure 6.41 Job Data panel using a derived field as a message field

Notice the message “Current” to the right of the effective sequence field. This
message is populated into the derived field using a PeopleCode event. The Application
Processor executes a RowInit PeopleCode event as rows are loaded into the scroll bar.

The PeopleCode program performs logic to determine what message should be dis-
played in the derived field.

In the next section, we will learn how to use push buttons in PeopleSoft. In the
process of doing so, we will also learn another application that uses derived records.

USING PUSH BUTTONS

Push buttons are panel fields which can be activated to execute events. Push buttons
are also called command buttons. Push buttons can be defined as command buttons,
secondary panels or processes. When push buttons are defined as commands, they

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

execute a FieldChange PeopleCode event attached to the panel field. When they
are defined as secondary panels, they activate a secondary panel. When they are
defined as a process, they execute a batch process.

Let us look at our Problem Tracking application again. In MY_PROBLEM_TRKG
panel, we added a panel field called MY_DOCUMENT from MY_DERIVED record. This
derived field can be used to display documents associated with the problem being tracked.

In our example, we use Microsoft Word as the document type to document prob-
lems. We can add a field to the MY_PROBLEM_TRKG record which holds the full
path and filename for the Microsoft Word document. We use the field, FILENAME,
which already exists in the system (figure 6.42).

Navigation: Go —File -Open —Record ->MY_PROBLEM_TRKG

=i MY_PROBLEM_TRKG (Record)

Field Name | Type|Len |Format |H | Short Name| Long Name
MY_PROBLEM_ID Char 6 Upper Problem ID | Problem lde
INCIDENT_DT Date | 10 Incdnt Dt |Incident Da
MY_PROJECT_ID Char Upper Project ID | Project lde
MY_PROBLEM_STATUS |Char Upper Problem Stz| Problem St:

PRIORITY Nbr
MY_USER_ID Char Upper User ID User ID

b
1
3 Priority Priority
— _ 6
MY_PROBLEM_TRACKEF Char b Upper Problem Tre| Problem Tr:
0
1
0
0

-

CLOSE_DT Date Close Date |Date Close:
MY_DOCUMENT_ATTACI Char Upper Document? | Document £

DESCRLONG Long Descr Description

MY_PROBLEM_RESOLT! Long Prob.Resolh| Problem Re
MY PROBLEM DTTIM DtTm| 26 |Scnds Date/Time || Date/Time
Figure 6.42
Adding a field to a record
definition

Figure 6.43 illustrates how the push button is added into the
MY_PROBLEM_TRKG panel.

First, we define panel field properties for the push button. Two tabs exist where
we define the properties for a push button.

Under the Record tab, we define whether the push button is a command, process
or, secondary panel. In this example, the push button is a command button. We specify
MY_DERIVED as the record and MY_DOCUMENT as the field for the push button.

Under the Label tab, we specify a label for the push button. We also define the
font for the label under this tab. Figure 6.44 and 6.45 illustrates the Panel Field Prop-
erties screen for the push button.

After saving the panel definition we are ready to take a look at the push button
as it appears in the application panel (figure 6.46).

USING PUSH BUTTONS 161

Licensed to James M White <jwhite@maine.edu>

Navigation: Insert »Push Button (MY_PROBLEM_TRKG panel is open)

Figure 6.43 Inserting a push button in an application panel

Navigation: Edit —Panel Field Properties (MY_DOCUMENT field is highlighted)

Record | Label |
- Pushbulton Type
o Command " Process (Secondary Panel
r- Command Record/Secondary Panel
Becord Name: [MY_DERIVED |
Eield Name: [MY_DOCUMENT =
Pk |
~Process
Iype: | =
Neme: | #

Panel Field Properties []
Record Label |
~ Type

C Image Text ¢ AFTShot ¢ FFTLong

- Label Text
e« [
Stle: |Bold - Sans Seii |
~Size Image
:: fﬁlmma:e Hrowse...
€ Standad Tex Eeste =
&' Custom Clear

[ok | coce |

OK Cancel

|

Figure 6.44 Push button properties—
Record tab

Figure 6.45 Push button properties—
Label tab

162 CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —Problem Tracking —Tracking —Track Problems

Problem Tracking - Tracking - Track Problems

Fle Edt View Go Favoites Setup Tracking Help
g|gl@x| alaE sl Ble| =] @el=| Hlelall]|
My Problem Tr Cancell

Problem ID: 000001
Incident Date: I ﬂ Close Date: I_ﬂ
Project ID: [0000T #| pigiesiit R Implementation
Application ID: HR PeopleSoft Human Resources Date/Time Reported:
Status: [] userTesting 10/09/1399 11:54:034M
Priority: |_1 User ID: !PS— ﬂ
" Document? Open | Tracker: l_ ﬂ
File Name: Ic:\plakash\p:bnnk\l ocll.doc
Problom: |Insta| Ciystal Reports Interface d
Resolution: | j

| | |My Problem Tikg |Update/Display 4

Figure 6.46 Push button field in an application panel

As soon as the user activates the push button, the PeopleCode program attached
to MY_DOCUMENT field’s FieldChange PeopleCode event is executed. This
PeopleCode event executes Microsoft Word along with the full path and filename.
Figure 6.47 illustrates the PeopleCode event which accomplishes this task.

Navigation: File 5Open -MY_DERIVED —View —View PeopleCode Display

' MY_DERIVED [Record PeopleCode)

[Mv_DOCUMENT =] [FieldChange =]

If ALl (MY_PROBLEM_TRKG.FILENAME) Then
SCOMMAND _LINE = "C:\Program Files\Microsoft
Office\Office\WINWORD.EXE " | MY_PROBLEM TREG.FILENAME:
WinExec («COMMAND _LINE, 3, True);
End-IE;
Figure 6.47
PeopleCode event attached to
a push button
USING PUSH BUTTONS 163

Licensed to James M White <jwhite@maine.edu>

164

This PeopleCode event uses the WinExec function. This is a synchronous oper-
ation. The Application Processor will wait for the user to view and close the document
before it continues to process other events.

NOTE When push buttons are used as command buttons, they are always associ-
ated with a FieldChange PeopleCode event. When push buttons are
used as secondary panels, it is important to note that the actual secondary
panel has to be placed after the push button field in the panel field layout.

1 Prompt records are used to provide a list of valid values for a panel field.

2 Prompt processing is performed with the help of database and search keys
on the prompt record.

3 Translate values also provide a list of valid values for character fields one to
four characters in length. All translate values in the system are stored in one
record called the XLATTABLE.

4 Search records are used to control and limit the data displayed on a user
panel.

5 Search fields and alternate search fields on a search record are displayed in a
dialog box during search processing.

6 When the Application Processor finds an exact match for values entered in
search fields, it displays the panel without providing a list box. When the
number of rows that match the values entered in search fields is more than
one, the Application Processor provides a list box with matching entries.

7 Derived/Work records are used in applications which require Total fields,
Push Button fields, message fields, dynamic prompt records, etc.

8 Push Buttons are used as commands, processes, or secondary panels.

CHAPTER 6 ENHANCING YOUR APPLICATION

Licensed to James M White <jwhite@maine.edu>

’III"S\-\,'
W\NCHAPTER 7

Advanced panel design

features

7.1
7.2
7.3

Working with scroll bars 166 7.4 Designing inquiry panels 184
Working with effective dates 176 7.5 Using a grid on a panel 189
Working with subpanels and

secondary panels 179

This chapter covers some advanced features used when building a panel in
PeopleSoft. Panels serve as user interfaces to the application. A number of added fea-
tures in PeopleSoft 7 help the developer build powerful application panels that can
perform a variety of tasks.

165

Licensed to James M White <jwhite@maine.edu>

721

711

166

WORKING WITH SCROLL BARS

It is safe to say that over half the panels in a PeopleSoft application are built with
scroll bars. In some cases, scroll bars are used to display multiple rows of data from
the same Record definition. This is the simplest way to describe it. Scroll bars are also
used to display records that have a Parent/Child relationship and to maintain histori-
cal data using effective dates.

Scroll bars have counts that determine the number of rows displayed on the scroll
and define the panel buffer information. For example, if one scroll bar is on a panel,
then the level above the scroll bar is referred to as level 0 while the scroll itself is
referred to as level 1. Several “level 17 scroll bars can exist on the same panel, most
probably displaying data from multiple record definitions. Each one of these “level 17
scroll bars can have scroll bars below them.

Scroll bars from the same record definition can span multiple panels (also known
as panel groups). Each of these panels contains a group of fields from the same Record
definition. Fields are grouped by functions within these panels. JOB DATA is an exam-
ple of a group of panels that display fields from the same record definition across mul-
tiple panels on the same scroll level.

Scroll bars—usually hidden scrolls built from work records—can also be used as
work scrolls. Sometimes work scrolls are used to update an SQL table. The scroll bar
contains fields from an SQL view and, during save time, those fields update the under-
lying SQL table. The POSITION_DATA group of panels in PeopleSoft HRMS per-
forms updates on incumbents from changes made to positions.

Scroll bars can be used in a panel to:

* display multiple rows of data from one record definition uniquely identified by
one or more key fields

* display effective-dated rows

* display records with parent/child relationships

* act as work scrolls

Multiple rows on scroll bars

By simply building a panel with a single scroll bar and assembling the required fields
from the record definition we can use scroll bars to display multiple rows of data from
the same record definition. We have an example in our Problem Tracking application
built in chapter 6. This panel shows the total number of problems by problem status.

Figure 7.1 shows a panel that displays the problem status and the total number
of problems. The panel has a related display field that shows the translate description
of the problem status field. The Grand Total field is placed on level zero before the
scroll bar in the order of fields because only one occurrence of the grand total field can
exist on the panel. Inside the scroll bar, however, we have multiple occurrences of the
problem status field showing on the scroll bar.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: File 5Open —Panel -MY_TRKG_STATUS

MY_TRKG_STATUS.ENG (Panel)

| |

Figure 7.1 Panel displaying multiple rows on the scroll bar

NOTE On a scroll bar, only fields from one record definition can exist unless they
are related display or derived fields. This limitation forces us to create mul-
tiple scroll bars or build a group of panels.

Given that a scroll bar can contain fields from only one record definition, we
assemble record definitions, which are child records, on a lower level scroll. The
description field in figure 7.1 is a related display field. All related display fields have
an associated control display field. In this example, the problem status field controls
the value displayed as the description. Let’s look at the panel field layout to better
understand what we’ve just described.

Looking at the panel fields layout (figure 7.2) we notice three things described in
the previous section.

¢ All the fields below the scroll bar are either from the MY_TRKG_STATUS record
definition or they are related display fields such as XLATLONGNAME from the
XLATTABLE.

¢ The MY_PROBLEM_STATUS field from the MY_TRKG_STATUS record defini-
tion is placed before the XLATLONGNAME field from XLATTABLE. This is
because MY_PROBLEM_STATUS field is the Display Control field, and
XLATLONGNAME is the Related Display field.

* The TOTAL_COUNT field from the MY_DERIVED record definition is placed
before the scroll bar. This will help us show one grand total of all the problems/
incidents in our application. Of course, PeopleCode has to be used to show the
grand total field in this work field as illustrated in figure 6.39.

WORKING WITH SCROLL BARS 167

Licensed to James M White <jwhite@maine.edu>

71.2

168

Navigation: Layout — Order (MY_TRKG_STATUS panel is open)

MNurn| Lvl| Label Type Field Record
- T T op o List ¥~ ”)
1| 0 [Problems - Totals By Stab| Text
2l 0 |Frame Frame
3 0 [Grand Total Edit Box TOTAL_COUNT MY_DERIVED
41 |Status Scroll Bar
5 1 [Problem Status Edit Box MY_PROBLEM_STATUS |MY_TRKG_STATUS
B 1 [Status Edit Box HLATLONGNAME HLATTABLE
7| 1 [Total Count Edit Box TOTAL_COUNT MY_TRKG_STATUS
*=*End of List ** =

| 0K I Eancel] §eled| MG'-"’-'l Qns&'ectl Default

Figure 7.2 Panel fields layout

NOTE A scroll bar has an occurs level and an occurs count. Occurs level is the scroll
level number. Occurs count is the number of rows that can be displayed
when the panel is brought up. Fields are placed after the scroll bar in the
panel field layout so that multiple occurrences of data can be displayed on
the scroll bar. Any field that should be displayed only once on the panel
must be placed before or above the scroll bar in the panel field layout.

Parent and child records on scrolls

In our Problem Tracking application, we do not have a parent and child record
assembled on a panel with a scroll bar. Let’s look instead at the PeopleSoft HRMS
application where we have examples we can review to learn more about Parent and
Child records on a scroll. One good example is the deduction table, which contains
three different Child records. The deduction table is populated using a group of pan-
els. Let us look at the key structure of the DEDUCTION_TBL (figure 7.3) and its
child record, the DEDUCTION_CLASS table (figure 7.4).

DEDUCTION_TBL has three key fields. If we look at the DEDUCTION_CLASS
table, we notice that it has two more keys than the DEDUCTION_TBL.

From figure 7.4 we can deduce that, for a row of data in the DEDUCTION_TBL,
we can possibly have multiple rows of data in the DEDUCTION_CLASS table. Of
course, we assume that these record definitions are going to be viewed and updated using
the same panel group. These tables are actually updated using a group of five panels in
the PeopleSoft HRMS system.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: File 5Open —Record »DEDUCTION_TBL

r DEDUCTION_TBL (Record) - [O] =]

Field Name | Type |Key |Dir_|CwiC |Srch |List |Sys | Audt

PLAN_TYPE |Char | Key |Asc | |Yes |Yes |No

DEDCD Char |Key |Asc Yes |Yes |No

EFFDT Date (Key |Desc No (No |No

DESCR Char |Alt |Asc Ne |Yes |No

DESCASHORT Char No |Ne |No

DED_PRIORITY MNbr No |Ne |No

BOND_PROCESS Char No |Ne |No

GARN_PROCESS Char No |Ne |No

MAX_PAYBACK Char No |Ne |No

MAX_ARREARS_PAYBE |Nbr Ho |No |MNo
MAX_ARREARS_FACTOF|Nbt No |Ne [Ne Figure 7.3
4 »

L Key structure of a parent record

Navigation: File -Open —Record -DEDUCTION_CLASS

=t DEDUCTION_CLASS (Record) - 10] x|

Field Name | Type |Key |Dir _|CurC |Srch |List |Sys |Au

PLAN TYPE . | |Char |Key [Asc | IYes [Yes [No | ‘a

DEDCD Char |Key |Asc Yes |Yes |No —

EFFDT Date |Key |Desc Mo |No |No

DED_CLASS Char |Key |Asc Yes |Yes |Mo

DED_SLSTX_CLASS Char |Key |Asc Yes |Yes |Mo 1
TAX_GRS_COMPNT Char No |Mo |Neo

FICA_EFFECT Char No |Mo |Neo

FUT_EFFECT Char No |Mo |MNeo

GTL_DPL_EFFECT Char No |Mo |MNeo

WITHHOLD_FwWT Char No |Mo |Neo

PARTIAL_DED_ALLOW |Char No |Mo |Neo | Figure 7.4
il 1 . Key sctructure of a child record

Because DEDUCTION_CLASS is a child record to DEDUCTION_TBL, they can be
placed on panels which contain scroll bars. There can be multiple rows of data in the
DEDUCTION_CLASS table for a unique combination of PLAN_TYPE, DEDCD, and
EFFDT fields from the DEDUCTION_TBL. The first three keys in both the tables have
the same value.

Let's look at the panels that contain these record definitions (figure 7.5).
DEDUCTION_TABLE2 panel contains fields from DEDUCTION_TBL and
DEDUCTION_CLASS record definitions. DEDUCTION_TBL is on the level one scroll
bar, and DEDUCTION_CLASS is on the level two scroll bar.

For a particular deduction code with an effective date, multiple deduction classes can
be entered using the level two scroll bar. If there are multiple records on the level one scroll
bar with different effective dates, then multiple rows in DEDUCTION_CLASS table are
associated with every effective-dated row in DEDUCTION_TBL.

WORKING WITH SCROLL BARS 169

Licensed to James M White <jwhite@maine.edu>

170

Navigation: File -Open —Panel 5DEDUCTION_TABLE2

8§z DEDUCTION_TABLEZ2.ENG (Panel)

" Goods and Services Tax

 Provincial Sales Tax Insurance

Figure 7.5 Panel with parent and child records on scrolls

Look at the panel layout and check the order in which the fields were laid out
when the panel was built (figure 7.6).

Num|Lvl|Label Type Field Record
TopofList A
1| 0 [Frame Frame —
2| 0 |Frame Frame
3 0 |Plan Type Edit Box PLAN_TYPE DEDUCTION_TBL
4| 0 |Plan Type Text Edit Box HKLATLONGNAME HLATTABLE
5 0 |Deduction Code Edit Box DEDCD DEDUCTION_TBEL
6| 1 |Pnmary Scroll Bar Scroll Bar
7|1 1 |Deduction Description |Edit Box DESCR DEDUCTION_TBL
8 1 |Effective Date Edit Box EFFDT DEDUCTION_TBL
9 2 [Secondary Scroll Bar Scroll Bar
10 2 | Deduction Classification |Group Box
11| 2 |Sales Tax Group Box SALES_TAX_LBL CAN_LBL_WRK —
12] 2 |After-Tax Radio Button DED_CLASS DEDUCTIOM_CLASS
13 2 |Before-Tax Fadio Button DED_CLASS DEDULCTION_CLASS
14) 2 |Nontaxable Benefit Fadio Button DED_CLASS DEDUCTION_CLASS
15(2 |Nontax Btax Benefit Radio Button DED_CLASS DEDUCTION_CLASS
16 2 |Taxable Benefit Fadio Button DED_CLASS DEDUCTION_CLASS
171 2 10C T axable Benefit Fadio Button DED CLASS DEDUCTION CLASS LI -
Figure 7.6
oK I Cancel | Select | Move | gme'e.:zl Default | Panel layout with par-
ent and child records

Fields from the DEDUCTION_TBL record are placed inside the level one scroll bar,
and fields from the DEDUCTION_CLASS record are placed inside the level two scroll bar.
The key fields—PLAN_TYPE and DEDCD—are seen only once in this panel and belong
to level 0. Level 0 fields are usually populated from the search dialog box. The key fields
automatically propagate from level 0 to other scroll levels during save time. Using the level
one scroll bar, we can easily enter multiple rows into DEDUCTION_TBL for the same
PLAN_TYPE and DEDCD fields, but for different effective dates. Likewise, using the level

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

two scroll bar, we can enter multiple rows into DEDUCTION_CLASS for a particular
PLAN_TYPE, DEDCD, and EFFDT combination.

NOTE The level above the level one scroll bar is called level zero. Any field that has
a single occurrence is placed on this level. Usually fields from search/input
dialog boxes are placed on level zero. The search key fields are placed once
on level zero, and the values in these fields automatically propagate to child
records in other scroll levels satisfying the parent/child relationship.

71.3 Scroll bars used as work scrolls

Scroll bars can be used as work scrolls in PeopleSoft for two main purposes: to load
multiple rows of data from application tables for access and reference; and to update
one or more rows of data from the work scroll into database tables and views. Work
scrolls are usually hidden scroll bars or placed in a hidden panel within a panel group.
In PeopleSoft HRMS, one example of a work scroll resides in the JOB DATA
group of panels. Let’s look at the JOB DATA panel group definition to see how the
whole panel containing work scrolls is hidden.
The panel group in figure 7.7 in fact has two hidden panels, both containing
work scrolls. For our purposes, we will look at the JOB_DATA1_WRK panel which
contains multiple work scrolls.

Navigation: File -Open —Panel Group —JOB_DATA

Panel Name tem Name Hidden | Mem Label Folder Tab Label
1 [JOB_DATAY JOB_DATAY [~ &work Location
2 |JOB_DATA_JOBCO!JOB_DATA_JOBCODE | [‘&Jobinformation Job Information
s (e BAnE e B R
4 |JoB_DATA: JOB_DATA_3 T sCompensstion Compensation
(5 |J0B_DATA_ERNDIS JOB_EARNINGS_DISTRI. ['Job Earnings &Distr
6 [JOB_DATA_BENPR BENEFIT PROGRAM P - [&Benefit Program P
7 | T 8Employment Data |
5| ¥ dobDatal Wk Figure 7.7
9 | P setyTeloeiwek [Panel groups with

hidden panels

TIP You can place work scrolls in hidden panels within a panel group. Alterna-
tively, you can make the work scrolls themselves invisible.

Look at the number of scroll bars this panel contains (figure 7.8). This panel
accesses more record definitions than all the other panels in this panel group com-
bined. In PeopleSoft HRMS, when an employee is hired, a number of related tables
have to be populated during save time. These work scrolls help perform that task.

WORKING WITH SCROLL BARS 171

Licensed to James M White <jwhite@maine.edu>

172

Navigation: File 5Open —Panel -JOB_DATA1_WRK

§5J0B_DATA1_WRK.ENG (Panel)

NNNNNNNNN

Figure 7.8 Hidden panel with work scrolls

TIP When a field from a record definition is placed on a scroll bar, all the other
fields from that record definition are also available in the panel buffer. This
is true for record definitions that are SQL tables and view. This means any
field from that record definition can be accessed directly using PeopleCode.
This does not apply to derived records.

The work scrolls on the JOB_DATA1_WRK panel contain only one field from each
record that they update. Because all fields from a record in a work scroll are available
in the panel buffer, the Application Processor is able to update all of them. The field
labeled “Maximum Age” in figure 7.8 belongs to the record CAN_TAX_TBL, which is
placed on scroll level number one. Let’s look at the properties for this scroll bar.

Notice in figure 7.9 that this scroll bar is defined as No Auto Select. This means
data are populated into the scroll using a PeopleCode event, not the Application
Processor. Based on an action, a PeopleCode event populates data into
CAN_TAX_TBL scroll bar. When the panel is saved, this data are automatically saved
into the database table.

Now let’s look at the field from figure 7.8 labeled “State” (in the center of the
panel). This field is from the TAX_LOCATION2 record definition and is also in scroll
level one. Let us take a look at the properties of the scroll bar which contains this field.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: Edit —Panel Field Properties (JOB_DATA1_WRK Panel is open)

Panel Field Properties

Label Use |
r~ Scroll Attribute:
Occurs Level ll]_
Occurs Count: |1_
— Field Use Options
I™ Inyisible ¥ Default Width

¥ MoAuto Select ™ Mo Auto Update
I MoRowlnset [MoRow Delete

r— Popup Menu
I El

rField Help Context Number:

|D— <AgtoAssign|
oK | Cancel | Figure 7.9

Scroll bar properties

TIP Use the No Auto Select feature under Scroll Bar properties to disable the
Application Processor from populating data into scrolls automatically.
Similarly, use the No Auto Update feature to disable the Application Proc-
essor from saving data in scrolls to the database.

In figure 7.10, the scroll bar is set for auto select. As soon as the TAX_LOCATION_CD
is filled up with a value on JOB_DATALI panel, this scroll will be populated in the panel
buffer. Also, for every effective-dated row in the JOB record, corresponding values will be
built into this scroll bar.

Let us take a look at the definition for the TAX_LOCATION2 record. In
figure 7.11 we see that TAX_LOCATION_CD field is a search key on TAX_
LOCATION2. As soon as TAX_LOCATION_CD field is available in the panel buffer
the Application Processor automatically selects data into the work scroll. Prompt
records follow the same concept, using search key values to produce a prompt list.

NOTE When the No Auto Select option is turned off, scroll bars are set for auto
select. If a record in such a scroll bar has key fields, the Application Proces-
sor populates the fields from the record as soon as values for these key fields
are available in the panel buffer. The key fields must be either in the same
scroll level or in higher level scrolls.

WORKING WITH SCROLL BARS 173

Licensed to James M White <jwhite@maine.edu>

Navigation: Edit —Panel Field Properties JOB_DATA1_WRK Panel is open)

Panel Field Properties

Label Use |
— Scroll Attribute:
Ocecurs Level m—
Occurs Count: |1_
r— Field Use Options
™ Inyisible ™ Default Width

[~ MoAutoSelect T Mo Auto Update
[T MoRowlnset [~ Mo FRow Delste

r— Popup Menu
I |

r— Field Help Context Mumber:

|U < Auto Assign I
[0k | coce I Figure 7.10

Scroll bar properties

Navigation: File -Open —Record —-TAX_LOCATION2

7z TAX_LOCATION2 (Record) =10]]
Field Name T’EIEPJ |Dir | CwiC | Srch | List Sys Audt |H |D
TAX LOCATION CD Char [Key [Asc | |Yes |Yes [No | o i
STATE Char |Key |Asc Mo |No |No
LOCALITY Char |Key |Asc Ho |No |No
LOCALITY_LINK Char No |No |No

Figure 7.11
Key structure of TAX_LOCATION2

Now let’s look at the panel field layout for the JOB_DATA1_WRK panel
(figure 7.12).

All the work scrolls in this panel (figure 7.12) are level one scroll bars. Some are set
for No Auto Select and are populated by a PeopleCode event. For most work scrolls in
the panel, No Auto Update option is turned off. This enables the Application Processor
to save data from the scroll buffer to the underlying database table during save time.

PeopleCode functions that update scrolls are InsertRow, UpdatevValue,
ScrollSelect, ScrollSelectNew, and so on. (We discuss these PeopleCode
functions in chapter 16.) Let us take a quick look at the PeopleCode program that
populates the FED_TAX_DATA scroll bar.

As illustrated in figure 7.12 only the FWT_MAR_STATUS field from
FED_TAX_DATA record is placed on the panel. But, take a look at the PeopleCode

174 CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: Layout —Order (JOB_DATA1_WRK panel is open)

L |Label Type Field Record

0 [Frame Frame -

0 [Frame Frame J

0 |Frame Frame

1 |Max Age Scioll Bar Scioll Bar

1 |Maximum Age Edit Box CPP_Max_AGE CAN_T&X_TBL

1 |Special CIT Scroll Bar Scioll Bar

1 |Special CIT Status Edit Box SPECIAL_CIT_STATUS |CAN_TAX_DATA

2 |'wage Loss Plan Scroll Be| Scroll Bar

2 |wage Loss Replacement| Edit Box WAGE_LOSS_PLAN EMPL_WAGELS_CAN

1 |SDI Ded Scioll Bar Scroll Bar

1 |501 Deduction Edit Box SDI_DEDUCTION STATE_T&X_SDIVw

1 |Tax Loc/State Scroll Bar | Scroll Bar

1 |State Edit Box STATE TAX_LOCATIONZ

1 |Fed Scroll Bar Scroll Bar

1 |PWT Marital Status Edit Box Pw/T_MAR_STATUS FED_TAX_DATA

2 |State Scroll Bar Scroll Bar

2 |SWT Marital/Tax Status |Edit Box SWT_MAR_STATUS STATE_TAX_DATA

3 ILocal Scroll Bar Sciol Bar =
OK | Cancel | gelect | tiove | Unseiect| Defaut |

Figure 7.12 Panel field layout of a hidden panel with work scrolls

program shown in figure 7.13. Here you can see other fields from FED_TAX_DATA
being referenced and populated. The entire FED_TAX_DATA record definition is
available for reference in the panel buffer.

Navigation: File 5Open —Record -FUNCLIB_PAY —Highlight Field —View PeopleCode

¥ FUNCLIB_PAY (Record PeopleCode)

| TAX_LOCATION_CD =l |FiuIdFu|mnIa =
|I* ~~~~~~~~~~~~ Default Employee Tax Data Functions ------------- =
T
JT e ———— Insert Default Fed Tax Record =====-emecceccmecee-
7

Function InsercFedRecord();
4FED_ROW = 1;
InsertRow (RECORD. FED_TAX DATA, 1):
UpdateValue (FED_TAX_DATA.EMPLID, 1, PERSONAL_DATA.EMPLID):
UpdateValue (FED_TAX_DATA.COMPANY, 1, FetchValue(JOE.COMPANY,
1))
UpdateValue (FED_TAX_DATA.EFFD'T, 1, FetchValue(JOE.EFFDT, 1)}:
UpdateValue (FED_TAX_DATA. FWT_MAR_STATUS, 1, "5"):
UpdateValue {FED_TAX_DATA.SPECIAL_FWT_STATUS, 1, "N"):

UpdateValue (FED_TAX_DATA.FUT_ADDL_ANT, 1, 0): =

UpdateValue (FED_TAX_DATA.FWT_ADDL_PCT, 1, 0): Flgure 7.13

UpdateValue (FED_TAX_DATA.EIC_STATUS, 1, "H"): PeopleCode event that updates
UpdateValue (FED_TAX_DATA.STATUTORY EE, 1, "H"): =l work scrolls

This PeopleCode program is written as a function and included in a function
library. This function is also stored in a derived record that contains many payroll
functions. The two key PeopleCode functions used to insert and populate rows on the
scroll bar are InsertRow and UpdateValue. Similarly, STATE_TAX_DATA and
LOCAL_TAX_DATA scrolls are populated using the same PeopleCode functions.

WORKING WITH SCROLL BARS 175

Licensed to James M White <jwhite@maine.edu>

72

176

When the panel is saved, the Application Processor automatically populates the under-
lying database tables.

WORKING WITH EFFECTIVE DATES

Effective date and effective sequence are two of the most important fields used in a
PeopleSoft application. Effective Date and Effective Sequence fields are used to main-
tain historical data in PeopleSoft. These two fields create an audit trail of changing
application data. They also enable PeopleSoft batch applications to perform retroac-
tive and future-dated processing. Effective-dated data rows are accessed in PeopleSoft
using scroll bars. The effective date field is usually the first field on the scroll bar in
the panel field layout. Effective dated processing is based on menu item actions.
Menu item actions are Add, Data Entry, Update/Display, Update/Display
All, and Correction.

Based on the action chosen by the user, the number of rows fetched from the data-
base varies. Let us see how menu item actions affect the number of rows selected.

Add When an Add action is used to access a panel group, the Application Proces-
sor checks for the existence of rows in the search record with keys in the input dialog
box. If the row already exists in the database table, a message is issued to the user

(figure 7.14).

PeopleSoft [x|

® Specified record already exists - update? [44.4)

No Explain Figure 7.14
Record exists during Add action

In the event that record already exists and if the user chooses “Yes” to the message
in figure 7.14, menu item action is automatically changed to Update/Display.

Update/Display When the Update/Display action is used to access a panel
group, only the current and future dated rows are selected from the table. In the
Update/Display mode, data on the current effective-dated row cannot be
changed. With the exception of the effective date field itself, other data on a future
dated row may be changed.

Update/Display All When the Update/Display A1l action is used to access a
panel group, all the effective-dated rows from the table are selected. As with
Update/Display, data on the current effective-dated row cannot be changed.
With the exception of the effective date field, all other fields may be changed.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Correction When the Correction action is used to access a panel group, all
effective-dated rows from the table are selected. All the selected rows can be
changed including the effective date field. For this reason, Correction must be
authorized only to users who are administrators and understand the implications of
correcting data.

Let us look at a sample set of data to understand historical, current, and future-
dated rows in a table. We can use the DEPARTMENT table from the PeopleSoft
HRMS application to illustrate the concept (figure 7.15).

Navigation: Go —Define Business Rules -Manage Human Resources U.S.
—Use —Department Table —Correction

Manage Human Resources [U.5.] - Setup - Department Table | _ O] x|
Fle Edt VYiew Go Favoites Setup RBeport Help

gg|8x| ‘alaE e =0 g8 @lelo] *v|valel

Department Profile |

| SetD: UsA Department: 00001

Effective Date: IJZJLH /2002 ﬂ Status: |Active vI =

Description: ICalpmate Headquarters Short Desc: |Corp Hdq

Location SetlD: IUSA ﬂ United States Table Sets
Location: 1113 ﬂ Corpotate Headquarters
Company: IPS' :I Payroll Services Technology

Tax Location: I ﬂ
Manager ID: IBZH ﬂ Hiltan,Cheri
Manager Position: | ll

Incumbent Manager:

GL Acct # - Payroll Expense: IDP'EXP-MDU‘I

Budget Year End Date: Budget Level: |Depart t -

U.S. EED4 Function: Financ Adm - ;l

| | |Department Profie |Comection

N

Figure 7.15 Panel with effective dates on scrolls

We brought up the panel in figure 7.15 using the Correction action. This
loads all the effective-dated rows on the scroll bar. Notice that EFFDT is the first field
inside the scroll bar. Let’s take a closer look at the effective dates from all rows from
the DEPARTMENT table loaded in the scroll bar. The rows are sorted in a descending
sequence on the scroll bar (table 7.1).

WORKING WITH EFFECTIVE DATES 177

Licensed to James M White <jwhite@maine.edu>

721

178

NOTE Effective dates are used to maintain historical data. Scroll bars are used in
panels to view historical effective-dated rows.

Table 7.1 Effective dates from the DEPARTMENT table

Effective Date Definition Description

02/01/2002 Future This date is in the future compared to the current date.
06/15/1996 Current This date is current and effective as of today.
01/01/1960 History This date is in history.

Let us see what happens when current and history rows are changed using the
Update/Display and Update/Display All actions.
A message (figure 7.16) is issued.

PeopleSoft B

P Cannot change cument or history records unless in Comection
1)

mode. [15.1)

Explain | Figure 7.16

Changing data using Update/Display

TIP We can prevent users from correcting current and history rows by disabling
their access to the Correction action in menu items. This can be accom-
plished with the help of the Security Administrator tool.

PeopleCode functions for effective-dated processing

Some delivered PeopleCode functions are built into PeopleTools. Most of these func-
tions are used to fetch the effective dates or the row numbers which contain the effec-
tive dates from the scroll bar. All these functions work only on effective-dated records.
Let us look at some of these functions and how they can be used.

CurrEffDt returns the effective date from the current row on the scroll bar.
Regardless of where the cursor is on the scroll bar, this function will return the value
of the current effective date.

CurrEffSeq returns the value of the effective sequence field from the current
row on the scroll bar.

CurrEf fRowNum returns the row number that contains the current effective-
dated row on the scroll bar.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

73

NextEf£Dt returns the value of a field on the next effective-dated row. This
function takes a fieldname as a parameter.

NextRelEE£EDT returns the value of a related display field from the next effec-
tive-dated row. The input parameter to this function is usually a panel field defined
as a Display Control item. The output field is defined as a “Related Display” field.

PriorRelEf£Dt returns the value of a “Related Display” field from the prior
effective-dated row. The parameters are the same as the NextRelE££Dt function.

(Please refer to part 3 of this book for more detailed descriptions about these
built-in PeopleCode functions.)

NOTE The Update/Display action selects only current and future effective
dated rows. The Update/Display All and Correction actions
select all rows from the database table.

NOTE The Effective Sequence field is used in conjunction with the Effective Date
field. We can use Effective Sequence to distinguish history rows with the
same effective date. For example, in PeopleSoft HRMS, JOB record has
both EFFDT and EFFSEQ as key fields. When the user enters a promotion
and pay rate increase using the same EFFDT for an employee, the EFFSEQ
field is used to distinguish the two rows.

WORKING WITH SUBPANELS AND
SECONDARY PANELS

Subpanels are used to populate repetitive sets of fields using a subrecord. Alterna-
tively, secondary panels are used to organize panel fields based on functionality. Both
subpanels and secondary panels are used to organize panel fields and make them eas-
ier for input.

7.3.1 Subpanels
Subrecords play a key part in building subpanels. Let’s look at a record definition
which contains a subrecord, the PERSONAL_DATA record from the PeopleSoft
HRMS system (figure 7.17).

WORKING WITH SUBPANELS AND SECONDARY PANELS 179

Licensed to James M White <jwhite@maine.edu>

180

Navigation: File -Open —Record -PERSONAL_DATA

=i PERSONAL_DATA (Record) [_ (D] =]
Field Mame | Type|Len |Format |H | Short Name|Long Name
EMPLID Char | 11 |Upper 1D EmpliD =
NAME Char | 50 |Name Name Name ml
NAME_PREFIX Char| 4 [Mixed Prefix Name Prefix
NAME_SUFFIX Char | 15 |Mixed Suffix Name Suffix
LAST_MAME_SRCH Char | 30 |Uppe:r Last Name |Last Name
FIRST_NAME SRCH Char | 30 |Upper First Name | First Name
ADDR_OTR_SBR SRec
PHONE_SBR SRec
PER_STATUS Char 1 Upper Per Status | Personnel Status
ORIG_HIRE_DT Date | 10 Hire Date |Original Hire Date
SEX Char 1 Upper Sex Gender
AGE_STATUS Char| 1 Upper Age 18+ Age 18 or Older .
MAR_STATUS Char| 1 |Upper Mar Status | Marital Status Figure 7.17
BIRTHDATE Date | 10 Birthdate |Date of Birth T .
BIRTHPLACE Char | 30 |Mixed | |[Birthplace |BitthLocation | Record definition with
DIDTUCOLIMT DN e e] 1l ' A D iade A Subrecords

ADDRESS_SBR is a great example of the use of subrecords and subpanels. Con-
sider now the definition of ADDRESS_SBR subrecord (figure 7.18).

Navigation: File -Open —Record -ADDRESS_SBR

g ADDRESS_SBR [Record) M= E
Field Name | Type |Len | Format |H | Short Nmell.ong MName
COUNTRY . Char| .3 IUpper | |Cotey |Countey
ADDRESS1 Char | 35 |Mixed Address 1 |Address Line 1
ADDRESS2 Char | 35 |Mixed Address 2 |Address Line 2
ADDRESS3 Char | 35 |Mixed Address 3 |Address Line 3
ADDRESS4 Char | 35 |Mixed Address 4 |Address Line 4

CITY Char | 30 |Mixed City City

NUM1 Char 1] Mixed Mbr 1 Number 1

UMz Char 4 Mixed Mbr 2 Number 2

HOUSE_TYPE Char 2 Upper House House Type

COUNTY Char | 30 Mixed County County

STATE Char [Upper St State

POSTAL Char | 12 |Custm Postal Postal Code
GED_CODE Char | 11 Upper Geo Code |Tax Vendor Geograph
IN_CITY_LIMIT Char 1 Upper In Cty Lmt | In City Limit

Figure 7.18

Definition of a subrecord

All the fields in ADDRESS_SBR are standard fields that can be used to update
address information. Many record definitions in PeopleSoft contain ADDRESS_SBR
in its definition. In the database, the subrecord does not actually exist as an SQL table.
Only the online application recognizes the subrecord. In the database, the fields from
the SubRecord are automatically expanded and stored as individual fields. Because
ADDRESS_SBR is used in multiple record definitions, the address fields in all these
tables can be updated using the ADDRESS_SBP panel (figure 7.19).

The ADDRESS_SBP subpanel can be placed into any other panel (containing
record definitions), using the ADDRESS_SBR subrecord. Notice that the panel field
labels are also specified as panel fields. Even though the fields can be the same, the label
for these fields can be different based on the context of the application panel. Take a

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open —Panel ADDRESS_SBP

i ADDRESS_SBP.ENG [Panel)

|
(i

|

Figure 7.19
ADDRESS_SBP subpanel

look at the PERSONAL_DATALI panel which has the ADDRESS_SBP subpanel in it
(figure 7.20).

Navigation: File -Open —Panel -PERSONAL_DATA1

PERSONAL_DATA1.ENG [Panel)

ADDRESS_MAIL_SBP

Figure 7.20 Application panel using a subpanel

TIP Record fields can be used as panel field labels. This technique is used to pro-
vide context sensitive field labels for Subrecord fields. Subrecord fields are
pre-designed in a subpanel and field labels cannot be changed when these
subpanels are included in a main panel. Record fields can be used as field
labels so that they can be populated based on the context of the main panel
(which includes the subpanel in question).

WORKING WITH SUBPANELS AND SECONDARY PANELS 181

Licensed to James M White <jwhite@maine.edu>

73.2

182

The difficult part in designing a subpanel is the placement of fields on the subpanel.
Fields have to suit all the application panels that use them. A potential problem also
arises when subpanels must fit into application panels. Usually, fields on the main appli-
cation panels are rearranged to fit the subpanel properly. The ADDRESS_SBP subpanel
in the PERSONAL_DATA1 panel contains all those fields from the ADDRESS_SBR sub-
record. At save time, these fields are updated into the PS_PERSONAL_DATA table.

Subpanels can be inserted into an application panel by choosing Insert/
SubPanel from the Application Designer menu.

The same subpanel, when placed on LOCATION_TABLE! panel, accesses the
address fields from the LOCATION_TBL record. Another popular subpanel in all
PeopleSoft applications is the Process Run Control subpanel.

Navigation: File 5Open —Panel 5PRCSRUNCNTL_SBP

ENG [Panel)

Figure 7.21 Process Run Control subpanel

All Run Control panels, which initiate a batch process, require the operator ID
and Run Control ID fields in their record definition. The Process Run Control sub-
panel helps the Run Control panels by providing these two fields.

Secondary panels

Secondary panels are used to segregate functionally such as fields into a separate
panel. Optional fields are separated out into a secondary panel. Secondary panels are
accessed using a push button. Both the push button and the secondary panel are
placed on the main application panel, one after another. Push button fields are always
placed before the secondary panels in the panel layout.

Secondary panels can be inserted into a main application panel by choosing
Insert/Secondary Panel from the Application Designer menu. In figure 7.20, the
PERSONAL_DATAL1 panel also includes secondary panels.

The push button labeled Edit Mailing Address is a derived field which activates
the secondary panel. The secondary panel appears as a small hidden icon in the main
application panel. Let’s look at the definition of this secondary panel (figure 7.22).

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: File 5Open —Panel ADDRESS_OTHER_SEC

#= ADDRESS_OTHER_SEC.ENG (Panel)

DDRESS_OTHER_SBP

Figure 7.22
Secondary panel definition

TIP Secondary panels have an advantage over subpanels. Secondary panels do
not have to be designed to accommodate the main application panel. They
are brought up online by pushing a button from the main panel. When sec-
ondary panels are brought up, they appear on top of the main panel. They
can be closed once data are entered into the fields after focus is transferred
back to the main panel.

This secondary panel also uses a subpanel. Subpanels are pre-developed panels which
contain certain fields. As soon as the subpanel is placed in an application or a secondary
panel, all fields from the subpanel are automatically included inside them. This secondary
panel is used to edit the mailing address for an employee. Since address fields are already
built into ADDRESS_SBP and ADDRESS_OTHER_SBP subpanels available in the sys-
tem, this secondary panel makes use of the ADDRESS_OTHER_SBP subpanel.

TIP If a SubPanel design is not suitable to fit the main application panel, the
SubPanel can be included in a Secondary Panel and then the Secondary
Panel can in turn be included in the main panel.

Let’s look at the PeopleCode event which brings up this secondary panel
(figure 7.23).

The DoModal PeopleCode function is used to bring up the secondary panel
online. Instead of cluttering the panels with fields used to enter optional mailing
addresses, PeopleSoft has built this secondary panel, which contains these fields. The
secondary panel can be summoned on an as-needed basis by activating a push button.

WORKING WITH SUBPANELS AND SECONDARY PANELS 183

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open —Record -DERIVED_HR —View —PeopleCode Display

P DERIVED_HR (Record PeopleCode)

[PosTaL_oTHER] [FieldChange =

Break: = |
When = "TRN_NON_EMPL1_JPN"

DoModal (PANEL.ADDRE_OTHR_JFN_SEC, "Postal Address ", - 1, - 1, 1, FECORD.PER3_DATA_EFFDT,
CurrentRowNumber({)):

Break:
When-0ther

DoModal (PANEL. ADDRESS_OTHER_SEC, "Postal Address ", - 1, - 1, 1, RECORD.PERS_DATA_EFFIT,
CurrentRowlumber ()) ;

Break;
End-Evaluate;

Figure 7.23 PeopleCode program that activates a secondary panel
In figure 7.24, the secondary panel appears on top of the main application panel:

Navigation: Activate Push Button

Administer Workforce [U.5.] - Use - Personal Data !Em
Fle Edt View Go Favoites Use Selup Process |nquire Bepot Help

glg|@x| olas| se =0 g8 @lclo] *|v|vwel

Name/Address | Personal Profile | Elighity/identity |

[ID: 8001 Status: Employes Original Hire Date: |U4f|5”981 ‘
Effective Date: [0170171990 +| =
Na Lo . o~ « sa o I - - LI)
|
Hor Country: [#| United states
Co Address1: [3479 Virgil Circle -
Ad pddress 2: |
Ad Address 3: |
Ad
City: IPIeasantnn
Gt County: [usa Postal: [a4588
Co srate: ICA ﬂ Califarmia
Sk j

Service=Field Change | | [Name/Address |Comection

™

Figure 7.24 Secondary panels on an application panel

74 DESIGNING INQUIRY PANELS

Inquiry panels are display panels that cannot update data. Used as organized queries
to the database, inquiry panels are easy to build. They consist of several record fields
assembled on a panel adhering to panel design rules. Inquiry panels are also used to

184 CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

by-pass some complex PeopleCode events in record definitions and help in quick
inquiry of data. The Application Processor populates information from database
tables into the online panel.

In our Problem Tracking application, we designed an inquiry panel which shows
us totals by problem status. Let’s look at the definition for MY_TRKG_STATUS panel
(figure 7.25).

Navigation: File -Open —Panel -MY_TRKG_STATUS

Figure 7.25 Inquiry panel

This simple example of an inquiry panel makes use of an SQL view to display
information online. The description field is a related display field from the
XLATTABLE. The TOTAL_COUNT field inside the scroll bar is the result of the
aggregate SUM function used in the SQL view. The grand total field is populated by a
simple PeopleCode event adding all the individual totals from inside the scroll bar and
displaying the grand total using a derived field.

By building an SQL view definition and using fields from the view definition on
the inquiry panel, all PeopleCode events from MY_PROBLEM_TRKG record are
bypassed (figure 7.26):

DESIGNING INQUIRY PANELS 185

Licensed to James M White <jwhite@maine.edu>

Navigation: File 5Open —Record -MY_TRKG_STATUS —File =Object Properties

Record Properties [x|
Genetdl Use Type I
Record Type SOL View Select Statement:
" SOL Table select 2]
my_problem_status,
& sC “4 count(*)
c Vi from pz_rmy_problem_trkg
DinES s group by my_problem_status
" DerivedMwork
" SubRecord
C Query View

Mon-Standard SAL
Table Name:

Figure 7.26
SaL view definition

| 0K I Cancel

Take a look, too, at the record definition of MY_TRKG_STATUS SQL view
(figure 7.27).

Navigation: File 5Open —Record -»>MY_TRKG_STATUS

i MY_TRKG_STATUS (Record) - [O]]

Field Name | Type|Len |Format |H | Short Name| Long Name
| U P

Figure 7.27
Record definition
of an SQL view

The inquiry panel has the two fields from the SQL view definition and a related
display field from the XLATTABLE. Let’s look at the panel field layout and see how
the grand total field is derived (figure 7.28).

Notice that the grand total field is a derived field from the MY_DERIVED record def-
inition. As the rows are populated inside the scroll, the totals by individual statuses are
added and can be displayed in the grand total field. Now, consider the PeopleCode event
from the MY_TRKG_STATUS record definition which sums up the individual totals and

186 CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: Layout —Order (MY_TRKG_STATUS panel is open)

Order Panel [x|
Mum|Lvl | Label Type Field Record
***Topoflst®*= |
1| O |Problems - Totals By Stab) Tesxt
2/ 0 [Frame Frame
3 0 |Grand Total Edit Box TOTAL_COUNT MY_DERIVED
401 [Status Scroll Bar
5 1 |Problem Status Edit Box MyY_PROBLEM_STATUS |MY_TRKG_STATUS
Bl 1 |Status Edit Box AKLATLONGMNAME ALATTABLE
7|1 | Total Count Edit Box TOTAL_COUNT MY_TRKG_STATUS
***End of List ==~
0K | Concel | Select | Move | Unselect| Defau

Figure 7.28 Panel layout of an inquiry panel

populates that sum into the TOTAL_COUNT field from the MY_DERIVED record
definition (figure 7.29).

Navigation: View —PeopleCode (MY_TRKG_STATUS PeopleCode Display)

E'MY_TRKG_STATUS [Record PeopleCode)

[TOTAL_COUNT L||Ta.m|nit ;]

jY_DERIVED.TOTAL_COUNT = MY_DERIVED.TOTAL_COUNT + TOTAL_COUNT;:

Figure 7.29
PeopleCode event that
populates a derived field

In figure 7.30, we see a more complex inquiry panel from the PeopleSoft HRMS
system. This panel uses derived fields as switches to change the fields being displayed
on the panel. In other words, the panel has key fields from the Job record assembled
very close to each other. Based on the choice that the user makes, some fields are hid-
den and others are shown on the panel. Figure 7.30 shows the definition of this panel.

It may seem that this panel is cluttered with fields, but the four display switches
on the top control the display and hiding of fields, using PeopleCode events built
behind these display switches. Take a look at the actual online panel (figure 7.31). The
online panel appears far more organized than the actual panel design, because certain
fields have been hidden based on the choice of switches selected by the user.

DESIGNING INQUIRY PANELS 187

Licensed to James M White <jwhite@maine.edu>

188

Navigation: File 5Open —Panel -JOB_SUMMARY

g JOB_SUMMARY ENG [Panel)

{[EMPL_SRCH_SBP _

Figure 7.30 Definition of a complex inquiry panel

Navigation: Go —Administer Workforce U.S. —Inquire —Job Summary

Administer Workforce [U.5.] - Inquire - Job Summary

Fle Edt View Go Favoites Use Selup Process |nquire Bepot Help
gl @@ x| one| slel s)=| Sl=] @lel] vl]|
Job Surnmary | Delete Row
[Schunache:,ﬁinon ID: 8001 Empl Redit: 0
Comp Rate =

EffDt/Seq |m V||DeplfJuth ;”CIas: ;”Annual ﬂ Incr %
09/01/1996 | Active President Salaned Full-Time Regular | $146,576.96

President uso 0.000
D4/16/1996 | Active President Salaried Full-Time Regular | $146,576.96

President Usp 7.500
02/20/1994 | Active President Salaned Full-Time Regular | $136,35066

President UsD 5.000
D4/16/1993 | Active President Salaned Full-Time Regular | $129,857.77

President usD 3.000
04/16/1992 | Active President S alaried Full-Time Regular | $126,075.51

President usD 3.000
D4/16/1991 | Active President Salaned Full-Time Regular | $122,403.41

President usp 2.500 5

[| [Job Summary |Update/Display Al 4

Figure 7.31 Online view of an inquiry panel

The online panel also uses an SQL view definition to display all the fields from
the database. The panel uses JOB_VW, an SQL view based on the JOB table. JOB_VW

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

75

does not have any of the PeopleCode events from the Job record. The inquiry panel
is displayed without processing any PeopleCode event from the Job record. This
inquiry panel fetches rows from the database faster than the JOB DATA panels, saving
inquiry time.

The same rules apply for scroll bars on an inquiry panel. A scroll bar can contain
only fields from one record definition (except for related display and derived fields).

USING A GRID ON A PANEL

Grids are spreadsheet-like displays on an application panel. As do spreadsheets, grids
have cells that can be expanded and contracted. Columns can be frozen to fit more
columns into a panel; data from grids can be copied into spreadsheets, and vice versa.
Grids are also similar to single level scroll bars. Using grids, we can insert, delete, and
change rows.

Grids cannot be used as alternatives to multiple level scroll bars. Basic panel field
objects are accommodated on a grid. Objects such as edit boxes, push buttons, check
boxes, drop-down list boxes, and long edit boxes are allowed on grids. Note, too, that
grids have to be the last control on the panel, and only one grid is allowed in a panel.

In figure 7.32, we see a PeopleSoft HRMS panel that uses a grid for data entry.

Navigation: Go -Compensate Employees —Administer Automated Benefits

Administer Automated Benefits - Use - BAS Actlivity
Fle Edt View Go Favoites Use Process [nquire Bepot Help
P |
ale|®lx| ool e o= g8l @c=] *[v]|valz |
BAS Activity |
EmpliD |§'gg'|ﬂame Action chalE\rant Date [EyentBAS |Ben |coBRA A
8896 | O SarkaanPiskash JobChg — 03/03/1999 | O HIR 0
8102 0 Sulivan,Theresa ‘Manual 1070771999 DFSC 0
8301 .. 0BlueNency ~~ Manual 10/08/1999 . O MSC 0
>
4 | |
[| [BAS Actrvity |Update/Display 4
Figure 7.32 Panel with a grid
USING A GRID ON A PANEL 189

Licensed to James M White <jwhite@maine.edu>

75.1

75.2

190

We can see that some fields here are display fields, others are input fields. The two
Manual lines were manually inserted into the grid in a fashion similar to that of row-
insert function in a scroll bar.

When grids are used, we can:

* sort the grid on any column by clicking on the column heading like a spread-
sheet

* copy columns from the grid and paste them into a spreadsheet

* copy columns from a spreadsheet and paste them into the grid

* adjust row height and column width on the grid

* freeze columns on the grid like a spreadsheet

Using the panel from figure 7.32, let’s demonstrate all the foregoing features of
a grid:

Sorting the grid on its columns

Employee ID is the primary key on the main record in this panel. When we bring
up the panel, the grid is sorted on the EMPLID field (figure 7.32). After clicking on
the column heading for the NAME field (figure 7.33), the grid is sorted on an ascend-
ing order of that field. When the column heading is clicked again, the grid will be
sorted on a descending order of that field.

Administer Automated Benefits - Use - BAS Activity

File Edit “iew Go Favortes Use Process |nquire Hepot Help

ale(@x| ‘olun| slel =E| g @e]2] el]|

BAS Activity |

Action SourcalEmt Date EE::‘ :‘:;‘sm g:ﬁ COBRA Ac—
0 LA Lo MR Manual ~ 10/08/1993 0 MSC 0
[} Sankaran Prakash EETTWT 03/03/1999 @ OHR = 0
Manual =~ 10/07/1993 | 0(FSC [o
I [|BAS Activity |Update/Display .

Figure 7.33 Grid sorted on a column

Copy data from grids into spreadsheets

Data from grids can be copied into spreadsheets. When we highlight the cells on the
grid and press CTRL-C, the cells can be copied into the Window’s clipboard. Then we
can paste them into a text editor or into a spreadsheet. This is a useful feature which
allows a user to input data into the grid and copy the entire grid into a spreadsheet for
a variety of reasons. The user can perform calculations on numeric fields, copy data
into spreadsheets for documentation purposes, and so forth. Let’s explore this by
copying data from the grid into the spreadsheets.

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Administer Automated Benefits - Use - BAS Activity

File Edt View Go Favoites Use Process Inquire Report Help

gle(@!x| alala| sle| ==| alE] @2 *ve|sl]

BAS Activity |

©10/08/1999
Bl BB L
10/07/1993

| [[BAS_ACTMITY [Update/Display

Figure 7.34 Copying data from a grid to the clipboard

Using the mouse—or the shift keys—and highlighting the cells, we copy the cells
into the clipboard (figure 7.34). Figure 7.35 illustrates how this data appears when
pasted on a spreadsheect.

X Microsoft Excel - Book1 HE=E I
ﬂﬂe Edit ‘View Insert Format Tools Data Accounting Window Help =18] x|
DEEESRY IBRS v-o- A&z £ 4% S D
Arial o -BZUEEEE S %, B L->-A-

D6 ~| =]
A B [¢ T o [[F [6 [H [17

1 1| §301 0 Blue,Nanc Manual I

2| 8896 0 Sankaran,|JobChg —

| 3 | 8102 0 Sullivan,Th Manual

4

| 5
6 -

4] 4[> [M]\Sheet1 [Sheetz [Sheet3 |4« |
Ready | ! Sl S o !

Figure 7.35 Data from grid copied into a spreadsheet

75.3 Copy data from spreadsheets into grids

To copy the data from the spreadsheet back to the same grid, we highlight all the cells
from the Excel spreadsheet and copy them into the clipboard. Then, we paste right
into the grid. Although data can be pasted into one row on the grid, limitations exist
on pasting data copied from spreadsheets into grids that have keys. Database key con-
straints will restrict us from copying multiple rows of data into Grids.

It is possible to copy multiple rows into grids which use derived records. We can
create a work grid with derived fields, insert the necessary number of rows into the
grid, and paste multiple rows of data into it. Data can be saved in database tables using
the SQLEXEC PeopleCode function.

USING A GRID ON A PANEL 191

Licensed to James M White <jwhite@maine.edu>

754

75.5

192

Adjust row heights and column widths

By grabbing the edges of a column or a row and dragging them to the appropriate
width or height, we can control column and row sizes just as we can in a spreadsheet.
In figure 7.36, we can see how the grid appears after adjusting the column width and
the row height.

Administer Automated Benefits - Use - BAS Activity
File Edit View Go Favortes Use Process |[nquire Beport Help

el @(@!x| ‘00| S|e| Dlo| gE| @] el ||

BAS Activiy |
EmpliD |F_|:|)I Name Action Source | Event Date ‘E;::l g’:gon [B_‘Z:; COBRA Action | —
8102 D Sulivan.Theres Manual 1070771999 0FSC 0
8301 0 BlueNancy Manual 10/08/1933 0:MSC & o
8896 0 [Sankaran Prakd JobChg 10370371993 0 HIR 0

Figure 7.36 Adjust column width and row height on a grid

We increased the row height of the last row on the grid. We also reduced the col-
umn width of the NAME column. As you reduce the column width, more columns
from the right side appear on the screen.

Freezing columns on a grid

Freezing columns on a grid is not dynamic as on a spreadsheet. The grid must be
defined to contain frozen columns, and, unlike in spreadsheets, columns cannot be
frozen on the application panel. How do frozen columns appear on the application
panel? Figure 7.37 shows our previous grid frozen on the NAME column. When the
panel is scrolled to the right, the columns to the right of the frozen column disappear,
and the columns hidden on the right side of the panel become visible.

Administer Automated Benefits - Use - BAS Activity
File Edt View Go Favoites Use Process Inguire Report Help
= .=l = |
algl@lx| alaa| sl o= a8 @lcl=] *|elag]
BAS Activity |
EmpliD |§'::‘:|" Name Event Date E}ﬁ:l g‘zfi‘m gz:; COBRA Action =
8102 ... 0 Sullvan Theresa 10/07/1999 0FSC 0 =
8301 .0 BlueNancy 11070871339 0 MsC - 0
8896 0 SankaranPrakash | 03/03/1999 OHA o]
| | |BAS Activity |Update/Display &

Figure 7.37 Frozen columns on a grid

CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

75.6

The Action Source field is hidden and the Cobra Action field appears on the
application panel. Previously, this field was not visible, and the whole grid would have
scrolled to the left side hiding the EMPLID column. Because the grid was frozen at the
NAME column, however, everything to the right of that field scrolls, moving either to
the right or the left.

Creating a grid on a panel

Let’s take a look at the steps to insert a grid into an application panel. We will present
the MY_USER_TBL in a grid-like display, starting by creating a new panel and insert-
ing a grid object into the panel (figure 7.38).

Navigation: File 5>New —Panel —lInsert -Grid

s Panell (Panel] o<l

Figure 7.38 Inserting a grid into a new panel

The grid is like any other panel field. We edit the properties for the grid by choosing Panel
Field properties like any other panel field. Figure 7.39 illustrates the Grid Properties screen.

We have to define a main record for the grid. Here we define MY_USER_TABLE
as the main record. We also define the Occurs Level just as we did on a scroll bar. We
insert grids on any level on the scroll bar. In other words, a grid can be placed inside
a regular scroll bar.

Under the Columns tab, we add the fields that appear on the grid. We click on
the Add button to add columns on the grid. We choose the panel field type and the
record field that we want to add to the grid. The properties of each field on the grid
are edited using the Panel Field Properties screen.

Under the Labels tab, we add a label to the whole grid. This tab is also used to
control the display of row and column headings.

Under the Use tab, we control the properties of the scroll on the grid. We can
also attach a pop-up menu to the grid using this tab. Figures 7.40, 7.41, and 7.42 illus-
trate the other tabs in the Grid Properties screen.

USING A GRID ON A PANEL 193

Licensed to James M White <jwhite@maine.edu>

Navigation: Edit —Panel Field Properties (Grid should be highlighted)

Grid Properties E

General | Columns | Label | Use |

~ General Attribute

Main Record: IMY_USEH_TABLE -]
| Qocurs Level |I

Cancel I Figure 7.39

Grid Properties—General tab

By dicking on the Add button (figure 7.40), we add any field from
MY_USER_TABLE into the grid. As mentioned before, we can use only edit boxes, drop-
down list, checkboxes, push button, long edit boxes, and secondary panel field types.

Navigation: Edit —Panel Field Properties (Grid should be highlighted)

Gnid Properties E

General Columns | Label | Use |

Column | Type | Field | Record
User 1D Edit Box MY_USER_ID MY_USER_TABLE
Name Edit Box NAME MY_USER_TABLE
User Type DiopDown L. MY_USER_TYPE MY_USER_TABLE
EmpllD DropDown L. EMPLID MY _USER_TABLE

Edit Box PHONE MY_USER_TABLE
4 | E

Add. I Remove | Move Up | Move Down | Properties |

Cancel I Figure 7.40

Grid Properties—Columns tab

194 CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

Navigation: Edit —Panel Field Properties (Grid should be highlighted)

General | Columns Label lUse]
- Giid Label

Label Type: TSR ~ |
Message Set: | Msg Number I
Label Test. [User Table Giid

Sligrment: | E l

r Column Headings
¥ Show column headings

¥ Show row headings

ﬂl Figure 7.41

Grid Properties—Label tab

Navigation: Edit —Panel Field Properties (Grid should be highlighted)

Grid Properties E |

General| Columns | Label Use |

. Dizplay Options
No ™ Inisible

I~ No Auto Update ™ Display Only
™ Mo Row [nsert
[~ Mo Fow Delste

— Popup Menu

Meru Name: | j

|T| Cancel | Figure 7.42

Grid Properties—Use tab

By highlighting MY_USER_ID field from the Columns tab in figure 7.40 and
clicking on the Properties button, we edit field properties for that individual field
within the grid. Here we can specify the panel field properties (as covered in chapter 4).

One key feature, in the Panel Field properties screen is the Freeze Grid Column
option (figure 7.43). Choosing this option, we freeze columns on the grid just as we

USING A GRID ON A PANEL 195

Licensed to James M White <jwhite@maine.edu>

Navigation: Properties (From Columns tab
in Grid Properties screen)

Record | Label Use |
Fiedd Use Options
™ Display Only ™ Muki-Currency Field
™ Irwisible ™ Display Control Field
I~ Show Label ™ Related Display Fiel
I Ere i
Related Control Field:
— Popup Menu
r— Field Help Context Mumber:
o < Auto Assign |
Corcel_|

Figure 7.43 Freeze grid column

can on a spreadsheet. All columns to the left
of the column chosen for the freeze are fro-
zen as well. We can also remove columns
from the grid by choosing the Remove but-
ton under the Columns tab (figure 7.40).
We order the sequence of the fields on the
grid by choosing the Move Up or Move
Down buttons from the Columns tab of the
Grid Properties screen.

After attaching the grid panel to a
panel group, adding a menu item to our
Problem Tracking menu, and providing
security to the new menu item, we can view
the grid panel online. Figure 7.44 shows
how the grid appears in the application.

The columns in a grid panel can be
resized online. Columns defined as frozen
fields do not scroll when the scroll bar is
used to move to the right or the left side.

Navigation: Go —Problem Tracking —Setup —User Table Grid

Problem Tracking - Setup - User Table Grid [_ O] x|
Fle Edt Yiew Go Favomtes Setup Tracking Help
| 0 - el |
aleg(@x| oo ele o a8 @lel=] *|e|A2]
User Table Grid |
User ID [Name [User Type [EmpliD [Teleph -

1 [00001 |SankaranPrakash 914/641-2222

2 [00002 Landres Galina 914/641-8888

5 |00004 Delia.Tony 914/641-7777

4 |0005 ‘Rivera,lsidor 914/641-6666

5 [10000 Gabriel Peter Vendor 914/444-2233

« | T [
[I [User Table Grid [Update/Display y
Figure 7.44 Grid application panel
196 CHAPTER 7 ADVANCED PANEL DESIGN FEATURES

Licensed to James M White <jwhite@maine.edu>

NOTE Only one Grid can be used in an application panel. Grid has to be the last
control or field in the panel. Grids are alternatives to a single level scroll bar.
Columns and rows in a grid can be resized just as in a spreadsheet. Columns
can also be frozen using the Columns tab under the Grid Properties screen.

1 Scroll bars are used to display multiple rows of data from the same record
on one application panel.

2 Scroll bars are also used to maintain historical data using the EFFDT and
EFFSEQ fields.

3 The level above the level one scroll bar is called level 0. Level 0 fields are
usually fields from the search dialog box. These fields automatically propa-
gate to child scroll levels to satisfy Parent/Child relationships.

4 The Update/Display action displays only current and future effective-
dated rows from the database table.

5 The Update/Display All and Correction actions display all effec-
tive-dated rows from the database table.

6 Subpanels and secondary panels are used to organize panel fields. Subpanels
can be built using subrecords which contain repetitive fields that can be
shared across many panels. Secondary panels separate panel fields by func-
tion. Optional fields which are seldom entered can be included into a sec-
ondary panel.

7 Inquiry panels can be designed to facilitate faster access to data. PeopleCode
programs in records defined as SQL tables can be bypassed by building
clone records that are defined as SQL views. The fields from the SQL view
can be used in the inquiry panels.

8 A grid can be used to replace a single-level scroll bar on a panel.

9 A grid can be used in a panel to facilitate easier data entry. It also provides
the user with capabilities such as resizing row and column size, freezing col-
umns, and copying data into spreadsheets.

USING A GRID ON A PANEL 197

Licensed to James M White <jwhite@maine.edu>

8.1

8.1.1

W\CHAPTER 8

Building database objects

8.1 Tables and views in PeopleSoft 198
8.2 Database object modeling 202
8.3 Building database tables and views 204

TABLES AND VIEWS IN PEOPLESOFT

PeopleSoft applications are table-based systems. PeopleTools, which runs the online
application, is stored in database tables and views. A PeopleSoft application, which
runs using PeopleTools, contains three distinct sets of SQL tables and views—Data-
base catalog tables and views, PeopleTools tables and views, as well as Application
tables and views.

The tables in each set perform unique functions to run the application. They are
also distinguished by the manner in which they are created, modified, deleted, and
likewise populated.

Database catalog tables and views

Database catalog tables and views are system tables which store attributes for all
PeopleTools and Application tables and views in the database. Database catalog tables
vary across database platforms; database catalog views are representations of data
stored in the database catalog tables.

198

Licensed to James M White <jwhite@maine.edu>

8.1.2

The database engine uses data attributes to access and store application data.
Database catalog tables store field attributes, table attributes, index attributes, table
spaces, view definitions, and so on. Installed when the database is created, database
catalog tables and views are updated when the PeopleTools and application tables are
created, modified, or deleted. When a PeopleSoft application is installed, both Peop-
leTools tables/views and Application tables/views are created in the database. Let’s
look at a few examples of database catalog tables (table 8.1).

Table 8.1 Database catalog table

Database Platform Database Object Catalog Table

Oracle Tables DBA_TABLES
Columns DBA_TAB_COLUMNS
SQLBase Tables SYSTABLES
Columns SYSCOLUMNS

PeopleTools tables and views

PeopleTools tables and views are part of the PeopleSoft application and are delivered
along with the PeopleSoft system. They are application catalog tables which store
attributes for fields, records, panels, panel groups, menus, PeopleCode, and other
PeopleSoft objects. PeopleTools catalog tables and views are updated when a devel-
oper creates, modifies, or deletes a PeopleSoft object. Remember, PeopleSoft objects
are building blocks for the online system. The Application Processor assembles these
building blocks by accessing data from PeopleTools tables and presents the informa-
tion in a graphical representation online.

Table 8.2 PeopleTools catalog tables

Objects PeopleTools Table

Fields PSDBFIELD

Records PSRECFIELD, PSRECDEFN, PSINDEXDEFN, PSKEYDEFN,
PSRECDDLPARM, PSIDXDDLPARM

Panels PSPNLFIELD, PSPNLDEFN

Panel Groups PSPNLGRPDEFN, PSPNLGROUP

Menus PSMENUDEFN, PSMENUITEM

PeopleCode PSPCMPROG, PSPROGNAME, PSPCMNAME

These PeopleTools catalog tables listed in table 8.2 are stored in the database as
well. Let’s look at how these PeopleTools catalog tables are updated.
Suppose a developer creates a record definition by performing the following tasks:

¢ create the schema for the record
* create fields, if necessary for the record
* define record properties

TABLES AND VIEWS IN PEOPLESOFT 199

Licensed to James M White <jwhite@maine.edu>

8.13

200

* define record field properties
¢ save the record definition
¢ build the record in the database (tables and views)

When the developer saves the record definition, the definition is stored in

PeopleTools catalog tables.

The following PeopleTools tables are updated in this process:

* PSDBFIELD is the PeopleTools table that stores field definitions. A row is added
into this SQL table each time the developer creates a new field.

* PSRECDEFN is the PeopleTools table that stores record definitions. A row is
added into this SQL table each time the developer creates a new record.

* PSRECFIELD is the PeopleTools table that stores record field definitions. A row is
added into this SQL table for each field in the record definition.

* PSINDEXDEFN is the PeopleTools table that stores index definitions for SQL
tables. A row is added into this SQL table for each index defined for the record.

* PSKEYDEFN is the PeopleTools table that stores definitions of columns that are
defined as indexed fields. A row is added for each column that is defined as
indexed columns for each index.

* PSRECDDLPARM is the PeopleTools table that stores database specific parame-
ters for the database table.

* PSIDXDDLPARM is the PeopleTools table that stores database specific parameters
for the table indexes.

NOTE PeopleTools tables and views are not prefixed with PS_ because
PeopleTools tables and views are given a non-standard SQL table name in
the Type tab under the record properties. Application tables and views are
prefixed with PS_ when the corresponding SQL table or view is created in
the database. For example, if the record is named PERSONAL_DATA in
PeopleSoft, the corresponding SQL table in the database is called
PS_PERSONAL_DATA.

Application tables and views

Users maintain business data in the application. User data are stored in application
tables and views. When the user accesses the online application, data from applica-
tion tables and views are presented online. Application tables and views are created as
database objects.

Definitions for application tables and views are stored in PeopleTools catalog

tables. The PeopleTools object definitions for application tables and views are called
records. Records can also be query views, dynamic views, subrecords, and derived/
work records.

CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

Records defined as SQL tables and views are built into the database simply
because tables store application data, and views are representations of data. Other
PeopleSoft objects—such as panels, panel groups, menus, PeopleCode, and so on—
process and present application data online. Every time the users access the online
application, these objects are built online. They do not exist in the database.

Records defined as SQL tables permanently store data in the database. Record def-
initions are created online using PeopleTools. At this point, the record exists in Peo-
pleSoft, but is not yet a database table. As it is, the record definition cannot store any
data in the database. When the developer builds the record, a database table which can
store data entered using the online application is created. Similarly, records defined as
SQL views are created using PeopleTools as well.

The developer must define parameters before records can be built in the database.
Records defined as SQL tables contain build parameters used in the build process.
Build parameters vary across database platforms.

TIP DDDAUDIT is an SQR process which identifies records defined as tables
and views, which do not exist in the database and vice versa.

Let’s look at the definition for MY_PROBLEM_TRKG record (figure 8.1).

MY_PROBLEM_TRKG is defined as an SQL table in the application. In the data-
base, the corresponding database table is named PS_MY_PROBLEM_TRKG. When
the developer builds the actual SQL table in the database, other related database objects

Navigation: File =Open —Record —MY_PROBLEM_TRKG —File —Object Properties

Record Properties []
Genetd] Use Type |

SOL View Select Statement:

C SOL View
" Dynamic View
" DerivedwWork
" SubRecord
C Query View

Mon-Standard SOL
Table Name:

[.|

Figure 8.1

oK | Cancel I Record definition (SQL Table)—
Type tab

TABLES AND VIEWS IN PEOPLESOFT 201

Licensed to James M White <jwhite@maine.edu>

8.2

202

are created as well. SQL tables also have indexes to facilitate faster access to data stored
in them. Indexes are also database objects. When database objects are created, they
update database catalog tables.

Now let’s take a look at the definition for MY_TRKG_STATUS record
(figure 8.2).

Navigation: File =-Open —Record —MY_TRKG_STATUS —File —Object Properties

Record Properties []
Genetd] Use Type |
-Record Type- SOL View Select Statement:
" SOL Table select ‘:J
R oblem_status,
& GaLView ml.] lem_status
" Dynamic View from ps_my_problem_trkg
group by my_problem_status
" Derivedwork
" SubRecord
T Query View

Mon-Standard SOL
Table Name:

[.|

OK I Cancel I Figure 8.2

Record definition (SQL View)—Type tab

MY_TRKG_STATUS is a record defined as an SQL view. In the database, this
object is called PS_MY_TRKG_STATUS. This SQL view represents data from
PS_MY_PROBLEM_TRKG table in a Totals format. The SQL view is built using the
SQL View Select Statement.

Before we describe how application tables and views are built in the database, let’s
consider the data modeling tools that PeopleSoft delivers as part of PeopleTools.

DATABASE OBJECT MODELING

PeopleSoft delivers tools which allow a database administrator to define data models.
PeopleSoft objects which are stored as database objects, use the defined models as
defaults. The database administrator can change the defaults and override parameters
based on application needs.

When the PeopleSoft system is installed, these database models are updated to
suit the defaults for majority of application tables and indexes. This way, the database
administrator has to override parameters only for tables and indexes that cannot use

CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

the default storage parameters. Data models are different across database platforms.
PeopleSoft delivers platform-specific parameters based on the platform of installation.
If, for example, the installation is an Oracle installation, the modeling tools automat-
ically supply parameters used in an Oracle database.
Let’s look at the tools used for data modeling in PeopleSoft. Figures 8.3 and 8.4
illustrate data modeling defaults for SQL tables and indexes in an Oracle platform.

Navigation: Go —PeopleTools —Utilities —Use —DDL Model Defaults

Utilities - Use - DDL Model Defaults

Fle Edt View Go

Favortes Use Process Help

=101 %]

ale|e!x| ‘alala| glel = Sl=| 2lel=] el]|

DDL Model Defaus |

Platform 1D: 2 Oracle
Sizing Set: 0
Statement Type: Table =
Model SQL: CREATE TABLE [TBNAME] ([TBCOLLIST)) TABLESPACE [TBSPCNAME] STORAGE]

[INITLAL *IMIT=* NEXT **NEXT** MAXEXTENTS **MAXEXT= PCTINCREASE

HRCT™): Ll L=
Parameter Count: 4
DDL Parm DDL Parameter Value ;I
it {10000
[MAXEXT f110
[NEXT {100000
[FCT [0 :l

= =

| [|DDL Model Defaults |Update/Display

Figure 8.3 DDL model default—table

Platform ID is unique for each database platform. PeopleSoft supplies the follow-
ing platforms for data modeling:

0 - SQLBase

1-DB2

2 - Oracle

3 - Informix
4 - DB2/Unix

5 - Allbase
6 - Sybase

7 - Microsoft SQL Server
8 - DB2/AS400

DATABASE OBJECT MODELING

Licensed to James M White <jwhite@maine.edu>

203

8.3

204

In figure 8.4 the first scroll bar contains data modeling parameters for #// database
objects. The second scroll bar contains individual parameters used for modeling each
database object. These parameters come predefined, and the DDL parameter value can
be changed for each parameter.

Navigation: Go —PeopleTools —Urtilities —Use —DDL Model Defaults
Utilities - Use - DDL Model Defaults | - O] x|

Fle Edt View Go Favoites Use Process Help

glel®(x| ool sle o= g8 @lel2] *lvelal |

DDL Model Defauls |
Platform 1D: 2 Oracle Copy... I
Sizing Set: 0
Statement Type: Index ‘;I
Model SQL: EREATE INDEX [IDXNAME] ON [TENAME] (IDXCOLLIST]) TABLESPACE =]
INDEXSPC STORAGE [INITIAL *{MNIT** NEXT “NEXT* MAXEXTENTS
“MEXEXT™ PCTINCREASE “PCT™); =l
Parameter Count: 5 J
DDL Parm DDL Parameter Value =
[INDEXSPC |PSINDEX
NIT {10000
[MAXEXT f110 1!
[NEXT {100000 il =
| | |DDL Model Defaults [Update/Display 4

Figure 8.4 DDL model default—index

Data modeling parameters can be overridden for each record definition using the
Data Administration option in Application Designer. The database administrator has
to estimate data storage parameters for individual application tables and indexes and,
if default parameters are not suitable, override them.

BUILDING DATABASE TABLES AND VIEWS

Record definitions defined as SQL tables or views can be built in the database using
the Application Designer. A record definition must be built in the PeopleSoft system
first before it can be built as a database object.

Record definitions are defined as SQL tables or views through the Use tab in the
Record Properties screen, and attributes defined before an SQL table or view can be
built in the database. Let’s use the MY_PROBLEM_TRKG record from our Problem
Tracking application to understand this progression (figure 8.5).

CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

8.3.1

8.3.2

Navigation: File —Open —Record —MY_PROBLEM_TRKG —File —Object Properties

Record Properties B

General I Use Type I

SOL View Select Statement:

GaLTa5 =
C SO View
C Dynamic Yiew
" DerivedMwWork
" SubRecord

" Query View

Mon-Standard SAL
Table Name:

[ok] cancel | Figure 8.5

Record Properties—Use tab

First we list the steps required to build a PeopleSoft record definition in the
database:

* define the record definition type

* define the database keys

* define DDL parameters for the table
* define DDL parameters for indexes
build the object in the database

Define the record definition type

As we can see in figure 8.5, the Record definition must be defined as an SQL table or
an SQL view. We do this through the Use tab in the Record Properties screen. When
the record definition is defined as an SQL view, the record definition can be built in
the database at any time without any fear of losing data because SQL views are just rep-
resentations of data from SQL tables. They do not store actual data in the database.

Define the database keys
Our next step is to define the database keys for the SQL table or view. We do this
using the Application Designer tool. Remember, the record definition must be open
to perform this step (figure 8.6).

When the record definition is first built using fields from the PeopleSoft system,
the developer should have an idea of the fields that will be used to build the database
index. Database keys perform best when they are placed one after another. For this

BUILDING DATABASE TABLES AND VIEWS 205

Licensed to James M White <jwhite@maine.edu>

206

Navigation: File —Open —Record —MY_PROBLEM_TRKG

12 MY_PROBLEM_TREG [Record)

Field Name | Type|Key |Dir_ |CurC|Sich [List |Sys |Audt |H

MY PROBLEM 1D [Char |Key |Asc | |Yes [Yes [No | [

INCIDENT_DT Date |Alt |Asc Mo |Yes |No

MY_PROJECT_ID Char Al |Asc No |Yes |No

MY_PROBLEM_STATUS |Char |ARt |Asc Mo |Yez (Mo

PRIDRITY Nbi No |No |No

MY_USER_ID Char |Alt |Asc Mo |Yes |No

MY_PROBLEM_TRACKEFH Char (At |Asc No |Yes [No

CLOSE_DT Date Mo |No (Mo

MY_DOCUMENT_ATTACI| Char No |No |Mo

DESCRLONG Long Mo |No |[No

MY_PROBLEM_RESOLTH Long Ne (No |Ne .

MY_PROBLEM_DTTIM |DtTm Mo |Mo |Mo Figure 8.6

FILENAME Char No |No (No = N
Record definition—Use display

reason, we place the database keys in sequence in the record definition. By highlight-
ing each field and choosing Edit/Record field Properties from the Application
Designer menu, we can define a record field as the database key (figure 8.7).

Navigation: Highlight Record Field —Edit —Record Field Properties

Record Field Propeities E
Use |Edits |

Field Name: MY_PROBLEM_ID

~Keys ~ Defaul Value
F el e —
I Duplicate Order Key of
I~ Alemate Search Key Becord Name: I jv
™ Descending Key Fiedd Name: I—z
:; fifat'::n Record Field Help Context Number
I From Seatch Field [0 < Auto Assign
™ Thiough Search Field
—Audt———— | Defauk Panel Controt
I™ Field Add System Defaul =
I™ Field Change
™ Figld Delete

™ System Maintained
™ Autolipdate

Cancel I Figure 8.7

Record Field Properties

Record fields can be defined as database keys by clicking on the Key checkbox.
The other options are Duplicate Order Key for non-unique indexes, Alternate Search
Key, and Descending Key. Alternate Search Keys are also used to create non-unique
indexes in the database. They appear in the online application in list boxes as well.
Descending Keys are simply database keys presented in a descending order. They can
be part of either a unique or a non-unique index. All the record fields, which are

CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

8.3.3

database keys can be defined as such by highlighting the appropriate field and choos-
ing “Edit —Record Field Properties” from the Application Designer menu.

Define DDL parameters for the table

Data Definition Language (DDL) defines the parameters needed to create the object
in the database. Parameters such as storage parameters, data increments, and table
space parameters are defined in this step. DDL parameters vary according to database
platforms. We will use Oracle as the database platform for our purposes. Figure 8.8
illustrates the Maintain Record DDL screen where DDL parameters are entered.

Navigation: Tools —Data Administration —Record DDL (Record Definition is open)

M aintain Record DDL - MY_PROBLEM_TREG

Platiorm | S25et|Parsmeter | Defauk Value | Oveside Value

SOLBase
DB2

Indarmix
RO fanins

S0L Templates
Platform: SOLBase, SizeSet 0 -
CREATE TABLE [TBNAME] ([TECOLLIST]):

Platform: DB2, SizeSet: 0
CREATE TABLE =OWNER*{TENAME] ([TBCOLLIST]) IN “DENAME = [TBSPCNAME):

Platform: Oracle, SizeSet: 0 |

o Figure 8.8
Wiew DDL Edit Parrn | aK I Cancel
| I I Record DDL Parameters

Navigation: Double Click on a DDL Parameter (From Maintain Record DDL screen

Oracle database requires parameters

such as Tnitial Extent, Next Extent,
Maximum Extents and Percentage of
Increase. They can be defined by dou-
OverideValue: Ja00(ble-clicking on each of those parameters
] = under the Oracle s§ction (figure 8.8). The
default values seen in figure 8.8 are defined
in the DDL Model Defaults panel under the
Utilities menu. The defaults are not, how-
ever, always suitable for all tables in the
database. We can enter an override to these parameters before the object is created in
the database.
All DDL parameters can be overridden by entering the override value, choosing
the OK button, and saving the record definition (figure 8.9). DDL parameters are

Pairn Name: INIT

Default Value: 10000

Figure 8.9 Override DDL parameter

BUILDING DATABASE TABLES AND VIEWS 207

Licensed to James M White <jwhite@maine.edu>

saved in the PSRECDDLPARM PeopleTools catalog table. As we said, DDL parameters
vary across database platforms, so only parameters applicable to your database should
be changed before the object is created.

8.34 Define DDL parameters for indexes
Index DDL parameters can be changed as illustrated in figure 8.10.

Navigation: Tools —Data Administration —Indexes (Record Definition is open)

Change Record Indexes
. Record Fields
4sc |MY_PROBLEM_ID |IINI:1I‘EIE'IE|PE|LIEEI .
ol " 4sc |MY_PROBLEM_ID - MY_PROBLEM_STATUS
Ase |INCIDENT_DT mlULE'E; o
Ase MY_PROJECT_ID ‘ - |
Asc MY PROBLEM_STATUS -~ MQYD_EQ%B#EH_THACKEF
Asc [MY_USER_ID _
Asc MY PROBLEM_TRACKE MY_DOCUMENT_ATTACI
s [INCIDENT_DT 5 A _
Asc |My_PROBLEM_ID = MY_PROBLEM_DTTIM
Asc [MY_PROJECTID FILENAME
Ase MY_PROBLEM_STATUS
Ase |MY_USER_ID
] |Asc |MY_PROBLEM_TRacke| [+
Addindex | Editindes | EGDDL | Defielnde | |

Carel I Figure 8.10

Change index DDL parameters

Based on the key defined for the record definition, PeopleTools determines the
number of database indexes that must be created in the database. Primary indexes are
given the same name as the table name. Other indexes are named with a numerical
sequence added. In our example, the primary index for MY_PROBLEM_TRKG table
is named PS_MY_PROBLEM_TRKG. The other indexes are named PSOMY_
PROBLEM_TRKG, PSIMY_PROBLEM_TRKG, and so on.

By choosing the Edit DDL button, we can override DDL parameters for each of
these indexes. Before the Edit DDL button is pushed, each index is highlighted. Index
DDL parameters also vary across database platforms (figure 8.11). The Edit Index but-
ton can be used to change the index uniqueness. The index can also be turned off on
some database platforms using the Edit Index button.

208 CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

8.35

Navigation: Edit DDL (From Change Record Indexes screen)

Maintain Unique Index DDL - PS_MY_PROBLEM_TRKG

Platform | S25et|Parameter | Diefault Value | Oveside Value

L

Oracle 0
INDEXSPC [PSINDEX
INIT 10000
MEXT 100000
MEXEXT (110

_ PCT 0
Indormi : wrevess loeminey -
SOL Templates

[Platiorm: SOLBase, Sizeset
CREATE UNIQUE INDEX [IDXNAME] ON [TBNAME] (IDXCOLLIST]):

Platform: DB2, SizeSet: 0
CREATE UNIQUE INDEX “0WNER"{IDXNAME] ON =O0WwMNER2*{TBNAME] (IDXCOLLIST])
L&SIDB(IS(E iILDGFIIJUP =STOGROUP= PRIQTY “PRIQTY™ SECATY “SECQTY™ “CLUSTE R"_I

viewbdL | Edit Pan |—| Figure 8.11
Wiew DDL Edit Pam 0K Cancel
| | | Index DDL parameters

Ll

Navigation: View DDL (From Index DDLParameters Screen)

The parameters in figure 8.11 are the
CREATE UNIQUE INDEX PS_MY_PROBLEM 'IRKE ON = same as the DDL parameters fOr tables—
PS_MY_PROBLEM_TRKG (MY_FROBLEM_ID) TABLESPACE - .

PSINDEX STORAGE (NITIAL 10000 NEXT 100000 with one exception. The table spaces for

MEXEXTENTS 110 PCTINCREASE 0): . .
indexes are overridden here. Fach of these

=zl | parameters can be overridden either by
double-clicking on the parameter or high-
lighting the parameter and choosing the
Figure 8.12 View DDL Edit Parm button. We can use the View
DDL button to look at the actual DDL
statement that will be used to create the index in the database (figure 8.12).

Build the object in the database

Once we specify the record definition as an SQL table or view, we must build the
record in the database. Since we have defined the database keys and DDL parameters,
it’s time to build the record in the database. Before we can do so, we still have to
define the table space parameter for an SQL table. This parameter is not required in
all database platforms.

The table space parameter can be changed as illustrated in figure 8.13.

All tables built under the table space chosen are displayed in the list. Before we
build the object in the database, we must save the record definition by clicking on the
Save icon from the Application Designer menu.

We build the current open object by choosing Build —Current Object from the
Application Designer menu. Two options appear on the Build Object screen. They
are Build Options and Build Execute Options. Build Options is used to control the

BUILDING DATABASE TABLES AND VIEWS 209

Licensed to James M White <jwhite@maine.edu>

types of database objects built; Build Execute Options controls how the database
objects are built.

Now let’s consider the options—and the reasons we’d choose them—under Build
and Build ExecuteOptions (figure 8.14).

Navigation: Tools —Data Administration Navigation: Build —Current Object

—Set Table Space (Record Definition is open)
(Record Definition is open)

_]
Name:
Sescsiane Mv_FROBLEM_TRKG
[FRaFP =l ._I':“d
Records Allocated to this Space: Settings...
[%B5_CD_TBL_LANG ?. :
ABS:CL_-TBLL_-LANG ~Buld Options
ABS_CLASS_TBL =
ABS_CODE_TBL r
ABS_H_DET_LANG !
455 HIST_CERT I Create Views
ABSTHI
ABS_HIST_LANG ™ Aher Tables
ABS_PARAMETERS Cancel :
ABS_PARAMETERS2 _Cereel | ~Budd Execute Options
ABS_STAT_NLD & Build script fle
ABS_TY_TBL_LANG
ABS_TYPE_TBL € Epectae SOL rew
ABSENCE_TAL < " Execute and buid scipt
ARSENCE HIST
Figure 8.13 Set table space Figure 8.14 Build objects
Build options
* Create Tables Choose this option to build all records defined as SQL tables in
the Build Scope list.
* Create Indexes Choose this option to build all indexes for SQL tables in the
Build Scope list.
* Create Views Choose this option to build all records defined as SQL views in
the Build Scope list.

o Alter Tables Choose this option to alter schema for records defined as SQL
tables in the Build Scope list.

TIP When the Alter Tables option is chosen, only those SQL tables that require
an alter in the Build Scope list will be altered. Tables which require alter-
ation are determined by comparing the record and database definitions for

the tables.

210 CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

Build Execute options

* Build Scripr File Choose this option to build a script file before executing the
SQL script to create or alter the database object.

* Execute SQL Now Choose this option to execute DDL SQL statements and cre-
ate or alter the database object immediately. This option may not be available for
SQL Alters in some database platforms.

o Execute and Build Scripr Choose this option if you want to execute and build
the DDL SQL statements at the same time.

TIP It is prudent to always build a script file before execution. The script files
can be used for review before execution. The script files can also be used as
change documents.

Figure 8.14 shows the Settings button used to control recreate options, script cre-
ation options, and logging options. Figures 8.15 through 8.18 illustrate all four tabs
in the Build Settings screen.

Under the Create tab, (figure 8.15) we either choose to recreate the object if it
already exists or skip re-creation. This option is applicable to objects already present
in the database. Use Table Creation Options for SQL tables and View Creation
Options for SQL views.

Navigation: Settings (From the Build Object screen)

Build Settings K|
Creste | ke | Logging | Seripts |

i~ Tabl
|

" Skip

table if & already exists

~ View Creation Options
£~ | Hecremta yiew i it akeady exits
" Skip view if it aheady exists

Cancel | Figure 8.15

Build Settings—Create tab

Under the Alter tab (figure 8.16), we enter settings specific to altering SQL tables.

BUILDING DATABASE TABLES AND VIEWS 211

Licensed to James M White <jwhite@maine.edu>

Navigation: Settings (From the Build Object screen)

Build Settings E

Create Alter]Loggngl Seripts |

~ Drop Column Dptians Alber Any
= Adds
¥ Changes
 Renames
i~ Change Column Length O
nge ength Ophons = [Dai

" Twncate data if fiedd too short
' Skip record ¥ field toa shart

Cancel Figure 8.16
—I Build Settings—Alter Tab

Drop Column Options

* Drop column if data present Choose this option if you want to delete a column
as part of SQL Alter, even if the column contains data in it.

o Skip record if data present Choose this option if you want to skip altering a
table when data are present in a column and the column is being dropped.

Change Column Length Options

* Truncate data if field too short Choose this option to truncate data when a field
length is changed, and, the data in the column are larger than the new column
length.

o Skip record if field too short Choose this option if you want to skip the SQL
Alter for the record when column lengths are changed, and data in the column
are larger than the new column length.

Alter Any

* Adds Choose this option to add new columns during SQL Alters.

* Changes Choose this option to change column lengths during SQL Alters.
* Renames Choose this option to rename columns during SQL Alters.

* Deletes Choose this option to drop columns during SQL Alters.

During SQL Alter, the Build Settings specific to the Alter process is verified to
determine whether to proceed to alter a record or to skip the record.

212 CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

NOTE Alter Any settings vary across database platforms. Some database platforms
do not allow changing of column lengths without re-creation of tables.

Under the Logging tab, we specify options for logging the results from the Build
process (figure 8.17).

Navigation: Settings (From the Build Object screen)

Build Settings E

Creste | Alter Logging I Seripts |

r Logging Level

€ Fatal enors, wamings and informational

i~ Logging Dutput
' Log to cutput window I Log settings
¥ Log tofile
Log file name: IC.\mdowa\TEMF’\PSBUILD LOG J

Figure 8.17
_IZIK Cancel
LI Build Settings—Logging tab

Logging level

* Fatal Errors Only Choose this option when you want only the fatal errors to be
logged during the process.

e Fatal Errors and Warnings Choose this option when you want both fatal errors
and warnings to be logged during the Build process.

o Fatal errors, warnings, and informational Choose this option to log all results

during the Build process.

Logging output

* Logging to Output Window Choose this option if you want the log to be dis-
played on an output window.

* Log ro File Choose this option to log files to a text file. You can specify the full
path and the file name for the log file in the Log file name box.

* Log settings Choose this option to log all settings at the time the Build process
was executed.

Under the Scripts tab (figure 8.18), we specify options to build a script file.

BUILDING DATABASE TABLES AND VIEWS 213

Licensed to James M White <jwhite@maine.edu>

Navigation: Settings (From the Build Object screen)

Build Settings E

Creste | Aer | Logging Scripts |

File Ovenwite Options
% Always overvite
" Prompt for each ovenwrite

~ Seript File Dptions
'@ e S T
C Dutput to separate files

— Script File Names
All Dutput File Mame: IC.\wnr\dOwc\TEMF'\PSBUILD saL J

Cancel | Figure 8.18

Build Settings—Scripts tab

Write Alter comments to script
Choose this checkbox to see Alter comments in the script file. During the Build proc-
ess, information is written about changes to individual fields right above the actual
Alter SQL statement. This checkbox is useful especially when we need to alter a num-
ber of columns in the same SQL table.

Script File Options
* Output to single file Choose this option if you want to build a single script file
for SQL Table Creates, SQL Table Alters, SQL View Creates, and Index Creates.
* Qutput to separate files Choose this option if you want to create separate files
for SQL Table Creates, SQL Table Alters, SQL View Creates, and Index Creates.
When this option is chosen, four boxes appear under the Script File Names
option to accommodate separate filenames.

File Overwrite Options

* Always overwrite Choose this option if you want to overwrite existing Build
scripts with the same name.

* Prompt for each overwrite Choose this option if you want to be prompted dur-
ing the build process, before scripts are overwritten.

TIP Because SQL views do not store actual data, they can be re-created when-
ever necessary.

214 CHAPTER 8 BUILDING DATABASE OBJECTS

Licensed to James M White <jwhite@maine.edu>

NOTE PeopleSoft performs SQL Alters by re-creation in some database platforms.
During this process, PeopleSoft creates a table called PS_1 used to tempo-
rarily hold data from the SQL table being altered. The SQL Alter process
may fail if the table being altered consumes considerable storage space.
Review the Build script to ensure that the SQL table PS_1 can hold data
from the SQL table being altered.

TIP Record DDL parameters have to be constantly evaluated and updated as
data grow in the database. It is prudent to keep record DDL parameters in
PeopleSoft in sync with the storage parameters for the corresponding SQL
tables in the database.

1 Records defined as SQL tables or SQL views are also database objects and
have to be created in the database.

2 Table and Index DDL parameters have to be set before the object can be
built in the database.

3 When altering tables, we recommend that you build a script file. The script
file has to be reviewed before execution in the database.

4 SQL views can be re-created at any time.

5 DDL Model defaults are used as default DDL parameters to build objects in
the database.

BUILDING DATABASE TABLES AND VIEWS 215

Licensed to James M White <jwhite@maine.edu>

I \\"
W\NCHAPTER 9

PeopleSoft Application

Processor

9.1 Search processing 218

9.2 Data retrieval 225

9.3 Panel Group display 232
9.4 Data entry or inquiry 236

In the previous chapters, we described concepts behind the development of a
PeopleSoft application panel. We also explained how security is provided to users to
access application panels. This chapter primarily focuses on how PeopleTools proc-
esses an application panel.

Application Processor organizes the numerous individual processes that occur
from the time a panel group is requested to the time the panel group is saved. It is
important to understand these individual processes and the sequence in which the
Application Processor organizes them. This knowledge helps us design and develop
objects more intuitively to suit business needs.

In each stage of the Application Processor (figure 9.1) a number of PeopleCode
events are executed. In this chapter, we will walk through the Application Processor
stages using the Track Problems menu item from our Problem Tracking application as

216

Licensed to James M White <jwhite@maine.edu>

an example. As we do, the sections will switch back and forth between Add and
Update/Display modes. The reader will need to correlate screens in the correct order
to follow an entire mode from start to finish. (Part 3 describes in detail the individual
PeopleCode events as well as more about sequences in which these events are executed.)

Search Processing

;

Data Retrieval

l

Panel Group Display

;

Field
Prompt
Processing
Command Popup Menu
Push Button Display
F4, Ctrl
F4 Right

Mouse

Button click

WAIT FOR
USER
ACTIONS

Row Insert

N F7, Insert
Processing

F8,
Delete
/ Field Edit

Save

Row Delete Save

Processing Processing
Field
Modification Figure 9.1
Stages in application
processing

NOTE The key to application processing is the panel group object. The panel
group definition provides vital information throughout all stages to process
the application panel.

217

Licensed to James M White <jwhite@maine.edu>

9.1

9.1.1

9.1.2

218

SEARCH PROCESSING

Search Processing takes place when the user chooses the menu item that accesses the
application panel group. This stage begins by building the search dialog box used to
access the panel group and ends after fields for data retrieval are populated and saved
into the search fields. The Search Processing stage can be further divided into multi-
ple steps. Let’s walk through all possible steps that can occur during this stage.

* determine mode of access

* retrieve panel group definition

* determine search fields

* populate and display search record fields
* edit user inputs into search dialog fields
* populate search buffer for data retrieval

Determine mode of access

The Application Processor determines the mode in which the user accesses the panel
group. All authorized modes necessary to access the panel group are pre-determined
when the application menu is brought up. Users can view only authorized panel
group actions when they access the application menu. The Application Processor
determines authorized panel group actions from a PeopleTools catalog table called
PSAUTHITEM. Let’s look at our example and find out what the authorized actions
are for the menu item.

In figure 9.2, this user has two different actions/modes authorized for this menu
item. The panel group definition screen will show all the authorized actions for the
menu item. Based on the action chosen by the user, the Application Processor deter-
mines the record used for search processing.

Retrieve panel group definition

Search records are attached to panel group definitions. Therefore, the Application
Processor has to retrieve the panel group definition to determine the search record.
PSPNLGRPDEFN is the PeopleTools catalog table which contains the search records
for a panel group. We can define two different search records for a panel group: a
search record used in Add mode and a search record for all other modes. Figure 9.3
shows the panel group properties screen. Here we can see how search records and
authorized actions are attached to panel groups.

The Panel Group Properties screen contains the two search records and the
authorized actions available for the panel group. When Add search record is left blank,
the regular search record is used for all authorized actions. Add and Update/
Display are the two authorized actions available for this panel group. A panel group,
however, can have more authorized actions than a user can see when the actual appli-
cation menu item is accessed. Security to the menu item and corresponding actions
are provided using the Security Administrator screen. In the example, we access this

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —Problem Tracking —Tracking —>Track Problems

Problem Tracking

File Edit View Gao Fawvortes Setup

8| &(#!x| *a)a

Add J ‘
Prénlems - Totals by Status Update/Dizplay

= B

Figure 9.2 Authorized action for a panel group

Navigation: File —Object Properties (MY_PROBLEM_TRKG panel group is opened first)

I S |
General Use |
Access- - Actions
Search record: ¥ add
¥ Update/Display
Agd saach iscond ™ Update/Display 4l
| j I™ Conection
™ DataEntiy
Detal panet
|MY_PROBLEM_TRKG =
3-Tier Execution Location
i~ Panel Group Build r~Panel Group Save
& Chent & Client
" Application server " Application server

€ Default [application seiver)

€ Defauk [apphcation server)

o] _cew |

SEARCH PROCESSING

Figure 9.3
Panel Group Properties—Use tab

219

Licensed to James M White <jwhite@maine.edu>

9.1.3

220

menu item using the PS operator that belongs to the ALLPANLS operator class.
Figure 9.4 shows the Security Administrator screen where security is provided to
ALLPANLS to access this menu item.

Navigation: File —Open —ALLPANLS (From Security Administrator screen)
Double-click on PROBLEM_TRACKING line item under the Menu Items tab

Select Menu ltems

Menu Name: PROBLEM_TRACKING
BarMame |ltem Name

| Actions/Panels | DispOnly
ML BL

PROJECTS

FROBLEM T PROBLEM TR

PROBLEMS - TO

- Figure 9.4
SelectAl | Change Display-Oriy 0K | Cancel | Authorized menu items
and actions

All authorized menu items are highlighted in figure 9.4. In our example, we can
either choose Add or Update/Display actions. Next, we will see how the Applica-
tion Processor reacts when either action is selected.

Determine search fields

The Application Processor determines the
search fields that should appear on the

input dialog box. Fields defined as search
keys in the search record are assembled on
| the input dialog box. Fields defined as alter-
nate search keys in the search record are also
assembled on the input dialog box in all
modes except Add mode. When no search
keys are defined, the Application Processor proceeds directly to the data retrieval stage
after verifying that the user is accessing the application panel in Add mode. When a
mode other than Add is selected, the error message in figure 9.5 is issued.

In PeopleSoft HRMS, the INSTALLATION record can be used as the search
record to access the panel group directly, without an input dialog box. As we saw in
the previous error message, we cannot use Add mode to access panel groups which
contain search records with no search keys.

Add achon not valid for records wath no key or search items -

/y usa Lpdate/Display instead. (44.3)
{ =

Figure 9.5 Search records with no search
keys

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

TIP Search records that do not have search keys can be processed using
Update/Display mode only. This is useful when you want to bring up
an application panel without an input dialog box.

Before we continue with our application panel example, let’s look at the defini-
tion for MY PROBLEM_TRKG record.

Navigation: File —Open —Record —MY_PROBLEM_TRKG —View —Use Display

1= MY_PROBLEM_TRKG (Record)

MY_PROBLEM_STATUS
PRIDRITY
MY_USER_ID
CLOSE_DT
DESCRLONG

MY_PROBLEM_DTTIM
FILENAME

MY_PROBLEM_TRACKEF| Chat
MY_DGCUMENT_ATTACI| Char
MY_PROBLEM_RESOLT!|Long

Char
Nbre

Chas
Date

Long

DiTm

Al

Al
Al

Cha

Asc

Asc
Asc

Yes
No
Yes
Yes
No
No
No
No
No
No

Field Hame | Type |Key |Dir |CwiC |Srch |List |Sys |Audt [H |
MY PROBLEM 1D Char |Key |Asc Yes |Yes |No
INCIDENT_DT Date At |Asc No |[Yes |No
MY_PROJECT_ID Char |Alt |Asc No |Yes |No

Figure 9.6
Search key definition

for a search record

Navigation: Go —Problem Tracking —¥Tracking —Track Problems —Add

Add -- Track Problems

Problem Identification: Il

Cancel I

Figure 9.7 Search fields in Add mode

In our record definition, we have one field
defined as the search key and five fields
defined as alternate search keys. The panel
processor fetches the search record definition
in order to determine the search keys that
will be presented on the input dialog box. In
figure 9.7, we can see which fields are

brought up on an input dialog box when the menu item is accessed in Add mode.

In 2dd mode, all fields defined as search keys are presented to the user in the
input dialog box. MY_PROBLEM_ID is the only field defined as a search key. Now let
us access the menu item using Update/Display mode (figure 9.8).

In addition to search fields, alternate search fields are also presented on the input
dialog box in Update/Display mode. We notice another difference in the input
dialog box between Add and Update/Display modes: a list box is provided to dis-
play search results, once search field values are saved.

SEARCH PROCESSING

221

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —Problem Tracking —Tracking —Track Problems —Update/Display

Update/Display -- Track Problems m

Problem Identification: i ‘

Incident Date: I— ﬂ i’
Project Identification: [4| Search |

Problem Status: | =

User ID: I—ﬂ Detail |
Problem Tracker: I— ﬂ P

Problem D |incdrt Dt |Project ID Problem Status |User ID New Query |

< | 2

Figure 9.8 Search fields using Update/Display

9.14 Populate and display search fields

Before the Application Processor brings up the search/input dialog box, it executes
certain PeopleCode events, which populate default values into the search fields. Any
default values that are attached to fields in search records are used.

In Add mode FieldDefault, RowInit, and SearchInit PeopleCode events
are executed (in that order) for search and alternate search fields. In other modes,
SearchInit PeopleCode events are executed, and values are populated into search
fields. We can attach PeopleCode to these events on the search record to see how they
populate search fields before displaying them.

Figure 9.9 illustrates how PeopleCode is added to the FieldDefault event for
MY_PROBLEM_ID field.

WP MY_PROBLEM_TRKG (Record PeopleCode)

[Mv_FROBLEM_ID =] [FieldDefaul B
SQLExec(“select max(wy problem id) from ps_my problem trkg™, -

sMAX_PROBLEM_ID) ;
If ALl (&«MAX PROBLEM_ID) Then
GHNEXT_PROBLEM_ID = LTrim{cMA¥_PROBLEM_ID, "0"):
¢NEXT_PROBLEM_ID = ¢MAX_PROBLEM_ID:
GNEXT_PROBLEM_ID = cNEXT PROBLEM_ID 4+ 1:
GNEXT_ID_STRING = String{sNEXT_PROBLEM_ID);
«ID_LENGTH = Len{sMEXT_ID_STRING) ;
«ID_DIFF = 6 - «ID_LENGTH:
If <ID_DIFF > 0 Then
MY_PROBLEM_ID = Rept("0”, ¢ID_DIFF} | <NEXT_ID_STRING:
Elsze
MY_PROBLEM_ID = <NEXT_ID_STRING:

gy Figure 9.9
g =TROBLENLID. = "00000L"; = FieldDefault PeopleCode event on a
- - search field
222 CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

9.1.5

Add -- Track Problems This PeopleCode increments the MY_
Prablem Identiication:[000006 — | __0K__] PROBLEM_ID field automatically. We only
corce_| want to increment MY_PROBLEM_ID field
in Add mode. FieldDefault is executed
Figure 9.10 FieldDefault PeopleCode on a search record only in the Add mode. We
event in Add mode do not want to default anything to
MY_PROBLEM_ID in other modes. We use
the Update/Display mode to update problem IDs which have been already created
using the application. Let us see how the Application Processor executes this PeopleCode
event and displays it on the input dialog box (figure 9.10).

We see that FieldDefault was executed and the next problem ID is now dis-
played on the input dialog box. FieldDefault is an iterative event that is constantly
processed. FieldDefault PeopleCode event executes any time the field is blank.
RowInit PeopleCode event executes any time the field is displayed either on the
input dialog box or on the panel.

Edit search fields

The next step in search processing occurs when the user enters or overrides values in
the search fields. The Application Processor performs internal field format-checking
upon data entry into search fields. For example, when the user enters characters into
fields defined as numeric, the Application Processor issues a message to the user.
When search fields are defined as required fields on the search record, the user must
enter values into such fields before saving the input. The following types of edits take
place when data are entered into search fields:

e field format edits

* required field edits

* field modification PeopleCode edits (Field Edit)

* search/save PeopleCode edits (Save Edit, Search Save)

We will illustrate a few types of

| PeopleCode edits in this section. We'll
em ldentification: Ok
e e t also show you all the non-PeopleCode

T >]| cdits that the Application Processor
= Numeric Ordy fiekd format error, Please reenter, (15,39) validates.

'\ID Figure 9.11 illustrates how field for-

mats are verified by the Application Proc-

G | essor. Similarly, other format types like
date, time, name, and so on, are edited.

Figure 9.11 Field format edits In figure 9.12, the Application Proc-

essor issues a message when a required

field is blanked out. All search key fields presented on the input dialog box are usually

defined as required fields. This is especially useful when the search field appears on the

panel as a display field. However, when the field is displayed as an input field or when

SEARCH PROCESSING 223

Licensed to James M White <jwhite@maine.edu>

Add - Track Problems] a PeopleCode event populates the field, a
Problem Idontifcotion: [N i ok | required field edit is not necessary.
" Camcel | Again, certain PeopleCode events are
executed in this step.
- P In Add, when the user enters values
'\‘.) into the search fields, FieldEdit and
_ FieldChange PeopleCode events from
(=] search fields are executed. When the user
saves the input by clicking on the OK but-
ton, SaveEdit and SearchSave
PeopleCode events are executed from search fields.

Figure 9.12 Required field edit

TIP Search fields that are not input fields on the panel can be defined as
Required fields. This prevents the user from saving the panel with empty
keys in Add mode.

In Update/Display, when the user enters values into search fields, no
PeopleCode events are executed. However, when the user saves the input, Search-
Save PeopleCode event is executed. In Update/Display mode, events are proc-
essed for both search fields and alternate search fields.

Suppose we want to issue a warning message when the user tries to override the
problem ID assigned by the system. How can we do this? We can add a Searchsave
PeopleCode to one of the search fields. In this case, the only search field in our search
record is the MY_PROBLEM_ID field. Let us take a look at the PeopleCode we can
write to perform this function (figure 9.13).

P'MY_PROBLEM_TRKG [Record PeopleCode)
IMY_PRDBLEM_ID 3 ISealchSave 3

e sMode = "A" Then
If FieldChanged (MY PROBLEM_ID) Then
Warning ("Problem ID is automatically assigmed by the
system - Click on OK if you want to override.™):
End-If:
End-If;

Figure 9.13
SearchSave PeopleCode

Because Searchsave PeopleCode event is executed in all modes, we use the
$Mode system variable to execute this PeopleCode event in Add mode only. This
PeopleCode event will issue a warning message when the user tries to change the prob-
lem ID assigned by the FieldDefault PeopleCode event.

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

9.2

Add — Track Problems] In figure 9.14, a warning message is

S ‘ ok | provided with options to continue or to

| cancel. When the user chooses the OK but-

ton, the Application Processor proceeds to
 FrarioTomDE sl oW oo the next step for data retrieval. When the
N R outBE veubat oveide; user chooses the Cancel button, the Appli-

cation Processor brings the user back to the
input dialog box for re-entry.

In chapter 13, “PeopleCode and the
Application Processor,” PeopleCode events
in search processing are discussed in detail.

Cancel | Explain |

Figure 9.14 SearchSave PeopleCode
event in Add mode

DATA RETRIEVAL

Data retrieval starts when the user populates the search dialog box and clicks OK. At
this point, all edits, default processing, and search save processing has taken place,
and the Application Processor uses the search keys to retrieve data.

What happens when the Search record does not have any search keys defined? In
that case, all rows from the database are retrieved for panel group display. An example
of this is the INSTALLATION table panel group in all PeopleSoft applications. The
INSTALLATION table only has one row in it with no database keys defined.

The Application Processor performs the following operations during the data
retrieval stage:

* verifies mode with data from search record

* prepares fields for the list box based on search keys

* prepares a list of panels that builds the panel group

* prepares a list of tables and views necessary to display the panel group in
Update/Display, Update/Display All, and Correction modes

* retrieves data from the database for the complete list of tables and views

9.2.1 Verify mode with data from search record
T | [he Application Processor validates the
e menu action (Add, Update/Display,
'-\?) and so on) that the user chooses with data
_ from the search record. If the user chooses
= Add mode and the search record already
has data matching the search fields, the
Figure 9.15 Validate mode with data in S .
Application Processor issues a message to
the database
that effect. If we choose Add mode and
then choose 000001 as the problem ID, the Application Processor checks whether
the search record has data matching those keys. In this case, the search record is
MY_PROBLEM_TRKG. In the database, this table has a row that matches that prob-
lem ID. The Application Processor issues a message as illustrated in figure 9.15.
DATA RETRIEVAL 225

Licensed to James M White <jwhite@maine.edu>

9.2.2

226

The message, however, enables the

. . : : user to bring up the panel group in
Specified record already swasts and update is not authorized.

@) Update/Display mode. If the user is not
authorized to choose Update/Display
Eir mode for the panel group, the Application

Processor again issues an error message (fig-
Figure 9.16 Update action not authorized ure 9.16).

In modes other than Add, the Application Processor proceeds directly to the next
step to prepare list box items.

Prepare the list box

A list box is the result of search processing and data retrieval. All rows in the search
record—in other words, the underlying database table or view—are presented on the
list box. The list box is provided only when the Data Retrieval finds more than one
row that matches the search fields. The Application Processor provides a list box
when more than one row is found matching search fields; a partial search results in
multiple rows; or no input is supplied for search.

We should be aware that when discussing search fields, we imply Primary Search
Fields and Alternate Search Fields. The data retrieval stage attempts to match rows
using both types. The results on the list box enable us to choose the data we want to
view or update. Search fields and alternate search keys are automatically defined as list
box items, but we can override this by turning off the definition for the list box. Any
field from the search record except for Long Edit Boxes can be defined as a list box item.

In figure 9.17, all fields marked as list box items appear on the list box.

NOTE Search records can either be SQL tables or views. When search records are
SQL views, the Application Processor accesses data from tables that were
used to build the views.

Navigation: File —Open —Record —MY_PROBLEM_TRKG

rli MY_PROBLEM_TRKG [Record)

Field Name |'E'IE Dir__|CuiC |Sich [List |Sys |Audt |H

MY_PROBLEM 1D Char |Key |Asc | I'fes |Yes |No 1]

INCIDENT_DT Date [All |Asc Mo [Yes |No

MY_PROJECT_ID Char (Al |Asc Mo [Yes |No

MY_PROBLEM_STATUS |Char |AR |Asc Mo (Yes |No

PRIDRITY N Mo |Mo |Me

MY_USER_ID Char (Al |Aszc Mo ([Yes |No

MY_PROBLEM_TRACKEF Char |AR | Asc Mo |Yes |No

CLASE_DT Date Mo |No |Me

MY_DOCUMENT_ATTAC! Char Mo |Mo |Me

DESCRLONG Long MHo [Noe |Ne

MY_PROBLEM_RESOLTY Long Mo (Ne |No -

MY_PROBLEM_DTTIM |DiTm No [No |No Figure 9.17

FILENAME Char Ho [No |Ne . ew
Definition of search record

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Figure 9.18 illustrates a list box with all rows in the database table. We did not
provide any input on the search dialog box. All rows from MY_PROBLM_TRKG table
are displayed in the list box, a useful feature when the user is not sure what to enter
for input.

Update/Display -- Track Problems

[]
‘ Problem Identification: I ‘

Incident Date: I ﬂ Fancel
Project Identification: I ﬂ Search I
Problem Status: I =]

User ID: l—ﬂ 4IQEW
Problem Tracker: | ﬂ Use Query I
Prablem ID

000001
000002
000003
000004

000005 19990401

Figure 9.18
Listbox display
with no input

Now, let’s provide input on the input dialog box and see how the Application
Processor selects rows in the list box (figure 9.19).

Update/Display -- Track Problems

[%]
‘ Problem Identification: i ‘

FProject Identification: l _ﬂ Seaich I
Problem Status: IResnIved ;I -
User ID: i ﬂ Letad
Problem Tracker: i ﬂ Use Query |
Problem D |Incdnt Dt |Project ID | Problem Status |User 1D | New Quer
............. R e || N y |
Figure 9.19
List box display
< | 2 with full key
input
DATA RETRIEVAL 227

Licensed to James M White <jwhite@maine.edu>

9.2.3

228

The example lists resolved incidents. Notice how the Application Processor uses
the Problem Status field as input and displays all rows which match the status. We can
also provide partial input in a search field. The Application Processor matches partial
input and displays rows which match the partial input.

To perform this task, the Application Processor reads the record definition, and
it retrieves information from PeopleSoft catalog tables, PSRECDEEN and
PSRECFIELD. These catalog tables contain details on search fields and list box fields.
The user can choose any line item from the list box and then view data on the panel.

Two push buttons—the OK and Search push buttons—trigger the Application
Processor to populate a list box. When the OK button is chosen and a unique match
exists, the Application Processor proceeds directly to displaying the panel. When the
Search button is chosen and a unique match exists, the Application Processor displays
the list box instead. Let us look at this process in figure 9.20.

Update/Display -- Track Problems

‘ Problem Identification: i ‘
Incident Date: i ﬂ ﬂl
Project Identification: i _ﬂ Search |
Problem Status: | =]

Detai
User ID: iﬂ ﬂ #
Problem Tracker: i ﬂ Use Query |

Problem D |Incdnt Dt |Project ID | Problem Status |User 1D |

______ 1999-05-01 00001 Uzer Test gogoz -~} Lﬁuewl

000005 1993-04-01

Figure 9.20

List box display
with partial key
input

< | i

In the example, we just provide a “0” in the User ID field, and the Application
Processor finds all the rows that contained a User ID prefixed with a “0.”

Prepare a list of panels
The Application Processor must still retrieve data to display on the panel. In order to
do so, the Application Processor must access the panel group definition and prepare
a list of panels. The Application Processor retrieves this information from a People-
Soft catalog table called PSPNLGROUP. Remember, one or more panels may be in a
panel group.

In this step, the Application Processor determines the order in which panels are
displayed, the field layouts in a panel, the control display fields, the related display

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

9.24

fields, the secondary panels, the subpanels, and so on. All these related objects are
attached to the panel definition. The PeopleSoft catalog table which stores this defi-
nition is called PSPNLFIELD.

In our example, the panel group MY_PROBLEM_TRKG contains only one panel.
Figure 9.21 shows the number of panels in the panel group.

Navigation: File —Open —Panel Group —-MY_PROBLEM_TRKG

i MY_PROBLEM_TREG.GBL [Panel Group)

Panel Hame Hem Hame Hidden Kem Label Fal
1_|M¥_PROBLEM_TRKG{MY_PROBLEM_TRKG 1" [My Problem Trkg |

Figure 9.21
J | 2l Panel group definition

After the Application Processor has prepared a list of panels and related objects,
it proceeds to the next step.

Prepare a list of records and fields

The Application Processor starts preparing the records needed to build the panels.
The records can be SQL tables, SQL views, or derived records.

In Add mode, the Application Processor retrieves less data from the database when
compared to other modes. This is because, in Add mode the Application Processor
invokes a new panel group. In Add mode, too, the Application Processor may need to
retrieve values for related display fields, which are descriptions for search key fields.

In Update/Display, the Application Processor has to retrieve data for tables
and views on the panel.

Derived records do not exist in the database. They are work records either pop-
ulated by record field defaults or PeopleCode events. We can get a list of the records
that MY_PROBLEM_TRKG panel contains by looking at the panel field layout. The
panel field layout contains records and fields that make a panel.

In figure 9.22, we can see that MY_PROBLEM_TRKG panel displays fields from
SQL tables and derived records. Some of these fields are related display fields which
show descriptions for control display fields.

DATA RETRIEVAL 229

Licensed to James M White <jwhite@maine.edu>

9.25

230

Navigation: File —Open —Panel -MY_PROBLEM_TRKG —Layout —Order

Murnf Lyl | Label Type Field Record
............... ol e O e o |
1| 0 |Problem 1D Edit Box MY_PROBLEM_ID MY_PROBLEM_TRKG |
2| 0 |Problem Tracking Frame
3 0 |Incident Date Edit Box INCIDENT_DT MY_PROBLEM_TRKG
4 0 |Close Date Edit Box CLOSE_DT MY_PROBLEM_TRKG
5 0 |Project ID Edit Box MY_PROJECT_ID MY_PROBLEM_TRKG
Bl 0 | Dummy M ame Edit Box DESCH MY_PROJECT_TBL
7| 0 |Application ID Edit Box MY_APPLICATION_ID MY_PROJECT_TBL
8 0 |Description Edit Box DESCH MY_APPLCTH_TBL
9| 0 [Status Edit Box MY_PROBLEM_STATUS |MY_PROBLEM_TRKG
10| 0 |Durray Name Edit Box HLATLONGMAME HLATTABLE
11| 0 | Pririty Edit Box PRIORITY MY_PROBLEM_TRKG
120 0 |User D Edit Box MY_USER_ID MY_PROBLEM_TRKG =
13| 0 [Name Edit Box MNAME MY_USER_TABLE
14{ 0 |Open Pugsh Button MY_DOCUMENT MY_DERIVED
150 O [Tracker Edit Box MY_PROBLEM_TRACKER|MY_PROBLEM_TRKG
16 0 |Durmmy Name Edit Box NAME MY_USER_TABLE
171 0 [File Mame Edit Box FILENAME My PROBLEM TREG LI
| oK I Cancel l Select | Move I uns&lectl _Qefaull Figure 9.22
Panel field layout

Retrieves data from the database

In our next step, the Application Processor begins retrieving data for the list of tables
and views on the panel. In Add, the Application Processor does not retrieve any data
for our example. This is because the Application Processor displays a new panel and
no related display descriptions are necessary on this new panel.

In Update/Display, the Application Processor retrieves data from
MY_PROBLEM_TRKG table because, in modes other than Add, the Application Proc-
essor has to retrieve existing data for viewing and update from the database.

In Add, the table MY_PROBLEM_TRKG is accessed from the database.

In Update/Display, the following tables are accessed from the database:

¢ MY_PROBLEM_TRKG
e MY_PROJECT_TBL

« MY_APPLCTN_TBL

e XLATTABLE

e MY_USER_TABLE

The tables MY_PROJECT_TBL, MY_APPLCTN_TBL, XLATTABLE, and
MY_USER_TABLE are all accessed to retrieve information for related display fields. In
Add, because the control display fields do not have any values and are new, values for
these related display fields are not necessary.

Let us take a look at the panel display in the Add (figure 9.23) and Update/
Display (figure 9.24) modes to better understand this concept.

All panel fields are new here and do not have any values. The Problem ID field
is populated because it was entered using the search dialog box.

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Navigation: Go —Problem Tracking —Tracking —Track Problems —Add

Problem Tracking - Tracking - Track Problems | _ (O] x|
Fle Edit View Go Favoites Setup Tracking Help

ele(8!x| ‘al-ojaf sle| o|o| Sl=| #le]2] +v|s ||

My Problem Trkg | Add

Problem ID: 000006

incident Date: | ¢| cigsepate: [4

ProjectD: |+

Application ID: Date/Time Reported:
Status: [s

FITLEE [usern: | K|

I™ Document? Open | Tracker: | +

File Name: I

Problem: |

L] L

Resolution: |

[[[My Problem Trka lAdd 4

Figure 9.23 Application panel group in Add mode

In figure 9.24, notice some of the differences in the Update/Display mode.
The data row that matches the Problem ID, 000001 is retrieved from the database.
Data for all related display fields are also retrieved from the database. Project Descrip-
tion, Application Description, Status Description, User Name, and Tracker Name are
some of the related display fields in the panel.

In Add, none of the related display fields have corresponding control display
fields. However, if the values from search fields have corresponding related display
fields, data for these fields are retrieved in Add.

The Application Processor uses search key values to retrieve information from
MY_PROBLEM_TRKG table. So it uses MY_PROBLEM_ID field as the key field to
retrieve data from this table. Information is retrieved from MY_PROJECT_TBL using
MY_PROJECT_ID field from MY_PROBLEM_TRKG table. The Application Proces-
sor constructs SQL statements based on these parameters. In the database, table
indexes are built using search fields defined in record definitions. The Application
Processor can retrieve information from database tables and views more efficiently
when key fields are available. Then, the Application Processor proceeds to the panel
group display stage.

DATA RETRIEVAL 231

Licensed to James M White <jwhite@maine.edu>

9.3

9.3.1

232

Navigation: Go —Problem Tracking —Tracking —Track Problems —Update/Display

Problem Tracking - Tracking - Track Problems H[=] &
Fle Edt View Go Favontes Setup Tracking Help

glgl@lx| ‘ane| sle| | Sl=] @lelo] *lvlal (]
My Prablem Trka | Upaa1ero|sp|ay|

Problem ID: 000001

Incident Date: |IETFAERT] ﬂ Close Date: II]UISHQSB ﬂ E
Project ID: |[lll]l]1 l‘ PeopleSoft HR Implementation

Application ID: HR PeopleSoft Human Resources Date/Time Reported:

Status: |5_:J Resolved
Priority: [73 yserip: 10000 #| Gapieipeter

[Document? Open | Tracker: 100002 ﬂ e o

File Name: |
Problem: |F01 got Password :i
Resolution: IPassword was reset, a
[| [My Problem Trkg [Update/Display 4

Figure 9.24 Application panel group in Update/Display mode

PANEL GROUP DISPLAY

After the Application Processor has collected data for panel group display, it performs
row select and default processing on fields in the panel group. PeopleCode events are
used to perform row select and default processing before the final data buffer is pre-
pared for panel group display. The Application Processor then begins displaying
panel fields by populating input fields, display fields, related display fields, and so
forth. The Application Processor also has to determine the field labels and field layout
before it can display the panel group. During the panel group display stage, the
Application Processor performs row select and default processing (Iterative), displays
panel group, and waits for user action.

RowsSelect processing

In the Add mode, the Application Processor does not perform any row select process-
ing. Row select processing discards rows from the buffer based on RowSelect
PeopleCode event. In Add, no rows are selected or retrieved from the database.

In Update/Display, the Application Processor performs row select processing
using the RowSelect PeopleCode event. After data retrieval, the Application Proces-
sor discards rows from the panel buffer. Row select processing is only performed on

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

panels with scroll bars. During panel group display, the Application Processor discards
the rows from the buffer based on PeopleCode logic and will not display any discarded
rows of data on the panel. The RowSelect PeopleCode event can be used to discard
rows from the buffer and stop loading data into the panel.

NOTE Row select processing is only performed on panels with scroll bars. The
RowSelect PeopleCode event is used to discard rows from scroll bar
buffers before the final panel group display. Data discarded using row select
processing is not available in the buffer.

9.3.2 Default processing (iterative)

Default processing is performed using the FieldDefault and FieldFormula
PeopleCode events. All fields that are not related display fields go through default
processing which occurs both in Add and Update/Display modes. Default proc-
essing is an iterative process which constantly checks for blank fields in the panel
group. A PeopleCode event may blank out a field that has field level default assigned
to it. In this situation, the Application Processor performs default processing for the
blank field. Any time the value of a field in the panel group changes, default process-
ing is performed for other blank fields in the panel group.

Default processing is also processed using default values defined in record field
properties. First, all defaults attached to record fields are processed, then FieldDe-
fault and FieldFormula PeopleCode events are processed.

The Application Processor performs default processing on panel fields when the
panel field is blank after data retrieval, the panel field is blanked out by a PeopleCode
event, or the user blanks out a panel field.

Chapter 13, “PeopleCode and the Application Processor,” covers default process-
ing PeopleCode events as well as the sequence in which they are executed in greater
depth. In this section, we want to illustrate how record field level defaults are proc-
essed. First, let’s look at how default values appear on the record definition screen (fig-

ure 9.25).

Navigation: File —Open —Record —MY_PROBLEM_TRKG —View —Use Display

12l MY_PROBLEM_TREG [Record]

Field Name | Type|Key |Dir | CurC |Srch [List |Sys |Audt |H | Default

MY _PROBLEM 10| Char |[Key |Asc | |Yes |Yes | .N .]

INCIDENT_DT (Date [Alt |Asc No |[Yes |Mo

MY_PROJECT_ID Char [Alt |Asc No |Yes |No

MY_PROBLEM_STATUS |Char (AR |Asc No |Yes [No ol

PRIDRITY Nbr No [No [No

MY_USER_ID Char |Al |Ase No |Yes [No

MY PRDBLEM TRACKEH Char |Alt |Asc No |Yes [No

CLOSE Date No |Ne |[Ne

MY _| DOCUMENT_A'I TACI Cha(No [Ne (Mo

DESCRLONG Long No |No |[MNe

MY_PROBLEM_RESOLT! Long No (Mo (Mo .

MY _PROBLEM_DTTIM |DiTm| Mo [Mo |Mo Figure 9.25

FILENAME Chat Mo [No [Mo Record definition—field defaults
PANEL GROUP DISPLAY 233

Licensed to James M White <jwhite@maine.edu>

9.3.3

234

If MY_PROBLEM_STATUS field is blank at the time the panel group is displayed,
the default value defined in that record field is used to populate the field. Record field
defaults are used in all modes as long as the field is blank. Let us look at the application
panel in the Add mode to see how default values are used during display (figure 9.26).

Navigation: Go —Problem Tracking —Tracking —Track Problems
Problem Tracking - Tracking - Track Problems | _ [O] x|

Fle Edt View Go Favoites Setup Tracking Help

Bl8|8x| ‘alae| slel =lE| 8= @lel] *[e|s]|

My Problem Trkg |]
Problem ID: 000008
Incident Date: | il Close Date: !—ﬂ
Project ID: | K
Application ID: Date/Time Reported:
Status: [8] niioted
Priority: | User ID: | ﬂ
[T Document? Open | Tracker: I ﬂ
File Name: |
Problem: I j
Resolution: I j
| | [My Problem Trkg [&dd 7

Figure 9.26 Record field default processing

Similarly, in modes other than Add, record field defaults are processed as well.
Usually, however, when the application panel is processed in modes other than Add,
field values from the database are retrieved and displayed. In instances where these
fields are blank, record field defaults are used as display values.

Display panel group
During a panel group display, the Application Processor assembles fields in the order
in which they are defined in the panel field layout. In this process, the Application
Processor also displays field labels for panel fields. After performing all necessary
items for display, the Application Processor then executes the RowInit PeopleCode
event that may change the value of a panel field.

We also saw that default processing occurs when a panel field is blanked out. The
RowInit PeopleCode event can potentially blank out a panel field, and the Application

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Processor immediately performs default processing. Let us take a look at the panel field
layout one more time to see the order in which fields are displayed (figure 9.27).

Navigation: File —Open —Panel -MY_PROBLEM_TRKG —Layout —Order

Num] Lvl| Label Type Field
............. R e
1| 0 |Problem ID Edit Box MY_FROBLEM_ID MY_PROBLEM_TRKG T
2| 0 |Problem Tracking Frame
31 0 |Incident Date Edit Box INCIDENT_DT MY_PROBLEM_TRKG
4 0 [Close Date Edit Box CLOSE_DT MY_PROBLEM_TRKG
5 0 |Progect ID Edit Box MY_PROJECT_ID MY_PROBLEM_TRKG
Bl O |Dumemy Mame Edit Box DESCR MY _PROJECT_TBL
7| 0 |Application |D Edit Box MY_APPLICATION_ID MY_PROJECT_TBL
8 0 |Description Edit Box DESCR MY_APPLCTN_TBL
9 0 |Status Edit Box MY_PROBLEM_STATUS |Mv_PROBLEM_TRKG
100 0 {Dummy Name Edit Box ALATLONGMNAME HLATTABLE
11| 0 |Priotity Edit Box PRIORITY MY_PROBLEM_TRKG
12(0 UserID Edit Box MY_USER_ID MY_PROBLEM_TRKG —
13 0 [Name Edit Box MAME MY_USER_TABLE
14(0 (Open Push Button MY_DOCUMENT MY_DERIVED
18 0 [Tracker Edit Box MY_PROBLEM_TRACKER|MY_PROBLEM_TRKG
16(0 |Dummy Name Edit Box MAME MY_USER_TABLE
171 0 1File Narme Edit Box FILENAME MY PROBLEM TRKG ;l
0K | Cancel| Select | bove | Unesiect| Defaut | Figure 9.27

Panel field layout

Usually, search fields appear first in the order in which fields are displayed. Alter-
nate search keys can be placed anywhere in the panel layout.

TIP Display control fields are always placed before their corresponding related
display fields. In order for the Application Processor to successfully retrieve
values for related display fields, values in the corresponding display control

fields must be populated first.

After all fields are displayed, RowInit PeopleCode events are executed. At this
point, all derived fields are also populated with PeopleCode events. After data retrieval
and row select processing, derived fields are populated along with all other fields in the
panel. Derived fields also go through default processing and display processing
PeopleCode events.

TIP All default processing and display processing PeopleCode events from
panel fields are processed during panel display. Even if a field is not present
in the panel, PeopleCode events are triggered from that field. One excep-
tion to this rule is fields from derived records. PeopleCode is processed
from derived fields only when they are present in the panel. For this reason,
the same derived record can be shared across multiple panel sessions with-

out interfering with each other.

PANEL GROUP DISPLAY 235

Licensed to James M White <jwhite@maine.edu>

9.4

9.4.1

236

In instances where multiple panels are present in a panel group, each panel is dis-
played in sequence within the panel group. The focus is on the panel the user chooses
while accessing the panel group. The Application Processor now waits for user action.

DATA ENTRY OR INQUIRY

The Application Processor displays field values in the panel group and waits for user
action. User actions can be adding, updating, or deleting data and saving them to the
database. Some panel groups consist of inquiry panels that do not require any data
entry. After the panel group is displayed, the user can perform the following list of
actions in the data entry or inquiry stage:

* field modifications

¢ rowInsert

* rowDelete

* prompt processing

* command or push buttons
* pop-up menus

* save processing

* Cancel

Field modification

The user can modify any input field on the panel. When the user modifies the value
on a panel field, the Application Processor performs field edit processing. The follow-
ing processes are executed when a user modifies a panel field:

* internal PeopleTools edits
* field edit
* field change

* default processing

PeopleTools edits the value entered in the field with the field format defined for
the field and it issues a message to the user. For example, when the user enters a non-
numeric character into a field that can accept only numeric values, the Application
Processor issues a message (figure 9.28).

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Problem Tracking - Tracking - Track Problems
Fle Edt View Go Favonites Setup Tracking Help

(O] x|

ale(®x| vlao| slel @] 28] @lel=2] *|v|se]|

My Problem Trkg |

Problem ID:

000006

Priority:

File Name:

Incident Date: ﬁﬂ Close Date: I—l]

Project ID: | K
Application ID: Date/Time Reported:
swws. [8]

|
[Document? EI @
I—

Number field format error. The comect format for this field is
[30). (15.43)

Explain
Problem: I_
‘ |
Resolution: I j
[[|My Problem Trkg l&dd 4
Figure 9.28 Field format edits

Similarly, the Application Processor performs other types of edits by comparing
the values entered with record field attributes. Let us look at the record field attributes
for the INCIDENT_DT field (figure 9.29).

Record Field Properties E

Use Edis |
Field Mame:

¥ Bequired

¥ Reasonable Date
I~ Frompt Table Edit

Prompt Table: |I '|

INCIDENT_DT

Figure 9.29
Record Field Properties

The INCIDENT_DT field is edited and defined as a required field. The Reason-
able Date checkbox is enabled as well. Let us see how the Application Processor
behaves when the value entered into this field fails the edit (figure 9.30).

Because we entered a past date, the Application Processor issues a warning mes-
sage indicating that the date is out of range. The Application Processor issues this

DATA ENTRY OR INQUIRY 237

Licensed to James M White <jwhite@maine.edu>

238

Problem Tracking - Tracking - Track Problems !Em
Fle Edt View Go Favonites Setup Tracking Help

glgl@x| ‘aeae| sle | 2= @lel] +lelsle]|

My Problem Trkg |

Problem ID: 000002

Incident Date: [AEICMM +| Ciose Date: [|

Project ID: [0000T #| poonieson HR Implemertaton

]

|

|

1

|

|

Application ID: HR PeopleSoft Human Resources Date/Time Reported: I

|

sawr [R]

|

- |

Friority: [Warming - date out of range. (15.9) ;

i] E |

" Document? Op (= I

— |

- |

File Name: cy ; |

Explain |

Problem: ey _] :

|Instarerysrarrropo |

Resolution: I j i
| | [My Problem Trkg [Update/Display 4

Figure 9.30 Reasonable Date checkbox

message when the date is over thirty days in the past or future and the reasonable date

check is enabled. The following types of PeopleTools edits are available in PeopleSoft:

¢ Field Format

* Required Field

¢ Reasonable Date

* Prompt Table Edits
* Yes/No Table Edits

¢ Translate Table Edits

All these edits are performed using record field attributes. The Application Proc-
essor retrieves information on record field attributes from PeopleSoft catalog tables
PSRECFIELD and PSDBFIELD.

Fieldedit and FieldChange PeopleCode events are also processed once the
Application Processor successfully processes the PeopleTools edits. Chapter 13,
“PeopleCode and the Application Processor,” explains these PeopleCode events in a
thorough fashion.

And, as we discussed earlier, any time a panel field is changed, the Application
Processor performs default processing.

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

9.4.2

9.4.3

Rowlnsert

We use the RowInsert function on panels that have scroll bars. We can either press
the F7 key or choose the row insert icon from the application menu. When a row is
inserted into a scroll bar, the following events take place:

* A new row is inserted in the current scroll area and all dependent scroll areas.

* The RowInsert PeopleCode event is executed.

* Default processing occurs for fields on the new scroll row.

* The RowInit PeopleCode events are processed for fields on the new scroll row.

The Application Processor automatically inserts a row into the current scroll bar
and child scroll bars. After the new rows are created, RowInsert event is executed
from all fields in the scroll bars. As previously discussed, the Application Processor per-
forms iterative default processing on all fields in the scroll bar. Default values are used
only when the fields are blank or zero for numeric fields. Finally, RowInit is triggered
from all the fields on the scroll bar.

When the primary record on the scroll bar is effective-dated, the Application
Processor copies values of fields from the current row to the new row. (Current does
not imply the current effective-dated row. It means the row from which the user
chooses to perform the row insert.) This feature is built internally into PeopleTools
to accommodate maintenance of history data in PeopleSoft. This enables the user to
override only the fields that are different on the new row.

TIP When the primary record on the scroll bar is effective-dated during
RowInsert, the Application Processor automatically copies data into the
new row.

TIP We can disable the RowInsert function on a scroll bar by editing scroll
bar properties in panels.

RowDelete

We can use the RowDelete function on panels that have scroll bars. This function is
used to delete rows from the scroll bar. The RowDelete function can be performed by
either pressing the F8 Key or by choosing the row delete icon from the application
menu. When the RowDelete function is chosen, the RowDelete PeopleCode event
is executed from fields on the scroll area; a warning message is issued to verify the Row-
Delete; and rows are deleted from the current scroll area and all child scroll areas.

The Application Processor executes the RowDelete PeopleCode event from
fields on the scroll area. This PeopleCode event can be used to verify whether the user
can delete this row, and an error or warning message can be issued to either prevent
or warn the user.

DATA ENTRY OR INQUIRY 239

Licensed to James M White <jwhite@maine.edu>

9.4.4

240

By default, the Application Processor

automatically issues the message in

@ figure 9.31 when a row is deleted from the
scroll bar.

If the user chooses to proceed with

Dedete cument row? [15.2)

RowDelete, the Application Processor
deletes rows from the current scroll area as
well as all dependent scroll areas. It is
important to note that the rows are not physically deleted from the database until the
panel is saved. The deleted row is still available for access until save time.

Figure 9.31 PeopleTools message during
RowDelete

TIP Scroll bar functions such as TotalRowCount and ActiveRowCount
treat rows marked as deleted in scroll bars differently. The TotalRow-
Count function adds all rows including deleted rows on the scroll bar. The
ActiveRowCount function adds all rows except the deleted rows.

TIP We can disable the RowDelete function on a scroll bar by editing scroll
bar properties in panels.

Prompt processing
A prompt is a list of valid values for a Panel field. Prompt processing is activated
under record field properties. When the user presses the F4 Key or clicks on the drop-
down list, the Application Processor provides a list of valid values for the panel field.
Prompt processing is performed using keys from the prompt table.

For the prompt to be processed correctly, key fields from the prompt table have
to be present on the panel group. Let’s take a look at how prompt processing works
in the MY_PROBLEM_TRKG panel (figure 9.32).

User ID: I ‘
Cancel |
MName: I
Search
EmpliD: [|
User ID |Name |ID

S ank.atan Prakash
00002 Landres Galina
10000 Gabriel Peter

Figure 9.32
Prompt processing

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Here, we activated the prompt on the User ID field, and the Application Processor
produced a list of valid users from MY_USER_TABLE. MY_USER_TABLE is the
prompt record for the MY_USER_ID field on the MY_PROBLEM_TRKG record.

Observe how the Application Processor displays all list box fields from the
Prompt record in the prompt list. (To learn more about prompt records and prompt
processing refer to chapter 6.)

945 Command or push buttons
When command or push buttons are pressed, the Application Processor executes the
FieldChange PeopleCode event for the panel field. Push buttons can be defined as
a command button, a process, or a secondary panel.

When the push button is defined as a command button, the Application Proces-
sor executes FieldChange PeopleCode event from the record field. When the push
button is defined as a process, the batch process attached to the push button definition
is run. When the push button is defined as a secondary panel, the secondary panel
attached to the push button definition is brought up. Consider the example from our
application panel shown in figure 9.33.

Problem Tracking - Tracking - Track Problems |- [O] x|
Fle Edt View Go Favonites Setup Tracking Help
ale|®x| B0 cle| o= A= @] #le|sle]]
My Problem Trk |
Problem ID: 000001
Incident Date: [0170171998 | Cigge Date: [01715/1998 s
Project ID: [00001 %[pie6oft HR Implementation
Application ID: HR PeopleSoft Human Resources Date/Time Reported:
Status: |5_j Resolved
Priority: [3 usern: [10000 3| Goicipe
I™ Document? Open | Tracker: II]IJI]IJZ ﬂ B
File Name: |c;\plakash\psbnok\loc11.dnc
Problem: |Fo«;ot Password j
Resolution: |Pessward was reset, j
| | My Prblem Trkg Update/Display 7
Figure 9.33 Push buttons on application panels
DATA ENTRY OR INQUIRY 241

Licensed to James M White <jwhite@maine.edu>

9.4.6

242

Panel Field Properties

Record | Label |

Type

‘ & € Procass C Seconday Panel

B re Anru Panal
G ‘anel

Becord Name: [MY_DERIVED -
Fiekd Mame: [Mv_DOCUMENT -i

o] cwen |

Figure 9.34 Push Button Properties

When the Open push button is activated,
the FieldChange PeopleCode event is proc-
essed. Let’s look at the definition for the push
button and the FieldChange PeopleCode
event attached to it (figures 9.34 and 9.35).

The push button is defined as a command
button, and the field MY DOCUMENT is from
MY_DERIVED record. The FieldChange
PeopleCode event from this record field opens a
Microsoft Word document with the filename as
the parameter. The Application Processor auto-
matically executes the FieldChange
PeopleCode event to bring up the Word docu-
ment. (To learn more about push buttons, refer
to chapter 6.)

W MY_DERIVED [Record PeopleCode) M= B
[My_pocuMENT =] ﬁeld:hame =]

1€ ALL(MY_PROBLEM_TRKG.FILENAME) Then
<COMMAND _LINE = "C:\Program Files\Microsoft

Office\0ffice\WINWORD.EXE ™ | MY_PROBLEM_TREG.FILENAME:

VinExec (sCOMMAND_LINE, 3, True);
End-If;

Figure 9.35
FieldChange PeopleCode

Pop-up menus

for the push button

We can attach pop-up menus to a panel field to bring up context-sensitive informa-
tion. Two types of pop-up menus can be brought up from a panel field: the standard
pop-up menu and the developer-defined pop-up menu.

The Application Processor executes the PrePopup PeopleCode event when the
user activates a developer-defined pop-up menu. Pop-up menus are activated either by
right-clicking on a panel field or using the SHIFT-F10 Key.

In figure 9.36, we can see how a standard pop-up menu is displayed by the Appli-
cation Processor. We can use any field in our application panel for this purpose.

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Problem Tracking - Tracking - Track Problems [_ O] x|
Fle Edit View Go Favontes Setup Tracking Help

gle|8x| ‘aaa| &e oo G @cl] #lelal]

My Problem Trkg |

Problem ID: 000001

Incident Date: W"‘E:do” 4se Date: lmﬂ
Project ID: [000017 ¢y Logh 1R implementation
Application ID: HR
Status: |5_ :' Delete
Priority: [3 %W # Gabielpeter
" Document? Open | Tracker: W ﬂ Landres,Galina

File Name: |c:\plakash\pshouk\loc1 1.doc

LCopy
Paste pan Resources Date/Time Reported:

Pk IForgot Password. j
Resolution: IPasswom was resel. 3
| | [My Problem Trkg [Update/Display 7

Figure 9.36 Standard pop-up menu for a panel field

9.4.7 Save processing
When the user chooses to save the panel group by pressing on the Save button, the
Application Processor begins the save processing stage. We start with any one of the
following actions:.

choose File =Save from the application menu
press ENTER using the keyboard
choose the Save button

When the user performs the following actions, the Application Processor issues

a message to the user, as illustrated in figure 9.37.

choose Next in List

choose Previous in List

choose List

choose another panel group

choose another application menu without starting a new window
close the application panel window

DATA ENTRY OR INQUIRY 243

Licensed to James M White <jwhite@maine.edu>

PeopleSoft The message in figure 9.37 is just a
/_ T T reminder to the user that data has been
) changed in the application panel and the
changes are not saved yet. When the user
chooses “Yes” to proceed with the save, the
save processing stage begins. When the user
chooses “No,” the Application Processor
transfers the focus back to the application
panel. When the user chooses “Cancel,” the Application Processor cancels the whole

No | Concel [Esplan

Figure 9.37 Save message

panel group, and all changes are lost.

Let’s go back to our panel group example where the user has made some changes
and now chooses to save the panel group. During the save processing stage, the Appli-
cation Processor triggers the following events:

* executes the SaveEdit PeopleCode event

* executes the SavePreChg PeopleCode event

* cxecutes the WorkFlow PeopleCode event

* updates the database with changes made in the panel group
* executes SavePostChg PeopleCode event

* saves the data to the database

Execute SaveEdit PeopleCode event

The Application Processor executes SaveEdit PeopleCode events from all records in
the panel group except records which contain related display fields. Let us look at the
panel field layout for MY_PROBLEM_TRKG panel to identify related display and
non-related display fields (figure 9.38).

Navigation: Layout —Order (MY_PROBLEM_TRKG panel is open)

Num|Lvl | Label Type Field Record
B Nk ™1 L PR O E PR DI C T |
1[0 [Broblem D Edit Box M PROBLEM_ID WY PROBLEM_TRKG
2| 0 |Problem Tracking Frame
3 0 |Incident Date Edit Box INCIDENT_DT MY_PROBLEM_TRKG
4 0 [Close Date Edit Box CLOSE_DT MY_PROBLEM_TRKG
5(0 |Project ID Edit Box MY_PROJECT_ID MY_PROEBLEM_TREG
8 0 |Durnmy Name Edit Box DESCR MY_PROJECT_TBL
7| 0 |Apgiication ID Edit Box MY_APPLICATIONID |MY_PROJECT TBL
8 0 |Descrption Edit Box DESCR MY_APPLCTN_TBL
90 [Status Edit Box MY_PROBLEM_STATUS |MY_PROBLEM_TRKG
10| 0 | Dusnrng Name Edit Box #LATLONGNAME XLATTABLE
11| O | Pricrity Edit Box PRIORITY MY_PROBLEM_TRKG
12| 0 |UserID Edit Box MY_USER_ID MY_PROBLEM_TRKG =~ —
13 0 |Mame Edit Box MNAME MY _USER_TABLE
14| 0 |Open PushBulon |My_DOCUMENT MY_DERIVED
15/ 0 [Tracker Edit Box MY_PROBLEM_TRACKER|MY_PROBLEM_TRKG
16 O | Dummy Name Edit Box MNAME MY_USER_TABLE
171 0. |File Name Edit Bax FILENAME My PROBLEM TRKG =
0K | cConcel| Select | Move | Unselect| Detaut | Figure 9.38
Panel fields layout
244 CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

In figure 9.38, we notice that fields exist from more than one record definition.
MY_PROJECT_TBL, MY_APPLCTN_TBL, XLATTABLE, and MY_USER_TABLE are
records that contain the related display fields in the panel. The only other record that does
not contain related display fields is the MY_PROBLEM_TRKG record.

Only the savekdit PeopleCode

events from MY_PROBLEM_TRKG record

3 ARt el A e S TR X are going to be executed by the Application

- Processor. SaveEdit PeopleCode events

Explain are used to validate user data entry before

saving them to the database. Error and

Figure 9.39 Error message warning messages can be added to Save-

Edit PeopleCode events to either prevent

or warn the user after validation. Let’s go

back to our example and look at the differ-

N e e HAMAIERS o) ce between an error message and a warn-
ing message (figures 9.39 and 9.40).

Corcel | _Evpan | An error message prevents the user

from saving the panel group. The Applica-

Figure 9.40 Warning message tion Processor then returns the focus to the

application panel to allow the user to rec-
tify the error. A warning message allows the user to override the validation and save
the panel group. The user can choose the OK button to override the message and save
the panel group. On the other hand, the user can choose the Cancel button to get back
to the panel group and correct the problem causing the Application Processor to issue
the warning message. SaveEdit events are processed in the order in which fields are
laid out in the record definition. (Part 3 will explain more about the usage of
SaveEdit PeopleCode events.)

TIP SaveEdit events are processed in the order in which fields are laid out in
the record definition. SaveEdit events in records that are present in pan-
els with scroll bars are processed starting from level zero.

Execute SavePreChg PeopleCode event

The Application Processor executes all SavePreChg PeopleCode events from
records in the application panel with the exception of records which contain related
display fields. savePreChg PeopleCode events are used to process data after user
input—before the data are saved to the database. A perfect use for SavePreChg
PeopleCode event would be to populate certain fields which are not input fields on
the panel, based on other fields which are input fields. The Application Processor exe-
cutes the SavePreChg PeopleCode events in the order in which the fields are laid
out in the record definition. The Application Processor errors out with a runtime

DATA ENTRY OR INQUIRY 245

Licensed to James M White <jwhite@maine.edu>

246

error when an error or warning message is used in SavePreChg PeopleCode events.
(Part 3 explains SavePreChg PeopleCode events in greater detail.)

TIP An error or warning message can be used only in SaveEdit PeopleCode
event during save processing.

Execute WorkFlow PeopleCode event

After all panel fields are populated for saving, the Application Processor then executes
WorkFlow PeopleCode events. WorkFlow PeopleCode events are used to trigger
business events which either update a work list or execute a message agent. WorkFlow
PeopleCode events are executed in the order in which fields are laid out in the record
definition. (Again see part 3 for more discussion on WorkFlow PeopleCode events.)

Update the database with changes

The Application Processor then builds SQL scripts to update database tables based on
changes made to the panel. Some database platforms allow updates to SQL views that
in turn update the underlying database tables from which the views were built. It is
important to note that the data are not saved in the database yet. In other words, the
Application Processor does not perform any commits to the database in this step. In
the Add mode, the Application Processor determines that it must perform an SQL
insert. In other modes, the Application Processor determines that an update is neces-
sary. In panel groups with scroll bars, the Application Processor performs an SQL
insert for rows added into the scroll bar and SQL deletes for rows deleted from the
scroll bar.

TIP Rows that are deleted from the scroll bar are available in the panel buffer
until the Application Processor issues an SQL commit to the database.

Execute SavePostChg PeopleCode event

The Application Processor executes all SavePostChg PeopleCode events from
records in the panel group. SavePostChg PeopleCode events are not executed from
records which contain related display fields in the panel group. SavePostChg
PeopleCode events can be used to perform updates to other related application tables
based on information entered in the panel group. As with the preceeding PeopleSoft
events, SavePostChg PeopleCode events are executed in the order in which fields
are laid out in the record definition. (See part 3 for more information about
SavePostChg PeopleCode events.)

CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

Saves the data to the database

The Application Processor is now ready to save the changes permanently to the data-
base. The Application Processor issues an SQL commit to the database to accomplish
this. At this time, all rows deleted from scroll bars are no longer available in the panel
buffer. The Application Processor, after successfully saving data, returns the focus

back to the panel group in a static state.

NOTE

The Application Processor can error out with a runtime error after Save-

Edit PeopleCode events are executed. Runtime errors can occur as a result
of errors in SQLExec statements, database index constraints, data storage
parameters, network connection loss, and so forth.

Navigation: File —Object Properties (Panel Group is open)

Generad Use |
Access ~Actions
Search record: ¥ Add
] 1 IV Update/Display
I Update/Display Al
| = I Conection
™ DataEntry
Detai panet: L
[MY_PROBLEM_TRKG =l
r 3-Tier Execution Location
r~ Panel Group Buid ~ Panel Group Saye
& Cient [& cien
€ Application server | € Application server
€ Default [application server) i € Defauk (spphcation server)

ok]_comed |

Figure 9.41 Panel Group build and
save parameters

The panel group definition contains
two parameters which help the Applica-
tion Processor determine both where to
build the panel group and where to per-
form save processing (figure 9.41).

Figure 9.41 illustrates the two
parameters in the panel group definition
which the Application Processor uses to
build and save the panel group. When
Client is chosen either for Panel Group
Build or Panel Group Save, the Applica-
tion Processor is going to process both
stages on the client workstation. When
Application Server is chosen, the Applica-
tion Processor is going to process both
stages in the machine which hosts the
Application Server. The Application
Server is physically closer to where data
reside than the client workstation.

During save processing, all PeopleCode events except for the SaveEdit
PeopleCode event can be executed on the Application Server.

In a three-tier installation which runs using a Tuxedo Application Server config-
uration, it is prudent to process both these stages close to the database server. (For a
detailed description on two-tier and three-tier installations, refer to chapter 1.)

DATA ENTRY OR INQUIRY

247

Licensed to James M White <jwhite@maine.edu>

9.4.8 Cancel

Finally, the user can choose to cancel all changes made to the fields in the panel group
by simply choosing the Cancel button from the application menu. The user can also
choose “No” to the message illustrated in figure 9.37 to cancel all changes.

1 The Application Processor organizes numerous individual steps from the
time the user accesses an application panel to the time the user saves the
changes to the database.

2 The Application Processor stages can be divided into search processing, data
retrieval, panel group display, and data entry/inquiry stages.

3 Search records that are attached to panel groups are used during the search
processing stage.

4 The Application Processor executes a number of PeopleCode events during
all stages.

5 The Application Processor retrieves less data from the database in Add and
Data Entry modes when compared to all other modes.

6 Panel field definitions and layouts are used to retrieve and display fields in
the panel group.
7 The Application Processor performs default processing, which is an iterative

process performed during all stages of the panel group session.

8 During the data entry/inquiry stage, the Application Processor performs
validations, executes field modification PeopleCode events and row modifi-
cation PeopleCode events, and performs save processing.

9 Save processing starts when the user chooses to save the panel group session.

10 In a three-tier installation, the Application Processor looks at the Panel
Build parameter and the Panel Save parameter in the panel group defi-
nition in order to determine where to build and save the panel group.

248 CHAPTER 9 PEOPLESOFT APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

I \\"
W\NCHAPTER 10

Application Designer—
PeopleSoft 8

10.1 Development objects 250
10.2 Other features 255

PeopleSoft 8 contains exciting new features that enhance the types of end users who
can access a PeopleSoft application. One such feature is the Internet Client. Almost
all the new features that are available in the Application Designer tool are focused to
service the Internet Client. While the Application Designer tool in this new release is
similar to that in release 7.5, some enhancements are available in PeopleSoft 8. Let’s
have a look at what’s new in PeopleSoft 8.

249

Licensed to James M White <jwhite@maine.edu>

10.1 DEVELOPMENT OBJECTS

A number of new objects can be developed using the Application Designer tool in
PeopleSoft 8. Objects such as the Application Engine Program and Approval Rule
Sets, developed using a tool menu outside of the Application Designer tool in
release 7, are now integrated with the Application Designer tool. The following is a
list of objects that can be developed using the Application Designer. New objects in
PeopleSoft 8 are mentioned in Jzalics:

* Activity

* Application Engine Program

* Approval Rule Set

* Business Component

* Business Interlink

* File Layout

* HTML Definition

* Image

* Message Definition

* Message Channel

* Message Node

* SQL

o Style Sheet

10.1.1 Application Engine program

Application Engine is a PeopleTools object that provides an alternative to using
COBOL and SQR for batch applications. Application Engine is now integrated
within the Application Designer tool and can be upgraded between databases. To
learn more about new features in Application Engine in release 8, see chapter 45 in

this book.

10.1.2 Business components

Business components are individual business transactions. Business transactions such
as Purchase Orders, New Hires, and Journal Entries can be encapsulated into a busi-
ness component. Business Components are single instances of a panel group session
and can be invoked from external applications as well as from PeopleCode. The
whole idea behind business component definitions is to provide external access to
PeopleSoft applications. Business Components expand the possibilities of the user
types who can access the system.
Business component definitions are divided into three parts:

* Search Keys are from the search records defined in panel groups.

* Methods are processes that take place when the business component is invoked.

* Properties refers to a single instance of data in the panel group. For example, data
stored in a field in the panel group constitutes a property.

250 CHAPTER 10 APPLICATION DESIGNER

Licensed to James M White <jwhite@maine.edu>

10.1.3

Figure 10.1 illustrates a business component definition in PeopleSoft 8.

Bl Business Component] [Business Component]

S ABSENCE_HISTORY [Pandl Gioup)
[PERS_SRCH_GBL (View) - Search Record
= B Scroll- Level

+ % PERSOMAL_DATA [T abde]

ER= UNTITLED
-1 &3 SEARCHKEYS
e EMFLID PERS_SACH_.. EMPLD

* Sciol - Level 1 Primary Record ABSEMCE_HIST e LAST_MAME_SRCH PERS_SRCH_ LAST_MAME_S.
Ga NAME PERS_SRCH_. MNAME
B FROFERTIES
B METHOD

4] | »

Figure 10.1 Business component definition

The business component API is used by external applications to access the
PeopleSoft business component and supports the following environments:

* Microsoft COM (Visual Basic)
* PeopleCode

Figure 10.2 is an illustration from PeopleBooks 8 on business component architecture.

Business PeopleSoft Application
Component

Panel Group
PeopleCode

Panel Group
Search Keys

|
P rstons. i Methods
(—

Keys
External Application

COM(VB)

C/C++ (future) Figure 10.2
Business Component
architecture

Properties and

Fields and Scrolls Collection

Other Bindings

Business interlink
A business interlink allows you to integrate your software system with PeopleSoft.
Business Interlink is a gateway to your software system from PeopleSoft. You can
invoke a business interlink from your PeopleSoft application. The external software
system is integrated by using a business interlink plug-in which provides a framework
to that system. The business interlink plug-in allows you to invoke the external soft-
ware system using PeopleCode.

Basically, the business interlink plug-in accesses the PeopleSoft Application Server,
which then initiates a business interlink object which resides in the PeopleSoft appli-
cation. The business interlink plug-in can be located in the same machine as the

DEVELOPMENT OBJECTS 251

Licensed to James M White <jwhite@maine.edu>

PeopleSoft Application Server to enable access to software systems within your com-
pany. On the other hand, the business interlink plug-in can be located outside the fire-
wall on a web server to access third-party software applications from within PeopleSoft.

The business interlink plug-in exposes the external software system to PeopleSoft
as sets of input/output transactions or data classes for query and updates. For example,
your PeopleSoft Payroll application can transact with your Oracle General Ledger sys-
tem to feed in journal entries using data classes which represent the data structure in
the external database. Similarly, your PeopleSoft Benefits application can feed enroll-
ment transactions to vendors which manage employee benefits. Figure 10.3 illustrates
the business interlink architecture with the plug-in located on a web server.

Application Engine/Server Address Space

Application Engine or App Server instantiates
a Business Interlink Object

&/

o
' u
’F\’l Business |T
U Interlink | P
17| Object [V
T
s s
Web Server
Business 7 External
Interlink Plug-in t -
I e System Figure 10.3
Business interlink architecture —plug-in
located on the web server

10.1.4 File Layout

File Layout maps fields in a file. It basically describes the location of columns in a file.
Using the file layout definition, PeopleCode can either read from or write into a file.
Figure 10.4 illustrates a simple file layout definition in PeopleSoft 8.

One or more record definitions may be used in building a file layout. Fields from
the record definitions are automatically expanded into the file layout. The record fields
are only used as templates for columns in the file. No correlation exists between record
fields and the file layout. Changes to record field attributes will not be reflected in the
file layout.

252 CHAPTER 10 APPLICATION DESIGNER

Licensed to James M White <jwhite@maine.edu>

2 ABS_HIST (File Layout)

= | ABS_HIST
= () ABSENCE_HIST

& EMPLID
& ABSENCE_TYPE
& BEGIN_DT
& RETURN_DT
R CURATION_DAYS
& DURATION_HOURS
& REASOMN
& PAID_UNPAID
& EMPLOVER_APPROVED
& COMMENTS

Figure 10.4
File layout definition

10.15 HTML definitions

HTML area control can be inserted into any PeopleSoft panel. It can be viewed only
from an Internet Client. The Internet Client automatically converts the panel into
HTML tags. The HTML area control can be inserted into any level in the panel as a
rectangular box which can be reshaped and resized.

An HTML area can be populated using static texts and images or dynamic record
fields. The HTML area control is different from other Internet Client controls. While
the Internet Client translates other controls such as check boxes, prompt lists, and so
forth. into HTML tags in the HTML area control, the developer writes HTML code
used as is during runtime, but HTML tags <body>, <frame>, <frameset>, <form>,
<head>, <html>, <meta>, and <title> are not supported in the HTML area control.

10.1.6 Image definition

Images are converted into image definitions and stored in a repository. In
PeopleSoft 7.5, images were associated to panels and defined as panel fields. In
PeopleSoft 8, image files are converted into image definitions and stored within
PeopleTools as objects.

The following image types can be stored as image definitions:.

* BMP—Bitmap

* DIB—Device independent Bitmap
* JPEG

GIF—Only for Internet Client

10.1.7 Message definition

Message definition is used in the Application Messaging system in PeopleSoft. Mes-
sage definitions store information on how a single message is passed using the Appli-
cation Messaging system. Messages are objects formatted in XML. In PeopleSoft 8,
messages are used as a single unit of transaction in the Publish and Subscribe process.

DEVELOPMENT OBJECTS 253

Licensed to James M White <jwhite@maine.edu>

10.1.8

10.1.9

10.1.10

254

Message channel definition

Message channels group individual message definitions and organize their transmis-
sion. They route messages between nodes across your network and they define how
each single message definition in the group should process.

Message node definition

Message nodes are physical systems connected to the messaging network. Subscribers
subscribe to a Message node, which can be an Application Server or a database, and
the Application Server or the database publishes a message, which is transmitted to
the subscriber using message channel definitions. Message channel definitions
include information on how to route messages from the publishing node to the sub-
scribing node. Figure 10.5 illustrates how messages are published and subscribed
using these three new object types.

Publisher Subscribers

Subscriptions
N———— 1

Routing
Rules @ "
- =
o
4l v

Channel Node B
N———

o

"
} . - | bhé
Channel . "' J Figure105

Node C Publishing and subscribing
Node A messages —application messaging

@@ @@

Messages

Hl
J

!
@‘v @Q

SQL definition

We can store SQL statements in PeopleTools using the Application Designer. An SQL
definition can be a section of an entire SQL statement that you want to reuse or mul-
tiple SQL statements. The SQL definition can be accessed using PeopleCode SQL-
Class. Unlike SQLEXEC functions, an SQLClass allows selection of all rows using an
SQL statement. You can also create an SQL definition using PeopleCode, then store it
in PeopleTools. The SQL definition contains the SQL statement, the database type,
and an effective date.

CHAPTER 10 APPLICATION DESIGNER

Licensed to James M White <jwhite@maine.edu>

PeopleCode functions associated with the SQL definitions are CreateSQL,
DeleteSQL, FetchSQL, and GetSQL.

10.1.11 Style sheet

Web development needs style attributes beyond foreground, background, and fonts.
In PeopleSoft 8, a new development object, the Style Sheet, can be created using the
Application Designer. A style sheet is a collection of styles that can be used on a
webpage. A style sheet can be displayed only on the Internet Client and is attached to
the properties of a PeopleSoft Panel definition. PSSTYLEDEF is the default style sheet
that is delivered in PeopleSoft 8. This default style sheet already contains classes that
define style attributes in a webpage.

10.2 OTHER FEATURES

Other new features are available in PeopleSoft 8 under the Application Designer tool.
They can be categorized into:

* general environment
* field definitions

* record definitions

* panel definitions

* panel groups

10.2.1 General environment

* The PeopleCode Debugger can be accessed using the new Debug menu from the
Application Designer tool.

* Language translations can be performed from the Tools menu using the Trans-
late menu item.

* A new Internet Options menu item is available under the View menu from the
Application Designer tool.

* Additional password controls are available in PeopleSoft 8. Minimum length,
password expiry, and special character requirements are some features which
control user passwords.

10.2.2 Field definitions
* Multiple labels can be attached to field definitions in PeopleSoft 8. A default

label can be indicated in the field definition. Any one of the labels can be used as
the record field label or panel field label.
* Numeric fields can accommodate thirty-one decimals in PeopleSoft 8.

10.2.3 Record definitions

* You can sort fields within a record definition by clicking on the column
headings.

OTHER FEATURES 255

Licensed to James M White <jwhite@maine.edu>

* Subrecords attached to record definitions can be expanded and viewed.
* A new record type called the Temporary Table is now available in PeopleSoft 8.

10.2.4 Panel definitions

* Under the panel field layout screen, scroll levels are now displayed. Control Dis-
play and Related Display fields can also be seen in the panel field layout screen.

* Required fields appear with an “* at runtime in panels.

* Multiple grids can be included in the same panel in PeopleSoft 8.

* Grids can be hidden or shown using a PeopleCode object.

10.2.5 Panel group definitions

* DPanel groups are displayed in a tabbed interface in the object workspace.

* Two new PeopleCode events associated with panel groups—the PreBuild and
PostBuild PeopleCode events—are available in PeopleSoft 8.

* A new option is available to disable saving the panel group in PeopleSoft 8.

* Internet Client attributes are available in the panel group definition to support
the new Internet Client.

256 CHAPTER 10 APPLICATION DESIGNER

Licensed to James M White <jwhite@maine.edu>

PART

PeopleCode:
an in-depth look

One of the most powerful PeopleTools is the proprietary language called PeopleCode, which
is used in conjunction with the Application Processor to control an application’s behavior. The
fundamental elements in the PeopleCode language are similar to those found in other program-
ming languages such as SQR, Visual Basic, and PowerBuilder. In addition, PeopleCode has an
extensive set of functions and syntax conventions designed specifically for PeopleSoft object
types such as scroll bars. Some readers may be familiar with event-driven languages like Visual
Basic where code is attached to action events such as mouse-clicking or tabbing from one field to
another. As we discovered in part 2, the Application Processor differs in that it generally main-
tains events at the record and field levels. For example, when a panel is initially populated, the
fields may be initialized through PeopleCode designated in the RowInit event. When an
attempt is made to save the information on a panel, the Application Processor calls any
SaveEdit PeopleCode that may exist. Since all the events and execution of PeopleCode are reg-
ulated by the Application Processor, the developer is free to concentrate on the functional aspects
of the program. PeopleCode language elements, syntax, variables, and field references will be cov-
ered along with further explanation of event processing and program execution flow. To demon-
strate a few advanced features of PeopleCode, we continue to examine and enhance our Problem
Tracking application as well as present other pertinent examples. One of the most difficult
PeopleCode techniques to master is working with scroll bars. To emphasize scroll handling, we
create a slick little application which links employees to operator classes/locations. We also cover
topics such as function libraries, error handling, debugging, and embedded SQL. The section
concludes with an overview of new PeopleCode features in release 8.0.

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

Introduction to PeopleCode

11.1 What is PeopleCode? 260
11.2 PeopleCode Events 261
11.3 Using Application Designer to develop PeopleCode 263

Using Application Designer, we can build records and panel functionality that are
quite eclectic. The PeopleCode language offers a wide range of features including the
ability to manipulate variables, panels, and scrollbars. PeopleCode is accessed from
the Application Designer, which contains the PeopleCode editor.

259

Licensed to James M White <jwhite@maine.edu>

11.1

260

WHAT IS PEOPLECODE?

PeopleCode is a PeopleSoft proprietary programming language used with People-
Tools applications. It is an interpreted scripting language and works as part of Appli-
cation Designer in conjunction with the Application Processor. PeopleCode
programs are linked to applications through record fields or menu items.

Let’s assume that an application is distributed to various clients. Some of these
clients would like to fully utilize the application, and others require limited function-
ality or fewer fields on panels than what would normally be displayed. One option
would be to develop two panels: one panel can contain all the delivered fields; and the
other panel would contain a limited number of fields. Maintaining two panels would
not be difficult, but if a multitude of panels existed requiring similar designs, our panel
maintenance would increase. This would also impact future upgrades, menu mainte-
nance, and security—the potential for a tumultuous undertaking!

If the objective is to be more efficient within certain standards and utilize the
Application Designer environment to a fuller extent, PeopleCode can be used to hide
fields on the same panel. This approach saves the replication of panels. We can identify
the user in an efficient manner so that the PeopleCode can operate on the correct fields
by using operator classes, panel groups, menus, or language code. Once this informa-
tion is known to the program, the manipulation of the PeopleTools environment can
be done by hiding fields on panels and setting varying default values and edit controls
using PeopleCode. Although several panels may not be required, the trade-off is addi-
tional PeopleCode that can, however, be localized to specific records and events.

As we've said, PeopleCode is a programming language which enables developers
to extend the functionality of PeopleTools applications. An application can be refined
or made more efficient through the use of PeopleCode. These refinements can take
many forms including:

* hiding and un-hiding values on a panel

* defaulting values based on some common identifier

* editing values entered on a panel

* submitting jobs to the Process Scheduler

* enabling/disabling menu items

* calling functions from various events. (possibly leading to code efficiency and

reusability)

Familiarity with structured programming languages such as C++, Visual Basic,
SQR, and knowledge of relational data base concepts and SQL provide a foundation
for a better understanding of PeopleCode. PeopleCode’s syntax is similar to some struc-
tured languages but the events, rules, and general behavior of PeopleCode are directly
linked to the Application Designer and PeopleTools environment. Panels, menus,
records, and fields are all interwoven into the application of the PeopleCode language.

CHAPTER 11 INTRODUCTION TO PEOPLECODE

Licensed to James M White <jwhite@maine.edu>

PeopleCode programs are joined with record fields and triggered by events such
as record initialization, tabbing out of a field, saving a record, or other events generated
by the Application Processor. Think of the Application Processor as a traffic officer
who coordinates the efforts between the end-user, panels, PeopleCode, and other
PeopleTools objects. Variables appearing on panels and work fields may be initialized
or manipulated using PeopleCode. Other features include message functions used to
communicate with the end user as well as features which handle panel scroll bars and
their data contents.

11.2 PEOPLECODE EVENTS

In PeopleTools 7 every PeopleCode program is associated with both objects and
events. PeopleCode events occur when specific actions take place. These actions can
take place when a panel is initially displayed or when the value of a field on a panel is
changed. Two types of PeopleCode exist within Application Designer. The first type
is tied to events and occurs within record fields. The other type of PeopleCode is tied
to menu items. These are referred to as record PeopleCode and menu PeopleCode,
respectively. Collectively, we can refer to both types as PeopleCode event sets.

11.2.1 Record PeopleCode events

PeopleTools terminology defines a record as an SQL table, a view, or a derived/work
record. Fields are a subset of records and they contain over ninety percent of People-
Code. Each field can have an event, and each event can trigger PeopleCode. Some
code is more efficient when contained in specific events; however, the same code
placed into other events can generate runtime errors.

The illustration in figure 11.1 demonstrates the relationship between records,
fields, and their corresponding PeopleCode events.

As figure 11.1 illustrates, records are comprised of fields. A record can contain one
to many fields. Each field contained in a record has events and may have PeopleCode
linked to one or more events. Events enable the developer to interact with the Peop-
leTools environment at key points during a working session. These events can include
PeopleCode to initialize values and perform specific actions when a row is selected or
when data are changed on a panel. PeopleCode can also be used to interact with events
during panel save operations. We can categorize events into those that occur before
data are retrieved from a record, during the maintenance phase when data are changed,
and at the time data are saved to a record.

Record PeopleCode events include:

* FieldDefault
* FieldEdit

* FieldChange
* FieldFormula
* RowInit

PEOPLECODE EVENTS 261

Licensed to James M White <jwhite@maine.edu>

* RowSelect

®* RowInsert

* RowDelete

* PrePopup

* SaveEdit

* SavePreChg
* WorkFlow

* SavePostChg
® SearchInit
® SearchSave

These events occur during actions related to fields. PeopleCode can be attached
to these events and can range from simple to complex. Hypothetically, PeopleCode
can be inserted into each of the events for a given field. Not every PeopleCode event
plays a role, so it may not be relevant or necessary to insert PeopleCode into each

Record Field

@ SavePreChg
SavePreChg PeopleCode
Event
Record Field RowSelect
RowSelect PeopleCode
Event
>
Record Field 1 Record Field || RowDelete
RowDelect > PeopleCode

Event

Record Field S
RowInsert
RowlInsert PeopleCode
Event I P
Record Record Field 2 B
Record Field FieldFormula
FieldFormula
g PeopleCode
vent P
>
Record Field || FieldChange

FieldChange ~ ————— | PeopleCode
Event

Record Field 3

Record Field FieldDefault
FieldDefault PeopleCode

Event P

>
R;ztz:;i":leld Rowlnit
e PeopleCode
FieldEdit
Record Field | |
p PeopleCode

Event

Figure 11.1 Relationship between records, fields, and PeopleCode events

262 CHAPTER 11 INTRODUCTION TO PEOPLECODE

Licensed to James M White <jwhite@maine.edu>

event. Some PeopleCode events are triggered based on factors such as scroll bars and
pop-up menus that appear on a panel. For example, in the Problem Tracking appli-
cation, the panel MY_PROBLEM_TRKG does not contain a scroll bar. If we insert
RowInsert or RowDelete PeopleCode, the programs in the events are never exe-
cuted because RowInsert and RowDelete are related to scroll bar actions.

11.2.2 Menu PeopleCode events

Only one Menu PeopleCode event exists:
* ItemSelected

Menu PeopleCode is linked to the selection of a menu item from a standard or
pop-up menu item.

11.3 USING APPLICATION DESIGNER
TO DEVELOP PEOPLECODE

The Application Designer enables the insertion or editing of PeopleCode from points
within the project workspace. PeopleCode can be accessed:

* from a record field definition

* by double-clicking on the lightening bolt “42” in the project workspace
* from a menu item

* within the panel definition

PeopleCode is commonly added and modified from the Application Designer
through record field definitions. To add record PeopleCode to the Problem Tracking
application, the first step required is to open the project definition from the Applica-
tion Designer.

The Problem Tracking application, when viewed from the project workspace,
contains objects such as menus, panel groups, records, and fields (figure 11.2). When
we view projects and more specifically objects such as records, we see they contain a
“+” on the left side. Clicking on the “+” for records displays all the records contained
in the project. A subsequent click to a record such as MY_PROBLEM_TRKG displays
the fields contained in the record. Figure 11.3 @, illustrates the record fields for

MY_PROBLEM_TRKG record in MY_PROJECT.

DEVELOPING PEOPLECODE 263

Licensed to James M White <jwhite@maine.edu>

Navigation: File -Open —Project =My Project

“J Application Designer - MY_PROJECT

Fle Edt View Inset Buld Tools Go Favoites Window Help
o8] = @ e| =5
A —

[#-(_] Fields
-] Menus
@123 Panel Groups
[+ Paneks
1] Records

" i Development [1 Upgrace

Iopemu' project _..

5 Record object(s) in preject.
9 Field abject(s) in project.
4 Panel objectis) in project.
1 Menu obyect(s) in project, __I

Figure 11.2 Initial project workspace

“J Application Designer - MY_PROJECT

Fle Edt View Inset Buld Tools Go Favoites Window Help

D|r.°|l§|a|§| Bl =8

o=

neall
Lo

2

MY_PROBLEM_TRKG
ds MY_PROBLEM_ID
& INCIDENT_DT
@ MY_PROJECT_ID
%@ MY_PROBLEM_STATUS
- PRIORITY
0——*> w4 MY_USER_ID
& MY_PROBLEM_TRACKER
& CLOSE_DT
& WY_DOCUMENT_ATTACH
#-¢ DESCRLONG
- @ MY_PROBLEM_RESOLTN
-kl MY PROJECT TBL |

" Fivevelopment

W_,APPLCTN_TBL
MY_DERIVED

s

®

2]

®

*

Iopemu' project _..

5 Record object(s) in preject.
9 Field abject(s) in project.

4 Panel objectis) in project.
1 Menu object(s) in project. -

Figure 11.3 Record fields in the project workspace

264 CHAPTER 11 INTRODUCTION TO PEOPLECODE

Licensed to James M White <jwhite@maine.edu>

The “+” next to the record field indicates that PeopleCode exists for that field.
In figure 11.3 the record field MY_PROBLEM_TRKG.MY_USER_ID contains People-
Code as indicated by the “+.” When we click on the “+” for MY_USER_ID, any
PeopleCode associated with the field is identified by the % symbol for that event. The
example in figure 11.4, @ indicates that the field MY_USER_ID contains several
record PeopleCode events.

-0 Panels
(=149 Records
-k MY_APPLCTM_TBL
@ & MY_DERIVED
=k MY_PROBLEM_TRKG
[¢l MY_PROBLEM_ID
#-@ INCIDENT_DT
-4 MY_PROJECT_ID
#- ¢ MY_PROBLEM_STATUS
- FRIORITY
H-¢ MY_USER_ID
£% FRowinit
£F RowSelect
£ FieldDelaul
£ SaveEdit
& MY_PROBLEM_TRACKER
#- & CLOSE DT =l

" Fivevelopment

Opening project ...)

5 Record object(s) in preject.

3 Fiekd object(s) in project.

4 Panel object(s) in project.

1 Menu object(s) in project.
Panel Groun obiect in m

Figure 11.4 Record fields with PeopleCode

To view the record definition, double-click on the record name. We can also click
on the desired record name within the workspace and, using the right mouse button,
click on View Definition. An alternative method of viewing the record definition can
be accomplished by double-clicking on the appropriate record name, which then
enters the field display mode. After the record definition is displayed, we can view any
associated PeopleCode from the PeopleCode display panel that displays the fields and
corresponding events.

Another manner by which we can identify where PeopleCode exists for a record
is to use the PeopleCode Display toolbar icon as illustrated by @ in figure 11.5. When
viewing the PeopleCode Display panel, any field containing PeopleCode will have
“Yes” displayed at the intersection of the fieldname and event.

DEVELOPING PEOPLECODE 265

Licensed to James M White <jwhite@maine.edu>

Navigation: View —PeopleCode Display

\] Application Designes - MY_PROJECT - [MY_PROBLEM_TRKE [Record)]

Bifie G Vew [nsst Buld Jook Go Favodies Window Hel 18| x|
RN EE G —
‘:E MY_PROJECT | Field Name Type |FDe|FEd|FCh|FFo |Rin | Rls |RDe| RSe| SE|SP |SPo|Si | SrS |Wik| PPy
[] Fields MY PROBLEM 1D Char |Yes Yes Yes Ye: [Yes
5) Mens INCIDENT_DT Date |Yes
9 (5 Parel Giougs MY_PROJECT_ID Char | Yes Yes Yes Yes
MY_PROBLEM_STATUS |Chat |Yes |Yes |Yes Yes Yes |Yes
(] Parek: PRIORITY Nbr |Yes [Yes |Yes Yes
=2 Records MY_USER_ID Char |Yes Yes Yes |Yes
-k MY_APPLCTN_TBL MY_PROBLEM_TRALCKE Char
& G ML DEAVED WY DUCUMENT_ATTAC|Cha | | Yer
-4 MY_PROBLEM_TRKG DESCALONG Long| [Yes
i MY_PROJECT_TBL MY_PROBLEM_RESOLTH Long Yes Yes

@ kd MY_USER_TABLE

Blowwpmen [Bome T | N

3 Fieid objectis) in propect
4 Panel objectis) in project
1 Merws cbisctis) in project
4 Panel Group object(s) in project.
23 fotal cbjectis) in project

T s)y e 7
Fleady [o o [[

Le]

ia

Figure 11.5 PeopleCode display view

To access PeopleCode through a panel definition, click on the field to which the
code is to be added or modified. As illustrated in figure 11.6 the right mouse button
is used to view PeopleCode for the Close Date field.

Figure 11.6 Accessing PeopleCode through a panel definition

266 CHAPTER 11 INTRODUCTION TO PEOPLECODE

Licensed to James M White <jwhite@maine.edu>

o) MY_LOCATIONS
=43 Menus

[&4 LOAD_LOCATIONS

=2 MENUITEM1
=@ LOAD_LOCATIONS
£ ltemSelected <l—0

[+ 24 MY_LOCATIONS
@ Panel Groups
@] Panels
[#-_] Records

-ﬂbﬂulmm |3Umde |

Figure 11.7 Accessing Menu
PeopleCode

Menu PeopleCode can be accessed in a similar manner
to record PeopleCode from the menu definition. Fig-
ure 11.7, @ illustrates the menu used for a small appli-
cation used to link security operator classes and
locations. Menu PeopleCode can be accessed using the
right mouse button on the menu item or by double-
clicking on the “52”.

With a basic understanding of PeopleCode and
how to access it, we are now ready to become familiar
with the syntax, the rules, and the statements required
to successfully implement applications that utilize Peo-

pleCode.

1 PeopleCode is a programming language, which enables developers to
extend the functionality of PeopleTools applications.

2 The Application Designer is used to insert or update PeopleCode statements.

3 PeopleCode events enable the developer to interact with the PeopleTools
environment at key points during a work session.

4 Events occur during actions related to record fields. PeopleCode attached to
all or some of these events is referred to as record PeopleCode.

5 Menu PeopleCode consists of the ItemSelected event and is linked to
the selection of an item from a menu.

DEVELOPING PEOPLECODE

267

Licensed to James M White <jwhite@maine.edu>

I \\"
W\NCHAPTER 12

PeopleCode

language elements

12.1 PeopleCode and record fields 269 12.5 PeopleCode data elements 273
12.2 PeopleCode editor 269 12.6 Statements and expressions 278
12.3 PeopleCode comments 271 12.7 PeopleCode tools tables 289

12.4 Data types 271

The objective of this chapter is to introduce some of the fundamentals and basic
building blocks of the PeopleCode language. In addition to the language constructs,
the chapter illustrates how PeopleCode can be used to build simple programs using
the materials presented in part 2.

268

Licensed to James M White <jwhite@maine.edu>

12.1 PEOPLECODE AND RECORD FIELDS

In part 2, a record and its associated fields were identified and built. The section “Creat-
ing a PeopleSoft panel definition” illustrates how fields are added to a panel with basic
prompts and PeopleTools edits. Beyond the range of these edits is where knowledge and
application of PeopleCode becomes a key element in the development and implementa-
tion of PeopleSoft applications. PeopleCode is linked to record fields, unlike fields in
Application Designer that have the same characteristics, regardless of the records on which
they exist. When a field named MY_PROBLEM_STATUS is defined, the field may
appear on several different records. When the characteristics of the field are changed, the
change is reflected throughout the database. If the field description or data type is
changed, the modification is reflected on every table and panel containing the field
MY_PROBLEM_STATUS. PeopleCode, on the other hand, is linked to fields through the
record field definition. As an example, let’s assume weve added PeopleCode to the
RowInit event of the MY_PROBLEM_TRKG record, MY_USER_ID field. Using dot
notation, it can also be specified as MY_PROBLEM_TRKG.MY_USER_ID.RowInit. The
field MY_USER_ID also exists on the record MY_DERIVED; however
MY_DERIVED.MY_USER_ID.RowlInit does not contain this PeopleCode. Alternatively,
when the length of the field MY_USER_ID is changed, the new length is reflected in both
the MY_PROBLEM_TRKG and MY_USER_ID records.

12.2 PEOPLECODE EDITOR

In chapter 11 we discussed how PeopleCode can be viewed from a record field defini-
tion: by double-clicking on the lightening bolt “43” in the project workspace, from a
menu item, or within the panel definition. The PeopleCode editor provides a facility
to insert and maintain PeopleCode. Language statements, comments, and expressions
entered are saved into the PeopleTools system table PSPCMPROG. This record is
linked to the record containing record field definitions, PSRECFIELD. The People-
Code editor performs syntax checking during save. Explicit syntax checking can be
performed using a handy feature that validates syntax, available with release 7. Vali-
date syntax is represented by the toolbar button #| and verifies syntax without hav-
ing to enable the save button. Records and fields used as bind variables in embedded
SQL and scroll functions are also validated at this time. The syntax check edits a large
percentage of code, but some rules in PeopleCode however are not strictly enforced.
These errors can “slip by” and result in runtime error messages which can halt the
processing of a panel—for example, an error might be a reference to a non-existing
record enclosed within the quotes of a SQLExec statement or an invalid usage of
scroll levels.

PEOPLECODE EDITOR 269

Licensed to James M White <jwhite@maine.edu>

270

Navigation: Tools =-Options —PeopleCode

Options Additional PeopleCode editor features
Project | Vaidats PeopleCode | include:
S, * customization of font settings, which can
Ford sile: Regular be changed by selecting Options —Peo-
g pleCode from the menu (figure 12.1)
* integration with Application Designer
toolbar, menus, and accessibility via a
pop-up window
* support for drag-and-drop PeopleCode
text between independent programs
oK Cancel
Lo o] Lets view the PeopleCode for MY_
Figure 12.1 Customization of PROBLEM_TRKGMY_USER_IDRowInltas i.l.l—
PeopleCode editor font settings ustrated in ﬁgure 12.2.
' MY_PROBLEM_TREG [Record PeopleCode) | _ (O] x| |
{Mr_USER_ID =] [Rowinit 5l
_,l'.’ *

I R R R I I T T T T Tty

This PeopleCode initializes the field MY_USER_ID to the system wvariable
$0peratorId. The default operator id can subsequently be modified by the

user within the Problem Tracking Application.
R R R R EEEEE R R R EE R R R R R R R R R R EE R R R E R R R R EE R R R R R R R R R R R R R R R R R R R EE R R EE R EE R R R R R R R

*/
MY USER_ID = %OperatorId;

Figure 12.2 PeopleCode characteristics

The illustration in figure 12.2 identifies some PeopleCode characteristics:

* The header area identifies the record name and identifies this as PeopleCode
attached to the MY_PROBLEM_TRKG record. In PeopleTools there are two types
of PeopleCode: record and menu. The example identifies record PeopleCode.

* The area below the header displays the fieldname (MY_USER_ID) and the type
of PeopleCode event (RowInit).

* Finally, the actual PeopleCode statements.

When new PeopleCode is added to or removed from a record, the record defini-
tion must be saved prior to exiting the PeopleTools session. A record definition does
not have to be saved when existing PeopleCode is changed. The PeopleCode itself is
saved to the appropriate PeopleCode tools tables.

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

12.3 PEOPLECODE COMMENTS

Figure 12.2 contains an example of PeopleCode statements. The first several lines
contain comments. Comments provide an excellent method of internal code docu-
mentation. Information such as the date, the author, and the purpose of the code can
be detailed in comments. Comments can exist anywhere in a PeopleCode program.
They are not executed and can also be helpful during upgrades. If all our code were
documented with a common text literal such as company name, we could conceiv-
ably search PeopleCode for the string and identify customizations. Two methods of
inserting comments into a PeopleCode program are available. One form is to enclose
comments with a leading /* and trailing */. This can be useful when testing code or
debugging. It can also be helpful when one wishes to prevent PeopleSoft-delivered
code from executing, but does not want to delete the code. The REM statement can
also be used for comments. The REM or REMark statement is terminated with a semi-
colon (;). Comments beginning with a /* generate an error message when an attempt
to validate syntax or a save operation is performed and the closing */ statement is
missing. A misplaced semicolon (;) in a REM statement does not generate a message. It
is possible that comments as well as PeopleCode statements are both treated as com-
ments, because the scope of the REM statement terminates with the semicolon.
Figure 12.3 shows some examples of valid comments and others that are not coded
correctly. In the example, &STRING_FIELD2 is preceded by a REM statement. The
second REM is not terminated by a semi-colon and, therefore, &STRING_FIELD2
initialization is treated as part of the comments.

P MY_PROBLEM_TRKG (Record PeopleCode) - |0O] x]

[My_user_D =] [Rowinit 7

/* This is an example of comments */

REM Here is another example of PeopleCode comments;

&8TRING FIELD1 = "This is an example of a string assignment";

REM The String assignment below is not initialized because the semi-colon
does not terminate this REMark statement. As a result, the string
assignment for &(3TRING PIELDZ is= assumed to be part of this comment and is

not assigned.

&STRING FIELDZ = "This field is not initialized™;

Figure 12.3 PeopleCode comments

12.4 DATA TYPES

The PeopleCode language contains several data types that permit operations on all
categories of database fields. The examples that follow initialize variables. A

DATA TYPES 271

Licensed to James M White <jwhite@maine.edu>

272

PeopleCode temporary variable is preceded by an ampersand (“&”), which assumes
the data type of the assignment statement.

STRING

NUMBER

DATE

DATETIME

TIME

BOOLEAN

OBJECT

Strings are made up of any combination of characters that can be numeric, alphabetic,
or special characters. A string can be initialized by enclosing the combination of charac-
ters in either single (') or double () quotation marks. When one type of delimiter, either
a single quote or double quote, is part of the string, it can be enclosed by the other
delimiter type. Our first code example below is an example of single and double quota-
tion marks used in string data types. PeopleCode functions exist, which operate on
strings. Some are used to convert strings to numbers, combine or concatenate two or
more strings, and trim a string either on the right or left. String functions will be
reviewed as we progress through the chapters.

A number is any decimal value including integers and decimal points. A large percent-
age of the data types used in PeopleCode are either of the string or numeric type. As
with strings, there are many functions that operate on the Number data type. Our sec-
ond example below is an example of numbers in PeopleCode.

Dates are stored internally in the yyvyy-mm-pp format. It is important to note that each
platform and type of database stores dates differently, based on how the date is used.
The Application Processor converts dates when they are loaded into a PeopleCode pro-
gram. However, functions such as sorEexec, which operate directly on database tables
and fields do not automatically convert dates. There are a number of built-in and
Meta-SQL functions that work with dates and can be used to convert the formats.

A DpateTime data type contains a date and a time expressed as YYYY-MM-DD-
HH.MI.SS.ssssss. PeopleCode functions such as patepart and TimePart extract the
date or time portion. Functions such as DateTime6 and DateTimeValue generate a
DATETIME data type.

Expressed as wuuMIss. Functions involving TiME data type return numeric values
expressed as seconds and sub-seconds.

A Boolean data type can have one of two values, TRUE or FALSE.

This data type is used with functions such as createobject. Word documents or Excel
spreadsheets are examples of oLE objects.

This data type may contain any of the other data types. A field defined as any takes on
the characteristics of the field with which it is initialized. A variable having no explicit
data type declaration is any by default. PeopleCode determines the data type based on
circumstances. It is therefore possible to have an undeclared field that can be used
interchangeably by various data types and functions. The third example below provides
us with a flavor of how any data types can be used.

The following is an example of single and double quotation marks used in string

data types:

/* Here is an example of a string */

&STRING_FIELD]1 = "This is a basic PeopleCode string";

&STRING_FIELD2 = "This is a string that contains a 'single quote' delimiter
character";

&STRING_FIELD3 = "This string is enclosed within single quotes and contains

a string ""enclosed in double quotes""";

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

Where possible, enclose strings in double quotation marks and represent any
embedded strings using single quotes.

Below, we can see examples of numbers in PeopleCode:

/* Examples of Numbers in PeopleCode */
&NUMBER_FIELD1 = 12345;

&NUMBER_FIELD2 = 123.45;

&NUMBER_FIELD3 = 0.12345;
&NUMBER_FIELD4 = - 123.45;

Let’s look at an example of ANY data type:

/* Definition of an ANY data type */
Local any &WORK_FIELD;

/* ANY data type being set to a STRING */
&WORK_FIELD = " ";

REM &Work_ Field now becomes a NUMBER;
&WORK_FIELD = &NUMBER_FIELD * 100;

REM This concatenates two strings. &WORK_FIELD is a string again;
&WORK_FIELD = &STRING_FIELD1 ‘ &STRING_FIELD2;

REM What datatype will the following statement return ? ;

&WORK_FIELD = %$Date - &MY_BIRTHDATE;

/* If you guessed Number, you are correct. A number expressed as days is the
result. However, the ANY data type can also contain a date. Below,
&WORK_FIELD is set to the current date;*/

&WORK_FIELD = %Date;

12.5 PEOPLECODE DATA ELEMENTS

12.5.1 Record field references

As we've already discussed in part 2, records are comprised of fields. How a field is
referenced, retrieved, and initialized is of particular importance when the fieldname
exists on various records accessible to a PeopleCode program. The syntax of a record
field is as follows:

[RecordName] .FieldName

Three components make up a record field name:

PEOPLECODE DATA ELEMENTS 273

Licensed to James M White <jwhite@maine.edu>

274

RecordName

RecordName is required when the PeopleCode program is in a record field other
than the record where the PeopleCode resides. The name can contain from one to fif-
teen characters. At the database level, PeopleTools prefixes application tables with
pS_. Within Application Designer however, the PS_ prefix is not used. When a
record is opened or referred to in a panel, the prefix must be omitted. If specified, the
presence of the prefix actually results in an ' Invalid record name' error message
when used on a panel. The exception is the SQLExec statement that contains embed-
ded SQL statements.

Period separator

The period is used when the record name prefix is required. When a PeopleCode pro-
gram refers to a field on the same record as the program, the record name prefix is not
required and is actually removed by the PeopleCode editor.

Fieldname

Both Fieldname and RecordName are not case sensitive and are converted to
UPPERCASE by the PeopleCode editor. A fieldname can consist of one to eighteen
characters and can include special characters such as @, _, $ and #. When used in
field names, some of these special characters such as the # may be platform depen-
dent. The RecordName .FieldName convention becomes more important when
using specific functions that require an explicit RecordName . FieldName defini-
tion. Functions that use RecordName.FieldName are described throughout this
book and in appendix E. More specific examples include:

Fetchvalue
FieldChanged
GetStoredFormat
Gray

Hide

PriorValue
SetCursorPos
SetDefault
SetDefaultall
SetDefaul tNext
SetDefaultPrior
SortScroll
SQLExec
Transfer
Ungray

Unhide
UpdateValue

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

12.5.2 Temporary variables

Temporary variables use the prefix ‘&’ as part of their naming convention. Names can
range from one to seventeen characters in length and consist of letters A-Z (a—z), dig-
its 09 and special characters @, _, $ and #. Record field names can consist of one to
eighteen characters, one more than variables because of the ‘s’ prefix. The following
illustrates the use of temporary variables and field names:

/* These are PeopleCode temporary Variables */
&STRING_FIELD]1 = "This is a string temporary variable";

/* This is a numeric temporary variable */
&NUMBER_FIELD1 = 100;

&SPECIAL_2@10#

"This field name contains special characters";

TIP Although special characters can be included in record field names and
variable names, they are not recommended except for the underscore
character ().

125.3 Constants
Within PeopleCode, numeric, string, and Boolean constants are available. Numeric

constants may be expressed as any number and can be included in assignments such as
tant y be exp d y b d b luded g t h

&NUMBER_FIELD1 12345;
&NUMBER_FIELD2 = 123.45;

&NUMBER_FIELD13 = - 123.45;
&NUMBER_FIELD14 = 0.12345;
&NUMBER_FIELD5 = - 0.12345;

String constants are enclosed within single or double quotation marks. To enclose a
single quotation as part of a string, we can place double quotation marks around it.
Alternatively, we can enclose double quotations within single quotation marks:

&STRING1 = "Example of a basic string";
&STRING2 = "This is 'One string within another string'";
&STRING3 = "This is ""Another string within another""";

Boolean constants can be represented as True or False.
The following example verifies the Boolean return value issued by a function call:
If &RETURN_VALUE = True Then
SetDefault (MY_PROBLEM_RESOLTN) ;

SetDefault (CLOSE_DT) ;
End-If;

PEOPLECODE DATA ELEMENTS 275

Licensed to James M White <jwhite@maine.edu>

An alternative method of verifying a Boolean value is to omit the comparison operator:

If &RETURN_VALUE Then
SetDefault (MY_PROBLEM_RESOLTN) ;
SetDefault (CLOSE_DT) ;

End-If;

When &RETURN_VALUE returns False, the statements in the context of If are not

executed.
12.5.4 System variables

Unlike temporary variables that can be defined by the developer, system variables are

predefined and available within PeopleCode programs to access system information.

System variables are prefixed with “%” whenever they are referenced in a program.

Information such as date, time, current language, panel name, and additional infor-

mation can be retrieved through system variables. System variables can be used in

place of a constant or as part of an expression when assigning variables. They can also

be passed to functions as parameters such as SQL strings passed to the SQLExec

function. A list of system variables and descriptions follow.

$BPName Returns a string containing the name of the Business Process from a worklist
entry when accessed from a panel within a worklist. If the current panel group is
not accessed from a worklist, an empty string is returned.

%Date Returns the current date in YYYY-MM-DD format.

%DateTime Returns the date and time as a Date/Time value in YYYY“-MM-DD-
HH.MI.SS.SSSSSS format.

%$DbName Returns the name of the current database.

$DbType Type of database expressed as a string. Some database types include SQLBase,
DB2, Oracle, or Microsoft.

$EmployeeId Returns the employee ID of the operator currently logged on. This can be used to
limit access to an employee’s own data, but is only effective when the employee
ID on the operator security record is populated correctly.

$Import During Import Manager sessions this variable is returned as True. All other times
it is False. This variable can be referenced if we wish to execute PeopleCode dur-
ing import manager sessions only.

$Language A character string is returned indicating the operator language preference.

$Market Returns a string representing the Market property of the current panel group.

$Menu Returns the current menu name. This uppercase string can be used to process
actions based on menu. Specific edit or function calls can be controlled by
menu name.

$MessageAgent Contains a string representing the current message definition name when the
current panel is invoked by a message agent routine. An empty string is returned
when the panel is not initiated by a message agent routine.

276 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

$Mode When an operator initiates a panel group associated with a menu item, this field
will contain the menu action selected. The values can be:
® “A” Add
® “U” Update
® “,” Update All
® “C” Correction
® “E” Data Entry

%OperatorClass Returns the primary operator class for the current operator.
%$OperatorRowLevelSecurityClass

Returns the row-level security class of the current operator. The row-level security
class is different from the operator's primary class.

%OperatorId The ID of the current user logged on. This entry exists on the PSOPRDEFN table.
%Panel Returns the current panel name.
$PanelGroup Name of the current panel group. As with $Menu, this variable can be used to con-

trol program flow or take specific actions according to the panel group. A panel
group contains the panels associated within the group and can be used to identify
panels to a PeopleCode program. The difference between %panel and %panel-
Group is that gpanel identifies only the current panel on which the cursor is
focused. Let's assume we have three panels, PANEL_A, PANEL_B, and PANEL_C.
They belong to a panel group named PANEL_ABC. If our code reads as if $Panel
= Panel.PANEL_B and the cursor is on PANEL_A, the 1f statement condition
returns rFalse. When the intent is to take action during FieldChange events on
any of these panels, the code should read if $PanelGroup = PANEL_ABC.

$SQLRows When using the SQLExec in conjunction with an UPDATE, DELETE, Or INSERT Opera-
tion, the number of rows affected by such a statement is returned in this variable.
During the seLECT operation, this variable returns zero when no rows are selected
and non-zero if one or more rows are selected. Unlike the other operations, the
non-zero value does not indicate the number of rows returned for a SELECT.

$Time Returns the current time in HH.MI.SS.SSSSSS format.

$wWLInstanceID \When accessing a panel from a worklist, this variable contains the name of the
worklist instance ID. The variable will contain blanks when the panel is not
accessed from a worklist.

$WLName Contains the name of the worklist. A blank is returned when the current panel is
not accessed within a worklist.

The next example is used in the PeopleSoft HRMS application. This example ver-
ifies the $PanelGroup variable for the JOB_DATA_HIRE that is used in the new hire
process. The example also references the $Mode variable.

If %PanelGroup = PANELGROUP.JOB_DATA_HIRE Then

If $Mode = "A" Then
FUNCLIB_HR.DEFAULT_SETID = &SETID;
End-If;
End-If;

12.6.56 Global and local variables

Variables can be defined as global or local. By default, all variables are defined as local
and do not necessarily need the Local prefix. In release 7 of PeopleTools, a local

PEOPLECODE DATA ELEMENTS 277

Licensed to James M White <jwhite@maine.edu>

12.6

12.6.1

278

variable, the variable name, and its contents cease to exist at the conclusion of the
PeopleCode event. As with function definitions and declarations, variable declara-
tions must be placed above the main body of a PeopleCode program. A variable
declared as ANY (or one that doesn't have an explicit declaration) will have the data
type chosen by PeopleCode based on field contents. An ANY data type can store vari-
ous data types such as String and Number. Some risk exists when a field is used for
various data types. A function that requires a number to be passed to it may actually
receive a string or date field, which can result in unpredictable errors when a field
defined as ANY is passed to a function.

Global variables remain in effect during a PeopleSoft session and maintain their
value from one panel group or PeopleCode event to another. The alternative is to pass
values using derived/work record fields where possible. Passing and maintaining vari-
ables in a derived/work record allows us to share PeopleCode as well as work fields.
In the Problem Tracking system, the table MY_DERIVED is an example of a derived/
work record. This type record does not exist at the database level as a table. The fields
on this type record can be shared across panels. Another useful application for derived/
work records is the use of function libraries. (Function libraries will be discussed in
chapter 16.) Examples of variable declarations are shown as follows:

/* Examples of variable declarations: */
Local string &NAME;

Local number &DEPARTMENT_ COUNT;

Global number &TOTAL_COUNT;

Local any &ANY_TYPE;

TIP Global variables must be defined in every PeopleCode program that uses
the variables. The PeopleSoft recommendation is to use global variables

sparingly.

STATEMENTS AND EXPRESSIONS

This section examines how PeopleCode programs are constructed using various types of
statements. PeopleCode statements include code that controls execution flow and can
range from a simple If-Then-Else to complex loops. A statement can also be a simple
expression. Let’s examine statements and expressions and see how they work in unison.

Statements

Statements consist of data assighments, program language constructs, declarations,
and subroutine calls.

A semicolon (;) is used to separate PeopleCode statements. The PeopleCode Edi-
tor disregards extra blank lines and spaces within the code. When a program is saved

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

to the database, excess spaces or blank lines are removed automatically by the editor.
Let’s consider some examples of PeopleCode statements:

/* This is a comment before a Declare Function Statement */

REM This is another comment before a Declare Function Statement;
/*This is an example of a function declaration statement */

Declare Function My_Schedule_Function PeopleCode MY_DERIVED.MY_ USER_ID
FieldFormula;

&WORK_FIELD = "This is an example of a string assignment statement";

REM This is a number assignment based on an "expression";
&RESULT_FIELD = &NUMBER_OF_ITEMS * &PRICE_PER_ITEM;

/* This is a function return statement */
&WORKSHEET_FIELD = CreateObject ("Excel.Sheet");

Assignment statements, as represented by &WORK_FIELD above are the most basic
types of statements within PeopleCode.

12.6.2 Control statements

Another type of PeopleCode statement is a control statement. A control statement is
involved in the execution flow of a PeopleCode program and includes the following:

¢ If-Then-Else

* Evaluate

* For

* Loops with condition statements (Repeat, While)

If-Then-Else

When we write a PeopleCode program or any program for that matter, do we simply
enter a bunch of statements and assume the program will figure it all out? If your
answer to this is yes, then you've been watching too much science fiction (for the time
being). Controlling the execution flow of a PeopleCode program is accomplished
using branching statements, For loops and conditional loops. Basic examples of
branching are illustrated below, using the If-Then-E1lse statement. The statement
compares two strings and returns a message:

if &Textl <> &Text2 then

WinMessage (“Strings are not not the same”);
else

WinMessage (“Strings, match!”);
end-if;

If-Then-Else construct statements are a key piece of program code that you will

use often. The expression following the I£ keyword is evaluated as a logical True or
False. If the evaluated expression is True (non-zero), PeopleCode executes all the

STATEMENTS AND EXPRESSIONS 279

Licensed to James M White <jwhite@maine.edu>

statements following then until an Else or End-If statement is encountered.
These statements may also contain their own If-Then-Else statements. When the
expression evaluated is False, the statements following the Else clause are exe-
cuted. An End-1if is required for every If statement.

The E1se statement is not always required for an I £ statement. Else is specified
when it is necessary to perform additional actions when an I £ condition is not satisfied.

The following is another example of an Tf-Then-Else statement used to iden-
tify the value of the Problem Status field:

If MY PROBLEM_STATUS = "1" Then

WinMessage ("This incident is in an initiated status");
Else

WinMessage ("This incident is not in an initiated status");
End-If;

A nested ITf-Then-Else statement contains more than one If statement and may
also contain more than one Else statement. The following is an example of nested
If statements. Note, that for every I £ statement there is a corresponding End-If:

If MY PROBLEM_STATUS = "1" Then
WinMessage ("This incident is in an initiated status");
Else
If MY PROBLEM_STATUS = "2" Then
WinMessage ("This incident has been assigned");
Else
If MY_PROBLEM_STATUS = "3" Then
WinMessage ("This incident is in progress");
End-If;
End-If;
End-If;

In the example below each If statement has a corresponding End-1£. The placing
of an End-If is important, because it defines the scope of an If statement:

If MY _PROBLEM_STATUS = "1" Then
If MY USER_ID = " " Then
WinMessage ("This incident is in an initiated status, but has no
assigned user");
Else
If MY_PROBLEM_STATUS = "2" Then
WinMessage ("This incident has been assigned");
Else
If MY _PROBLEM_STATUS = "3" Then
WinMessage ("This incident is in progress");
End-If;
End-If;
End-If;
End-If;

280 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

The example above appears intact, but upon closer examination we see that the state-
ments checking for a value of "2" or "3" will never be executed because the code is
interpreted as follows:

If MY_PROBLEM_STATUS is "1" and MY_USER_ID is blank, send a message,
otherwise, if MY_PROBLEM_STATUS is "2 ", send a message. As you can see, the sec-
ond message, based on a value of "2 " will never be sent because it is also based on the
field MY_PROBLEM_STATUS having a value of "1". Because these two conditions
can never co-exist (except in science fiction), the PeopleCode statements require some
adjustment. The corrected code is shown below:

If MY PROBLEM_STATUS = "1" Then
If MY _USER_ID = "" Then
WinMessage ("This incident is in an initiated status, but has no
assigned user");

End-If;
Else
If MY PROBLEM_STATUS = "2" Then
WinMessage ("This incident has been assigned");
Else
If MY _PROBLEM_STATUS = "3" Then
WinMessage ("This incident is in progress");
End-If;
End-If;
End-If;
TIP String comparisons are always case-sensitive.
Evaluate

Another form of branching is done using the Evaluate statement. This statement
can be used when multiple conditions exist. The syntax of the Evaluate statement can
be written as follows:

Evaluate Expression
When Comparison
[statements]
Break
When Comparison
[more statements]
Break
When-Other [Optional]l
End-Evaluate;

The Evaluate statement, in conjunction with When, compares an expression using
relational operators in a series of When clauses. In a fashion similar to I£-Then-
Else statements, when the result of the comparison is True, the statements in the
When clause are executed. Once these statements are completed, the operation moves

STATEMENTS AND EXPRESSIONS 281

Licensed to James M White <jwhite@maine.edu>

on to evaluate the comparison in a subsequent When clause. In a nutshell, the state-
ments in which the When comparison results in a True condition are executed. The
optional When-Other clause is executed after any previous When comparisons in the
Evaluate statement are False. An Evaluate statement can be exited by using
the Break statement. A good practice is to include the Break statement when the
intent is to prevent subsequent When statements from executing. The following illus-
trates the use of the Evaluate statement and sends a message based on the contents
of the $Language system variable.

Evaluate $%$Language

When = "ENG"
&MESSAGE = "We are using English";
When = "ESP"
&MESSAGE = "We are using Spanish";
When = "FRA"
&MESSAGE = "We are using French";
When = "GER"
&MESSAGE = "We are using German";
When = "INE"
&MESSAGE = "We are using International English";
When-Other
&MESSAGE = "We are using another language";

End-Evaluate;

The statements used above can be rewritten using nested I £ statements (such as those
below). Notice the additional statements required to accomplish the same task using
the Evaluate statement.

If $Language = "ENG" Then
&MESSAGE = "We are using English";
Else
If %$Language = "ESP" Then
&MESSAGE = "We are using Spanish";
Else
If %$Language = "FRA" Then
&MESSAGE = "We are using French";
Else
If %$Language = "GER" Then
&MESSAGE = "We are using German";
Else
If %Language = "INE" Then
&MESSAGE = "We are using International English";
Else
&MESSAGE = "We are using another language";
End-If;
End-If;
End-If;
End-If;
End-If;

282 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

Evaluate statements may behave differently in other programming languages. The
following example contains a small piece of code. In the example, the variable &A is
evaluated. Assuming the value of &Aa is 1 at the time of the Evaluate statement, the
value is then changed to 2. At the time PeopleCode executes the second When state-
ment, which compares the value &A to 2, the original value of &A is evaluated. We
can therefore state that the results of each When statement are based on the condition
in place at the time of the Evaluate.

Evaluate &A
When = 1

&A = 2;

When = 2

&A = 3;
End-Evaluate;

SQR users may be aware that Evaluate statements work differently. If the field
being evaluated has its value changed within the When statement, it is possible that
the newly changed value will impact subsequent When statements because the new
value is evaluated in each When statement. In SQR, the second When statement
would have been executed assuming the initial value is "1" and then is changed to
"2". A good practice to avoid these pitfalls is to use the Break statement. While this
does not occur within PeopleCode, we can rewrite the Evaluate statement below to

develop good programming habits:

Evaluate &A

When = 1
&A = 2;
Break;

When = 2
&A = 3;
Break;

End-Evaluate;

Because the Break statement transfers control to the End-Evaluate, any remain-
ing When statements are bypassed, which also improves performance.

For

For can be a useful statement when the need to execute statements repetitively
becomes necessary. The statement works in conjunction with an initial setting of a
variable that is subsequently incremented by a value—after the statements in the
scope loop are executed. The format of the For statement is as follows:
For count = expressionl to expression2

[Step il;

PeopleCode Statements
End-For;

STATEMENTS AND EXPRESSIONS 283

Licensed to James M White <jwhite@maine.edu>

284

The statements in the loop are continuously executed until expression2 is true.
Step represents the increment value that is added to the count field each time the
loop is executed. When Step is omitted, the default increment is 1. When we wish to
decrement by 1 or count backwards, use Step -1 as expression2.

Loops can be nested—that is, they can contain other For or While loops as well
as other types of PeopleCode statements. The Break statement terminates the current
active loop. When the current loop is part of a nested loop, any higher level loops are
returned following the Break statement. The higher level loops can be subsequently
terminated with a Break statement or when the value of count is equal to
expression2. If no higher level loop exists, processing continues with the statement
following the end of the loop.

The following is an example of a For loop which contains an update to a field
on a scroll area. The loop begins on row number one and continues until all the num-
ber of active rows in the scroll are processed. The scroll function ActiveRowCount
is used to obtain the number of active rows. The variable &I is incremented by 1 based
on the rules of the For statement.

For &I = 1 To ActiveRowCount (RECORD.MY_LOCATIONS) ;
UpdateValue (MY_LOCATIONS.EFFDT, &I, &EFFDT) ;
End-For;

The next example combines the decrement feature with an If statement. The loop
begins with the highest active row and is processed from highest to lowest using the
Step —1 statement.

If %$Panel = "MY_LOCATIONS" Then
For &I = ActiveRowCount (RECORD.MY_LOCATIONS) To 1 Step - 1;
DeleteRow (RECORD.MY_LOCATIONS, &I);
End-For;
End-If;

Repeat

The Repeat statement initiates a loop and executes the statements within the scope
of the loop until the PeopleCode expression is True. These statements can be other
loops or other PeopleCode statements and function calls. In a manner similar to loop
statements such as For and While, a Break statement within a Repeat loop returns
control to the next higher level loop. When the current loop is not part of a higher
level loop, processing continues with the statement following the end of the loop.
The format of the Repeat statement is as follows:
Repeat
[Statement List]

Until
[expression]

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

The example below illustrates the use of Repeat to obtain the effective date and
remove the row from a scroll area. The function ActiveRowCount is used to obtain
the number of rows the loop will process. The Fetchvalue function obtains the
effective date, and the subsequent RowFlush removes the row from the scroll area.

&I = 0;
/* Obtain number of active rows */
&ROW_COUNT = ActiveRowCount (RECORD.MY_LOCATIONS) ;
Repeat

&I = &I + 1;

&EFFDT = Fetchvalue (EFFDT, &I);

If &EFFDT < %Date Then

RowFlush (RECORD.MY_LOCATIONS, &I);

End-If;

Until &I = &ROW_COUNT;

TIP The Break statement—not an If statement—terminates the loop.

While

The While control statement initiates a loop and is repeated until the PeopleCode
expression is False. This can be somewhat misleading because many loop state-
ments terminate when the condition is True. The While statement, however, termi-
nates when the condition is False.

And you thought this was going to be another clone of the Repeat and For state-
ments! In many aspects the statements are the same, including the execution of the
statements within the scope of the loop. These statements can be other loops or other
PeopleCode statements and function calls. As with other loop statements, a Break
within a loop returns control to the next higher level loop or processing continues with
the statement following the end of the loop. The difference and inherent danger par-
ticularly with the While statement is the potential for a runaway loop. Because the
statement is terminated as a result of a False condition, improper wording often leads
to more runaway loops with the while statement than with other loop statements.

The format of the While control statement is:

While
[PeopleSoft expression]
[Statement List]
End-While;

Following is an example of a While statement that displays a message and numeric
data type variable several times.

&MAX_LOOP = 0;
While &MAX_LOOP < 5

STATEMENTS AND EXPRESSIONS 285

Licensed to James M White <jwhite@maine.edu>

12.6.3

286

WinMessage ("This is pass number " | &MAX_LOOP) ;
&MAX_LOOP = &MAX_LOOP + 1;
End-While;

The following is an example of what NOT to do when using the While statement.
The example results in a runaway loop, because in this sample the value of
&MAX_LOOP is always going to be greater than zero.

&MAX_LOOP = 1;
While &MAX_LOOP > 0

WinMessage ("This is pass number " | &MAX_LOOP) ;
&MAX_LOOP = &MAX_LOOP + 1;

End-While;

Expressions

PeopleCode expressions

Basic PeopleCode expressions can be written as:
&WORK_FIELD = Expression;

In the example, the result of the expression to the right is placed into a variable
named &WORK_FIELD. The target of an expression is either a variable or a record
field. In their most basic form, expressions are characterized by one or more data ele-
ments on either side of the assignment operator. The assignment operation in the
example below is used to initialize the record field MY_USER_ID with the current
operator ID.

MY_USER_ID = %OperatorId;

Expressions can combine any of the following:

* constants

* temporary variables
* system variables

* record fields

* other expressions

* function parameters

Simple expressions can be combined into compound expressions using math operators:
&X = (&A + &B) * ((&D - &C) / &E);

In PeopleCode the equal sign (=) has a dual purpose. It behaves as an assignment
operator, in the preceding example or as a comparison operator. (Remember our
example that combined the decrement feature with an If statement.) On one line,
the equal sign is used as a comparison operator, and on the following line, as an

CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

assignment operator. The context of the equal sign is dependent on how a particular
expression is used and the PeopleCode statements that contain the expression. A sim-
ple assignment operation contains a variable to the left and another variable, constant
or literal, to the right. A comparison operation may use a statement such as ITf, which
implies that the equal sign is being used as a comparison operator.

Putting PeopleCode expressions to work

Now that we have a basic understanding of PeopleCode, we can begin to put together
simple statements and expressions using strings, dates, and operators for statements
using comparison, math, and Boolean expressions.

The combining of two or more strings can be accomplished using the vertical bar
symbol (|) which acts as a concatenation operator. Operands supplied to the concat-
enation operator are automatically converted to strings. An example of string concat-
enation is illustrated below:

&TEXT_MESSAGE = "Hello "
WinMessage (&TEXT_ MESSAGE) ;

%OperatorId | "The current time is " | (%Time);

In the example, we see that the statement is

e 2 3 string assignment. Two string literal types
Hello PSThe curent me s 22 36.41.000000 and two system variable types exist here.

i . .
1 The expression on the right of the equal
sign is a concatenation expression. The
statement is terminated with a semi-colon.
Figure 12.4 Contents of concatenated The string varlabl? &TEXT—MESSAGE

string contains the concatenation results displayed in

the message in figure 12.4.

NOTE All data types used in concatenation expressions are converted to string.

Expressions using Date/Time values can be constructed to perform date arithmetic.
Dates/Time values can be added or subtracted resulting in a number. The result is a value
expressed as number of days. When working with time variables, the number result is a
value expressed in seconds. Constants, variables, and record fields containing numbers
can be added to Date/Time values. The resulting number will be days or seconds.

As an example, to determine the number of elapsed days since the initial reporting
of a problem in the Problem Tracking system, we could construct the statement
shown below.

&DAYS_ELAPSED = (%Date - MY_PROBLEM_TRKG.INCIDENT_DT) ;

Here, the variable &DAYS_ELAPSED contains a number that represents the difference
between the system variable %Date and the date value contained in
MY_PROBLEM_TRKG.INCIDENT_DT.

STATEMENTS AND EXPRESSIONS 287

Licensed to James M White <jwhite@maine.edu>

Comparison operators are used when we wish to compare two expressions con-
taining the same data type. A Boolean value is returned as a result of the comparison.
Comparison operators are represented by the following symbols:

= equal
<> not equal

greater than

< less than
>= greater than or equal to
<= less than or equal to

Let’s now take a look at some comparison operators. When comparing strings,
comparisons are always case-sensitive. The following compares two strings that con-
tain the same words. Do you know what message is displayed?

&TEXT1 = "TODAY IS A FINE DAY";
&TEXT2 = "Today is a fine day";
If &TEXT1 <> &TEXT2 Then
WinMessage ("Strings are not not the same");

Else
WinMessage ("Strings, match!");
End-If;
Figure 12.5 indicates that although the

strings contain the same words, one string
is uppercase and the other string is mixed
case. The comparison results in a False
condition when both strings are compared.
Math Operators are your normal everyday
arithmetic operators. The following repre-
sents the arithmetic operators used in

PeopleCode:

Strings are not the zame

L OET] Cancel

Figure 12.5 Result of string comparison

+ addition
- subtraction

* multiplication
/ division
*x exponential

In PeopleCode, math operations are performed within a hierarchy as illustrated.
The hierarchy of operations is specified explicitly. When used in an operation, paren-
theses override the hierarchy.

288 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

Highest

Unary operator +Bor-C
Exponeniate (A ** B)
Multiply, Divide A*B/C)
Add, Subtract A+B-0QO)
Relational, sign, conditions (A > B)
Logical NOT NOT (A > B)
Logical AND (A AND B)
Lowest

Logical OR (A ORB)
(A*B*C) [Same as] (A*B) *C
(A+B-C* D) [Same as](A + B) - (C ** D)

TIP Operations having equal hierarchy are evaluated from left to right

Boolean operators are formed by the logical operators And, Or, and Not. Exam-
ples of Boolean operators are shown below. As with mathematical operators, paren-
theses can be used to override precedence.

/* Example of Boolean operators and expected results */
If &A > &C And

&B > &A Or

&C < &B Then

&MESSAGE = "This is an example of Boolean operators and is TRUE when the

value of &A is greater than &C and the value of &B is greater than &A Or
the value of &C is less than &B. Our example can be rewritten with paren-
theses";
End-If;

If (&A > &C And
&B > &A) Or
&C < &B Then
&MESSAGE = "This example is TRUE when the value of &A is greater than &C
AND the value of &B is greater than &A. The example is also TRUE if the
value of &C is less than &B ";
End-If;

12.7 PEOPLECODE TOOLS TABLES

After inserting or modifying PeopleCode statements, it is necessary to save the code.
When the save button is pressed, the related PeopleCode system tables that are
updated include:

PSPCMNAME is the PeopleCode reference table. It contains the internal name
assigned by PeopleTools and all other record fields referred from a PeopleCode event. As

PEOPLECODE TOOLS TABLES 289

Licensed to James M White <jwhite@maine.edu>

an example, the panel MY_PROBLEM_TRKG contains data elements from the record
MY_PROJECT_TBL. When a reference is made to fields on MY_PROJECT_TBL from
a PeopleCode program which resides on the MY_PROBLEM_TRKG record, a row exists
for each field referred to on MY_PROJECT_TBL, from PeopleCode in
MY_PROBLEM_TRKG. Figure 12.6 contains a query of the PSPCMNAME table con-
tents for MY_PROBLEM_TRKG.MY_USER_ID. We see that PCM1 05665 is the internal
name, @ assigned by the system to an event for the field MY_USER_ID.

4 PRIVATE.QUERY.MY_PSPCMNAME - QUERY OF PSPCMNAME TABLE 12/26 - Query

File Edt View Go Favortes Citeria Heip

B|=|d|2| 2ol & |n|R] 2%|%|@ 9] Bx[2]
[Z5 PRNATE uuamw_pss:cmmme-Duayorpspcmums' Fields | Cieda| SOL Resus |

El-€3 A = PSPCMNAME - PeopleCode Fleference

(-3 Record hierarchy Prog Hame _[Hame Nt LS — e
§ PROGNAME - Program Name PCM105672 1 |MY_PROBLEM_TRKG [MY_USER_ID
P¢ NAMENUM - Name Number PCHIOST1S 1 |M¥_PROBLEM_TRKG |MY_USER_ID
& RECMAME - Record (T able] Name PCM1 05897 1 [MY_PROBLEM_TRKG [MY_USER_ID
@ REFNAME - PeopleCode Reference Name PCM105807 5 M _PROBLEM_TRKG |MY_USER_ID
S5 Expressions PCMI05719 1[MY_PROBLEM_TRKG |MY_USER_ID
2 Prompts PCMI0SEES 1 [MY_PROBLEM_TRKG [MY_USER_ID
PCM105336 5 MY _PROBLEM_TRKG |MY_UISER_ID
PCM107040 4 |MY_PROBLEM_TRKG |MY_LISER_D

S

Sy e 4l | 2
Ready Rows Fetched = 8 I~

Figure 12.6 Contents of PSPCMNAME

PSPCMPROG contains the internal PeopleCode name and Date/Time stamp of
the last update including the user ID. The table also contains the actual PeopleCode
program text.

PSPROGNAME contains the internal PeopleCode name, fieldname and record
name. Figure 12.7 contains the table entries for internal program name PCM105665.

290 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

=" Untitled - SQLT alk for Windows
File Edt Session ‘iew Option: Help

=1 E3

D|d|8| x[%=(@ ¢lo|o%s|s0le|8(8|ml 2]

SELECT * FROM PSPROGNAME WHERE PROGNAME = ‘PCM105665°;

4] |

Iﬁ'_I_IL

[RECNAME FIELDNAME PROGTYPE PROGNAME

pY_PROBLEM TRKG MY USER_ID 6 PCMID5665

1 ROW SELECTED

Fleady

[idie” [[bwdmo [S¥SADM [[i8°

Figure 12.7 Contents of PSPROGNAME

PSRECFIELD contains records and their associated field definitions. One impor-
tant field on this table is PROGCOUNT which contains the number of events for a
record field that contains PeopleCode. A SQL SELECT statement (figure 12.8) for the
record field MY_PROBLEM_TRKG.MY_USER_ID indicates a PROGCOUNT value of
4, which identifies PeopleCode existing in several events for the record field.

=" Untitled - SQLTalk for Windows
File Edit Session Yiew Options Help

DS B X% oes&0le|8|8m 2

IWHERE RECNAME = ‘MY_PROBLEM_TRKG® AND
FIELDNAME = "MY_USER_ID";

|

SELECT RECNAME FIELDNUM. FIELDNAME. PROGCOUNT.EDITTABLE . SUBRECORD FROM PSRECFIELD

|
o

[RECNAME FIELDNUM FIELDNAME PROGCOVNT EDITTABLE

SUBRECORD

pry PROBLEM TRKG & MY_USER_ID

1 ROW SELECTED

Ready

4 MY _VUSER_TRELE N

[idle” [1" [wdme ~ [SYSADM [[20°

Figure 12.8 Contents of PSRECFIELD

PEOPLECODE TOOLS TABLES

Licensed to James M White <jwhite@maine.edu>

291

1 The PeopleCode editor provides us with a facility to insert and maintain
PeopleCode statements.

2 PeopleCode comments allow for internal code documentation.

3 PeopleCode handles various data types such as String, Numeric, Date, Time,
and Object. A Boolean data type can only have a True or False value.

4 Record Field naming standards enable the PeopleCode program to access the
contents of fields. The [RecordName].FieldName format is used to access
fields in records other than the record in which the PeopleCode resides.

5 System variables are available to PeopleCode programs to access system
information such as current date, database type, operator ID, and operator
security class.

6 PeopleCode recognizes global and local variables. Global variables remain
in effect during a PeopleSoft panel session but use more overhead. Local
variables only exist during the PeopleCode event.

7 Statements include data assignments, declarations, and subroutine calls.
Expressions can be constants, variables, record fields, or values passed to
functions.

8 PeopleCode execution flow can be handled using If-Then-Else,
Evaluate, For, Repeat, and While statements.

292 CHAPTER 12 PEOPLECODE LANGUAGE ELEMENTS

Licensed to James M White <jwhite@maine.edu>

1 3

PeopleCode & the
Application Processor

13.1 The Application Processor 294 13.4 Panel Group display 302
13.2 Search processing 295 13.5 Data entry and inquiry 303
13.3 Data retrieval 300 13.6 Save processing 307

The Application Processor is the system tool responsible for carrying out tasks such as
displaying selected panels and panel groups, invoking PeopleCode at various events
and controlling updates to database records. Having a good understanding of how
the Application Processor interacts with PeopleCode is important when designing an
application or determining where to insert custom code.

293

Licensed to James M White <jwhite@maine.edu>

13.1

294

THE APPLICATION PROCESSOR

Imagine, if you will, a busy intersection with no traffic lights at the height of rush
hour on the Friday afternoon of a long holiday weekend. No traffic lights or traffic
officer! This is a scene of chaos if ever there were one.

When an end user sits in front of his/her terminal during a PeopleSoft session,
there can be much confusion from the perspective of the operating system and Peo-
pleTools environment. All those mouse clicks and menu selections have to be con-
trolled and guided somehow. The PeopleTools Application Processor performs just
such a function. When the end user requests information or wishes to update infor-
mation, the panels, menus and panel groups are controlled by... you guessed it, the
Application Processor! The Application Processor also interacts with PeopleCode pro-
grams, and this interaction is the cornerstone of PeopleCode within the PeopleTools
environment. During the course of an online request, events are triggered which may
result in the execution of PeopleCode programs tied to such events.

PeopleCode programs are tied to an event and either a record (record People-
Code) or a menu item (menu PeopleCode). If, during the course of a work session,
an event is triggered that is tied to PeopleCode, the statements within that event are
executed. The Application Processor ensures that each event is allowed its fair share
of memory and an “at bat” in the event line-up. Menu PeopleCode operates when
menu items are selected. Record PeopleCode operates on data rows associated with
record objects and is normally triggered during events in an online session.

PeopleCode events are utilized during the phases of an online session. Chapter 9
discussed The Application Processor and how it interacts within the following stages:

* search processing

* data retrieval

* panel group display
* data entry or inquiry

During these stages, PeopleCode programs can be inserted to enhance an appli-
cation or perform required tasks that cannot be easily accomplished using basic Appli-
cation Designer panel functionality. Knowing where to insert code is just as important
as knowing how to write code. Events exist which may not be triggered based on spe-
cific actions. Some events are based on actions that occur before a panel group is dis-
played. These events are related to search processing, interpretation of search key
values, and default processing. When new data are added, certain events and actions
occur that do not occur when existing data are displayed for update. Whether data are
being added or displayed for update, PeopleCode can be inserted into these events to
establish default values or control the look and feel of menus, panels, and scroll areas
as well as to submit batch processes when necessary.

CHAPTER 13 PEOPLECODE € THE APPLICATION PROCESSOR

Licensed to James M White <jwhite@maine.edu>

13.2 SEARCH PROCESSING

When a menu item is selected, the Application Processor interacts with PeopleCode
events based on the menu action requested. Where PeopleCode is placed is important
because some events do not permit specific actions. For example, a SQLExec SELECT
statement that enables the execution of SQL statements against a database table can
be placed in any event. SQLExec statements containing database updates, however,
are only allowed during events such as SavePreChg, WorkFlow, and
SavePostChg. Similarly, message functions containing more than one button are
not allowed during “Think Time” PeopleCode events. Think Time PeopleCode
events are actions that interrupt processing and wait for a user reply to a message box
containing more than one push button. A message box with multiple buttons can
impact the course of a program’s flow.

13.2.1 Menu item is chosen

A panel session is commonly initiated with the selection of an item from a menu. As dis-
cussed in part 2, menu actions can be Add, Update/Display, Update/Display
All, or Correction.

When a menu item is selected, the Application Processor loads into its memory
buffers the panel group definition and search records associated with the selected
menu item. Included in these objects are the records and events containing People-
Code associated with the Application Processor’s flow of execution. Within these
events, the Application Processor retrieves the necessary database keys for the records
contained in the panel group. Records that make up the panels in a panel group are
retrieved and presented to the end user on one or multiple panels.

13.2.2 Search processing—Add mode

Panel group startup process and associated PeopleCode events are triggered, depend-
ing upon the menu action selected. We have developed a small application which
links security operator classes and office locations. This application is used to link
employees to the operator class/location combination, primarily for reporting pur-
poses. Let’s assume the menu contains two actions, Add and Update/Display.
After selecting Add from a menu, an end-user is presented with an Add dialog box.
Fields defined as search keys in the search record are assembled on the input dialog
box. In Add mode, however, fields defined as alternate search keys in the search
record do not appear on the input dialog box. To a user, an Add dialog box is auto-
matically displayed; but to the Application Processor and any associated PeopleCode,
it’s another Friday afternoon on the freeway!

Before an Add dialog box is displayed several PeopleCode events occur. The
events are

* FieldDefault
* FieldFormula

SEARCH PROCESSING 295

Licensed to James M White <jwhite@maine.edu>

