
296 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

• RowInit
• SearchInit

FieldDefault

The event is triggered before the panel is displayed to the user. As discussed in part 2,
field values can be defaulted in the Application Designer and can also be defaulted
from the FieldDefault event. The Application Processor examines the fields in a
panel group and, if the field is blank (character field) or zero (numeric field), the
Application Processor sets the field to any value specified in the Application Designer
Record Field Properties. When no default value is specified, any FieldDefault
PeopleCode associated with the field is executed. It is important to note that, if a field
has been assigned a default value in the Record Field Properties, and we also happen
to include a neat little piece of FieldDefault PeopleCode, the Application Proces-
sor determines if the field is blank or zero before any FieldDefault program exe-
cution. Because the default value from the record definition already filled the field,
the Application Processor does not execute the FieldDefault PeopleCode.

FieldDefault is an iterative event that constantly checks for blank (character
field) or zero (numeric field) in the panel group. When a field does not have a default
value in its Record Field Properties and does not have a value as a result of data entry
or some other PeopleCode event, the FieldDefault event executes as a result of
another event occurring. The other events can include fields on a panel. Figure 13.1
is an example of FieldDefault PeopleCode used in the Problem Tracking applica-
tion. Note that more than one field can be defaulted. This enables us to consolidate
code rather than spreading it across fields.

FieldFormula

Each time an event is triggered by the Application Processor, the FieldFormula
event is also triggered. As a result, the PeopleCode contained in FieldFormula is
executed in between the execution of other events. Any PeopleCode contained in the
FieldFormula event of a panel field is executed regardless of the field in which the
PeopleCode resides. Due to its high performance overhead and potential system

Figure 13.1

Example of FieldDefault

PeopleCode

Licensed to James M White <jwhite@maine.edu>

SEARCH PROCESSING 297

degradation, the use of FieldFormula is used primarily in function libraries where
stored PeopleCode can be shared across many records and varying panel groups.

RowInit

RowInit PeopleCode can be used to control the initial appearance of a field or panel
group control. The event is triggered each time the Application Processor encounters
a row of data before the panel is displayed. RowInit PeopleCode is executed on all
fields and rows in the panel buffer. The operator class/location contains two panels
that use a common derived/work record. PeopleCode is inserted into the RowInit
event of the derived/work record to display the number of rows in a scroll area.
Because the code operates on two different panels and is contained in the same
Record.Field, the code uses an If conditional statement (discussed in chapter 12).
This code (figure 13.2) will work in Add as well as Update/Display modes.

SearchInit

In Add mode, the SearchInit event is trig-
gered prior to display of the Add dialog. It
enables the developer to prepopulate search
fields. Under certain circumstances it may be
necessary to populate a search dialog based
on the action mode. This can be accom-
plished using the %Mode system variable dis-
cussed in chapter 12.

In the operator class/location example,
the %OperatorClass system variable can
be used to prepopulate the input dialog box.
The SearchInit code returns the primary
operator class for the current operator. The
Add dialog is populated with this value.

However, the user still has the option of modifying the operator class before pressing
OK. The SearchInit PeopleCode and subsequent Add dialog box are illustrated in
figures 13.3 and 13.4 respectively.

Figure 13.2

Shared RowInit

PeopleCode for

two panels

Figure 13.3 SearchInit PeopleCode

Figure 13.4 Add mode dialog box

Licensed to James M White <jwhite@maine.edu>

298 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

TIP SearchInit PeopleCode is only executed for search key fields. Any
SearchInit PeopleCode attached to a non-search key field is ignored.

In the operator class/locations, SETID is an identifier that is five characters in
length and Operator Class is eight characters. For this application, SETID and Oper-
ator Class are basic components required during initialization of the panel and are
used to kick off the related Application Processor events. The events executed follow-
ing the display and subsequent data entry into an Add dialog box are as follows:

• FieldEdit
• FieldChange
• SaveEdit
• SearchSave

FieldEdit

One of the most commonly used PeopleCode events is FieldEdit. Typical
FieldEdit code includes edits such as date verification, hide/unhide of fields, and
message displays to the operator when necessary. Figure 13.5 is an example of
FieldEdit PeopleCode (applied to Problem Tracking) which generates an error
message when the incident close date (CLOSE_DT) contains a date value prior to the
incident date (INCIDENT_DT). FieldEdit is triggered when the user edits a field
then tabs out or clicks on another field, edits a field and, without tabbing out,
attempts to save the panel, changes the condition of a radio button, or clicks on a
command push button.

When PeopleCode is added to validate fields, we can use the Error or Warning
statement to display a message. Both statements highlight the field in red. The Error
statement does not permit entering data into another field or attempting to save the
changes after an error message has been displayed. The Warning statement notifies

Figure 13.5 FieldEdit PeopleCode

Licensed to James M White <jwhite@maine.edu>

SEARCH PROCESSING 299

the user with a message but permits work to continue. Any PeopleCode in
FieldEdit is only triggered following Application Processor edits that include data
type/format checking, prompt table verification, or Yes/No and translate table edits.

When the FieldEdit event is triggered from an Add dialog box, only the search
fields that appear in the Add dialog box will have any associated FieldEdit
PeopleCode executed. FieldEdit PeopleCode for non-search key fields which appear
on a panel is executed after the panel is displayed and the FieldEdit actions take place.

An error message similar to the one
displayed in figure 13.6 prevents the panel
or panel group from being saved. In the
example, if an incident close date less than
the incident date is entered, the Field-
Edit event is triggered, regardless of
whether or not we tab out of the field.
When an error message is displayed, the
choices available to the user are to correct
the error or cancel the panel.

The example in figure 13.5 verifies that CLOSE_DT has a value before perform-
ing additional edits. This is accomplished using the All PeopleCode function.

FieldChange

The FieldChange event follows FieldEdit and occurs after the contents of a
field have been modified and FieldEdit PeopleCode has been accepted. Field-
Change is available to all modes (Add, Update/Display,Correction, Data
Entry). As the name suggests, the event is triggered when a field on a panel is
changed. After FieldEdit, the Application Processor then writes the changed field
to the panel buffer and triggers the FieldChange event. PeopleCode in this event is
commonly used to recalculate field values on a panel or to change the appearance of
fields, buttons, or other controls on a panel.

SaveEdit

SaveEdit is another important event. After an Add dialog box is filled, and all edits
have occurred for the search fields entered, any SaveEdit PeopleCode related only
to the search fields is executed.

Because SaveEdit is used in all modes, an additional description will be pre-
sented in the section Data Entry or Inquiry.

Figure 13.6 Error Message generated

during FieldEdit

Licensed to James M White <jwhite@maine.edu>

300 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

SearchSave

PeopleCode in this event is executed for search key fields on a dialog (Add, Search
and Data Entry dialogs). While SearchInit enables us to control processing before
search keys are populated, SearchSave is used after the search keys are populated
and the user has clicked OK. If we want to ensure that the user enters at least one
value into a search field, we can do so with PeopleCode in this event. Figure 13.7 is
an example of code used to require at least one key field. A partial key value is accept-
able because it can be used to limit the number of rows returned in tables that con-
tain large amounts of data.

13.3 DATA RETRIEVAL

13.3.1 Search processing—Update mode

Choosing Update/Display from a menu generates a search dialog box. The
search fields displayed are those defined as list box items in Application Designer.
Before the Search Dialog box is displayed, the Application Processor triggers the fol-
lowing events:

• SearchInit
• SearchSave
• RowSelect

SearchInit

PeopleCode behaves the same regardless of mode. Therefore, it is important to know
when and under what circumstances the code will be executed. Because Search-
Init PeopleCode can be executed from Add as well as Update/Display, a com-
mon practice is to reference the %Mode system variable. A search dialog for the
operator class/location panels is illustrated by figure 13.8.

Figure 13.7 SearchSave code to require at least one search key

Licensed to James M White <jwhite@maine.edu>

DATA RETRIEVAL 301

SearchSave

SearchSave is used after the search keys are
populated and the user has clicked OK. The
event behaves the same as in Add mode fol-
lowing the display and subsequent data entry
into a dialog box.

RowSelect

This event occurs at the start of the Panel
Build process when data are read into the
panel group. RowSelect PeopleCode can be
used to prevent the Application Processor
from loading data, based on specific criteria.
PeopleCode can also be used to stop the Appli-
cation Processor from loading further rows of
data. Without RowSelect PeopleCode, the

Application Processor inserts data into the panel group when the database record key
matches the designated search key.

How do we stop at a certain row or prevent more rows from being loaded once
a certain condition has been met? In earlier releases of PeopleCode, the Warning and
Error statements could have been used. Placing these statements in the RowSelect
event has the effect of rejecting the row before it is displayed. Although not recom-
mended, these statements can still be used. We can now, however, code a
DiscardRow or a StopFetching function statement to achieve these tasks. The
DiscardRow skips the current row of data and processing continues with any sub-
sequent rows. Using the StopFetching function enables the Application Processor
to select the current row of data and terminate reading any subsequent rows.

Here’s a question: Would you code a RowSelect event with the knowledge that
users may be loading many rows onto their clients? And, more importantly, what if the
client is on the other side of the planet from the database server? Take note:
DiscardRow or StopFetching discards rows or stops the selection process after
rows have been accepted by the Application Processor. As a result, some overhead exists,
as does the potential for inefficient coding with the implementation of RowSelect
using these two functions. A small application may work well with these statements.
However, a heavily used application would fare better with record views and effective
dated tables where historical data could be separated before getting to the client.

In our application linking operator classes to office locations, we need to remove
any employees who have an EMPLID starting with 'L'. This process can be accom-
plished by inserting the DiscardRow function into the RowSelect event
(figure 13.9). Because the operator class/location panel is not a heavily used

Figure 13.8 Search Dialog—Update

mode

Licensed to James M White <jwhite@maine.edu>

302 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

application, the concern over inefficient code is not as important as in some heavily
used applications.

During the panel group build phase, Update action modes incorporate some
events used during Add. The Application Processor can either add data to the panel
group or retrieve data from database tables. Based on panel display control fields and
related display fields, the Application Processor determines when to retrieve data from
other records. As discussed in chapter 9, when building panels, the records can be SQL
tables, SQL views, or derived/work records.

During the data retrieval stage, there is little PeopleCode involvement. The
Application Processor constructs SQL statements based on search key values provided
previously, records defined as related display, and, more importantly, the mode in
which the Application Processor is operating. During Add mode, less data are
retrieved from the database than in modes such as Update/Display and
Correction. After the Application Processor has retrieved the data necessary, it is
ready to go into the panel group display stage.

13.4 PANEL GROUP DISPLAY

During Panel Group display, the following PeopleCode events are executed:

• FieldDefault (Iterative)
• RowInit

The previous section, “Search processing—Add mode” (13.2.2) covers FieldDe-
fault and FieldFormula events. These events are categoried as Default process-
ing. “Search processing—Add mode” also discusses RowInit in depth.

At this juncture, the Application Processor has selected (and possibly removed)
records using DiscardRow in the RowSelect. The RowInit event has also
occurred for the selected rows. The panel is now ready to be presented to the user. After
the panel group is displayed, the Application Processor exits from the freeway and into
a rest area where it waits for operator actions.

NOTE When selecting data in a scroll area, RowSelect and RowInit PeopleCode
events occur for each row that is read into the scroll.

Figure 13.9

Using DiscardRow in RowSelect

Licensed to James M White <jwhite@maine.edu>

DATA ENTRY AND INQUIRY 303

TIP All default processing and display processing PeopleCode events from pan-
el fields, except related display fields, are processed during panel display.
Even if a field is not present in the panel, PeopleCode events are triggered
from that field. One exception to this rule is fields from Derived/Work
records. PeopleCode is processed from derived fields only when they are
present in the panel. For this reason the same Derived/Work record can be
shared across multiple panel sessions without interfering with each other.

13.5 DATA ENTRY AND INQUIRY

13.5.1 Modifying data on a panel

From a PeopleCode perspective, the majority of events and activities take place dur-
ing data entry and save processing. Save processing events begin when the user clicks
the save toolbar icon or selects File, Save from the menu. When the panel group is
displayed the user is presented with information based on his/her security profile. If
the user has view capability only, then no adding or updating can be performed.
Given the proper security, however, the user can perform activities that trigger Peo-
pleCode events. These events include:

• FieldEdit
• FieldChange
• RowInsert
• RowDelete

NOTE When entering data on a panel, the F4 and CTRL+F4 prompt does not trig-
ger any PeopleCode events.

FieldEdit and FieldChange

During data entry, when the user edits a field on the panel and then tabs out of the field
or clicks on another field, the FieldEdit PeopleCode event is triggered. Please refer
to section 13.2.2 for more information regarding FieldEdit and FieldChange.

RowInsert

When a RowInsert activity is performed (F7), the Application Processor adds a row
of data to the active scroll area. In Problem Tracking, the panel
MY_PROBLEM_TRKG is not a scroll panel and, therefore, PeopleCode events such as
RowInsert and RowDelete are not executed. This is important because we could
add lines and lines of RowInsert PeopleCode containing the fanciest routines,

Licensed to James M White <jwhite@maine.edu>

304 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

functions and edits, but, if our screen does not contain a scroll bar, then our People-
Code will never get executed!

The Application Processor first inserts an empty row into the active scroll area.
The RowInsert event is then executed, and PeopleCode operates on the fields in the
newly inserted row. A successful RowInsert event is followed by the Application
Processor events FieldDefault, FieldFormula, and RowInit. RowInsert
PeopleCode operates on rows containing a scroll area on the panel. These events are
executed before the panel is redisplayed so if RowInsert code is replicated in the
RowInit event, the code is triggered twice because RowInit follows RowInsert.
RowInsert PeopleCode can be used primarily for specific processing when new rows
are inserted into a scroll area. RowInit PeopleCode is used when rows of data are
loaded into a panel buffer. RowInit is triggered for both scroll and nonscroll data,
whereas RowInsert is only triggered for panels containing scroll data.

The Error and Warning statements should not be used in RowInsert
PeopleCode. The Application Processor runtime error will force the user to cancel the
panel group without saving it.

RowDelete

RowDelete results in removal of data from a scroll area and, subsequently, from the
database during save operations. This event is triggered when the user deletes a row of
data by pressing the row delete button or the F8 function key. Before the Application
Processor removes a row from the buffer, fields on the deleted row can be referenced
from PeopleCode in the RowDelete event. The Application Processor marks the
rows as deleted, but the actual delete does not take place until save processing. The
RowDelete event is executed following the “Delete current row?” verification
message issued by the Application Processor. When a No reply is given, any code asso-
ciated with RowDelete is not triggered. An application of the use of RowDelete
can be used to update the Scroll Count field on the panel illustrated in figure 13.10.
Figure 13.11 represents a simple line of code which updates the scroll count during a
RowDelete event. The ActiveRowCount function is used to produce a count of
the number of active rows in the panel scroll area. Rows marked for deletion are not
included in the count.

Licensed to James M White <jwhite@maine.edu>

DATA ENTRY AND INQUIRY 305

PrePopup

As developers, we can attach a pop-up menu to a panel field, which is displayed at
runtime when the user clicks the right mouse button of the corresponding field. The
PrePopup event is triggered immediately before the display of the pop-up menu.
When we compare PeopleCode in pop-up menus to PeopleCode in standard menus,
we see limitations to the standard menu PeopleCode that do not exist in pop-up menu
PeopleCode. If we do not wish to add command push buttons to our panel, pop-up
menus can be used instead. As an example, let’s refer to figure 13.10 and, more specif-
ically, the label titled “Load Locations,” . This field is associated with a pop-up
menu which loads locations associated with the SETID field. For this process we have
defined a pop-up menu named LOAD_LOCATIONS. To illustrate the PrePopup
event, let’s assume that after we right-click the field labeled “Load Locations,” the

Figure 13.10 RowInsert and RowDelete processing is only possible on panels

containing scrolls.

1

Figure 13.11 RowDelete code used to update counter

1

Licensed to James M White <jwhite@maine.edu>

306 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

PeopleCode associated with this pop-up menu is executed (figure 13.12). Each time
the right mouse button is clicked, the scroll area fills with data. An unsuspecting end-
user can perform this several times before activating the save button. This type action
generates an error message indicating duplicate keys. We can be pro-active and prevent
this duplicate key situation by including code to delete data before populating the
scroll buffer area. In this example, the code to clear the scroll area and related database
records is inserted into the PrePopup event (figure 13.13). As a result of implement-
ing the PrePopup code, when the user right-clicks the “Load Locations” field, the
PrePopup event executes the associated code and clears the scroll area before it is
filled with data.

Pop-up menu PeopleCode could also be used to calculate field values, trigger
Workflow events, or run a modal transfer.

NOTE The DeleteRow function used in figure 13.13 could have been combined
with the code in figure 13.12. It has been placed into the event to demon-
strate PrePopup.

Figure 13.12 PeopleCode associated with a pop-up menu

Figure 13.13 PrePopup code to clear scroll buffer area

Licensed to James M White <jwhite@maine.edu>

SAVE PROCESSING 307

13.6 SAVE PROCESSING

After data entry is completed and all FieldEdit PeopleCode events are executed,
the user can either save the panel or cancel it. As a result of canceling a panel, no save
processing is performed. All those elegant routines written for execution during a save
process are overlooked by the Application Processor, which resets the status of the
panel group following a cancel. When the save button is activated, the Application
Processor then triggers four events associated with save. The events are:

• SaveEdit
• SavePreChg
• Workflow
• SavePostChg

SaveEdit

The PeopleCode associated with this event is executed after the operator saves the
panel group. This event allows the developer to verify data consistency across fields
and records.

After the user has clicked the save button or pressed enter, the SaveEdit event
is triggered. Any PeopleCode in this event is executed after the Application Processor
performs edits of its own. SaveEdit PeopleCode can be used when more than one
field in the panel group is required to perform validity checking or a consistency edit.
The SaveEdit event enables us to verify fields after they have all been keyed into a
panel group. We could use FieldEdit PeopleCode, but if there are ten fields on a
panel group that require some form of editing, a user would not want to enter a field,
have a message appear, and correct the field only to repeat the same sequence on the
next field. SaveEdit is not related to any specific field and, except for deleted rows,
is triggered on every row of data in the panel group buffer. This can be tricky at times.
As an example, let’s assume that we have an employee’s JOB history panel, which is
effective-dated. Let’s also assume that we’ve made changes to the current effective-
dated row. Coincidentally, a record somewhere in the scroll contains bad data. The
data are probably the result of a conversion program that did not perform edits on
every field. When the user clicks “Save,” the associated PeopleCode will be triggered
for every row in the scroll. Any errors encountered somewhere in the stack of JOB data
will require correction when the error prevents a save operation.

Our friends, the Error and Warning statements, can be used in SaveEdit
PeopleCode. The Error statement displays a message, but prevents the user from
saving any data while the Warning statement displays a message and presents the user
with the option to save the data via an OK or to Cancel without saving. If the People-
Code program can determine which field requires correction, the PeopleCode function
SetCursorPos can be called before Error or Warning. Figure 13.14 illustrates
PeopleCode in the SaveEdit event. The code verifies for changed fields using the
built-in function FieldChanged and calls an External PeopleCode function named

Licensed to James M White <jwhite@maine.edu>

308 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

MyAuditFunction. Putting this code into an event such as FieldEdit or
FieldChange represents a bit more of a challenge because the function would be
called each time the event is generated. Think of the user who changes a field many
times before pressing save.

SavePreChg

SavePreChg occurs after the SaveEdit event terminates successfully.
SavePreChg enables the PeopleCode program to modify data one last time before
the Application Processor updates the database. Upon successful completion of a
SavePreChg event, the WorkFlow event is then executed. WorkFlow is triggered
before the Application Processor generates the corresponding database updates, such
as INSERT, UPDATE, and DELETE.

WorkFlow

This event follows SavePreChg and is executed before any of the database updates
are performed. The database updates are then followed by the SavePostChg event.
Workflow PeopleCode is separated from PeopleCode in the other events and should
be designed so that Workflow executes when all SaveEdit and SavePreChg code
have been completed. Workflow programs should include PeopleCode related to
Workflow and linked to business processes only. At the time a business process is
defined, we also include the panels that trigger any related business events. The com-
bination workflow panels and PeopleCode programs are considered application
agents and are loaded as part of the panel group.

Workflow PeopleCode includes either the TriggerBusinessEvent() a
PeopleCode function that triggers events, or Virtual_Router(), which is linked
to the Virtual Approver.

Figure 13.14 SaveEdit PeopleCode

Licensed to James M White <jwhite@maine.edu>

SAVE PROCESSING 309

TIP The code should verify when the business event is to be triggered; this is
referred to as a business rule.

SavePostChg

After SavePreChg, the Application Processor executes PeopleCode in the Workflow
event. The Application Processor then executes any database updates (INSERT,
UPDATE, DELETE), followed by the SavePostChg event. Records that require updat-
ing, but are not included in the current panel group, can be updated in this event using
the SQLExec statement. Be aware that if the SavePostChg event fails to execute cor-
rectly, the Application Processor will not issue a SQL commit. Similarly, the use of
Error and Warning statements in SavePostChg PeopleCode issues a runtime error
that forces the user to cancel the panel group without saving it.

NOTE It is important to know that an unsuccessful Workflow event prevents the
SavePostChg event from executing.

13.6.1 Adding PeopleCode to save processing

Some code added to the Problem Tracking application makes it more efficient, but
there is always room for improvement. It is not always a good idea to add “bells and
whistles” to an application just because we have the tools. It is also not feasible to add
complex code to satisfy one user when there are hundreds of other users that will not
benefit from the added code. The application presented is a small application, and
some “loop holes” are opened up, as we will illustrate.

When a problem has been resolved, certain housekeeping steps should be completed.
These steps include entering the Problem Resolution text and entering a Close date.

In its current form, the application will accept a problem status value of 5
(Resolved) without validating that the resolution text field is entered. Because we can-
not change the Record Field Properties of the MY_PROBLEM_RESOLTN field and
make it required, PeopleCode can be added to accomplish this task for us. The code
shown (figure 13.15) will accomplish the task and require that the resolution text field
is entered for resolved issues.

The next step is to ensure that the Close Date field is entered when the problem
status has been resolved. The code in figure 13.16 will check for a status of 5 and then
require that the CLOSE_DT field contain a valid date value. Because CLOSE_DT is
defined as a Date data type, the Application Processor performs the standard date
checking for us.

One additional piece of code we would like to add is related to the following sce-
nario. Let’s say the problem is reported and entered into the system. The problem sta-
tus is subsequently assigned, tested and resolved; and at the time of resolution, the

Licensed to James M White <jwhite@maine.edu>

310 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

Problem Resolution text field is entered, along with a close date. It is then determined
that the problem was not resolved and the status should be set to “In Progress,” to indi-
cate that it is being handled by a developer.

This issue requires that we reset the Problem Resolution text field and the Close
date. Our program logic has now changed from reactive to proactive. The code to
accomplish this task is illustrated in figure 13.17. The PeopleCode function
SetDefault is used to set the field to a NULL value. During the next
FieldDefault event, MY_PROBLEM_RESOLTN and CLOSE_DT are set to their
appropriate default values. After the user has clicked the save button or pressed the
ENTER key, the SaveEdit event is triggered. The last several examples were placed
into the SaveEdit event of the field MY_PROBLEM_STATUS. The code is placed
into SaveEdit to ensure that is it executed after the Application Processor performs
its own edits. Additionally, SaveEdit PeopleCode is used when more than one field
in the panel group is required to perform validity checking. Another less strategic rea-
son to include the code in SaveEdit is that some end-users will automatically remove
the resolution text field and close date then reset the problem status to “2.” This action
will bypass the edit in figure 13.17.

Figure 13.15 Using PeopleCode to verify a field is entered

Figure 13.16 Verify that Close Date is entered

Licensed to James M White <jwhite@maine.edu>

SAVE PROCESSING 311

Figure 13.18 illustrates the completed panel with some bells and whistles added
for additional editing features.

Figure 13.17 Code to reset data

Figure 13.18 Completed panel with custom PeopleCode

Licensed to James M White <jwhite@maine.edu>

312 CHAPTER 13 PEOPLECODE & THE APPLICATION PROCESSOR

KEY POINTS

1 The Application Processor acts as a traffic agent on a busy street. It controls
everything from the time the user selects a menu item until all save process-
ing has been completed as well as everything in between.

2 Event Processing is the cornerstone of PeopleCode programs. Code can be
inserted before a search dialog is displayed, at every step in between, and
after all database updates have been performed.

3 Some events such as FieldDefault and RowInit occur before data are
displayed on the panel.

4 FieldFormula is an event that occurs after each and every event that con-
tains PeopleCode is executed. A lot of overhead is associated with Field-
Formula and its use has been left mostly to function libraries on Derived/
Work records. FieldEdit also executes for each field on a panel which
contains a blank or zero value.

5 When data are entered into a panel, events such as FieldEdit and
FieldChange can be executed before save processing.

6 RowInsert and RowDelete are events linked to the F7 and F8 function
keys, respectively. They are used primarily on panels containing scroll bars.

7 After the save button is pressed, events such as SaveEdit, SavePreChg,
and SavePostChg are executed.

8 The WorkFlow event follows SavePreChg just prior to all database table
updates.

9 Any PrePopup code associated with a pop-up menu is executed before the
pop-up menu is displayed. If we do not wish to add command push but-
tons to a panel, pop-up menus and any associated PeopleCode can always
be used instead.

Licensed to James M White <jwhite@maine.edu>

313

C H A P T E R 1 4

Messages and
error handling

14.1 Using the MessageBox function 314
14.2 Using WinMessage 324
14.3 Error and warning 326
14.4 MSGGET and MSGGETTEXT 329

Communication between a PeopleSoft application and an end-user is key to a suc-
cessful implementation. PeopleCode message functions enable the application to
send messages containing a simple OK push button or an Error message that will pre-
vent further processing of a panel, until data on the panel has been corrected. In
between these extremes, messages can be sent in varying detail containing custom
messages. Utilizing the PeopleTools Message Catalog, these messages can be sent to a
worldwide audience in a variety of languages. With no changes to a PeopleCode pro-
gram and a change to the language code, cataloged messages can be “cloned” for every
language required.

Licensed to James M White <jwhite@maine.edu>

314 CHAPTER 14 MESSAGES AND ERROR HANDLING

14.1 USING THE MESSAGEBOX FUNCTION

The MessageBox function is one of the more important PeopleCode built-in func-
tions. MessageBox enables PeopleCode programs to communicate with an end-user
via a message box window. PeopleCode program flow can then be controlled based
on the push button return values selected. (The syntax and rules of MessageBox can
be found in appendix E.)

One of the parameters used by MessageBox is style. The style parameter enables
the construction of a message box window with a blend of icons and push buttons.
An optional default button can also be specified. Table 14.1 identifies the values
required for buttons, default buttons, and icons.

Table 14.1 Style parameter combinations

Value Push buttons Default button Type of icon

0 One push button containing OK First button in the
message box is the
default

None

1 Two buttons containing OK and Cancel

2 Three buttons containing Abort, Retry and
Ignore

3 Three buttons containing Yes, No and Can-
cel

4 Two buttons containing Yes and No

5 Two buttons containing Retry and Cancel

16 Icon contains a stop sign.

32 Icon contains a question
mark.

48 Icon contains an exclama-
tion point.

64 Contains a small letter “i”.

256 Second button in the
message box is the
default.

512 Third button in the
message box is the
default.

Licensed to James M White <jwhite@maine.edu>

USING THE MESSAGEBOX FUNCTION 315

In addition to the button combinations illustrated in table 14.1, the MessageBox
window also contains an Explain button. As the name implies, the Explain button pro-
vides a more detailed explanation of the message text.

Some important rules regarding the use of MessageBox concern the buttons
that can be used during certain PeopleCode events. The OK and Explain buttons do
not interrupt processing. However, when any other type of button displayed in a mes-
sage box interrupts processing, the system waits until one of the buttons is clicked. The
function then becomes “user think-time,” which indicates the button action returns
a value to the function. As a result of awaiting a reply, the Application Processor sus-
pends the PeopleCode program until the user clicks on one of the buttons contained
in the message. A program in this manner cannot be used in the following events:

• RowSelect
• SavePreChg
• WorkFlow
• SavePostChg

When the OK button is the only button represented by the style parameter, the
function can then be used in all PeopleCode events. The style parameter does not con-
trol the Explain button and is not indicative of whether MessageBox is considered
think-time.

Based on table 14.1, if a message box contains an OK and Cancel button as the
default, along with a question mark icon, what would the value of style have to be? If
you guessed 289, you win the prize! The following PeopleCode statement produces
the message box shown in figure 14.1.

MessageBox (289,"Example", 0, 0, "MessageBox example");

Using table 14.1 as a reference, let’s examine
the MessageBox window in figure 14.1.
The MessageBox contains two buttons,
OK and Cancel (style value = 1). The sec-
ond button represents the default (style
value = 256), and the question mark icon
appears in the message box (style value
= 32). The sum of these values is 289, which
is the style used for this example.

Let’s assume the numbers were not added correctly and, rather than using 289,
we supplied 288 as the style to MessageBox instead. How will the message box
appear? When the following statement is executed, the message box appears as shown
in figure 14.2.

MessageBox (288,”Example”, 0, 0, “MessageBox example”);

Figure 14.1 A standard MessageBox

window

Licensed to James M White <jwhite@maine.edu>

316 CHAPTER 14 MESSAGES AND ERROR HANDLING

Because the style parameter is incorrect by a
value of 1, the message box contains an OK
push button only. The message box con-
tains this single push button because zero is
the value used to represent a single button
containing OK (as described in table 14.1).
A value of 288 indicates that any additional
buttons are not factored into the required
style value equation.

The next parameter is the title of the message box. The title is defaulted when a
null string is passed. For example, the following statement produces a null title in the
MessageBox window:

MessageBox (289,””, 0, 0, “MessageBox example”);

The statement produces the message box shown in figure 14.3 with a defaulted title.

The next parameter is the message_set
number of the message catalog. The Mes-
sage Catalog enables us to store messages for
retrieval using functions such as
MessageBox. We can either set up our
own custom messages or use the existing
ones. To define a custom cataloged mes-
sage, we can select Use → Message Catalog
from the Utilities menu.

The illustration in figure 14.4 indicates message set number 20001 in English will
be added to the catalog. Message sets 1 through 19,999 are reserved for PeopleSoft
application use. Message sets 20,0000 through 29,000 are available for custom use.

We populate the panel in figure 14.5 and then proceed to add the same message
in Spanish, as illustrated by figure 14.6.

Figure 14.2 MessageBox window using

erroneous style

Figure 14.3 MessageBox with

defaulted title

Navigation: Utilities → Use → Message Catalog → Add

Figure 14.4 Adding Message Catalog entries

Licensed to James M White <jwhite@maine.edu>

USING THE MESSAGEBOX FUNCTION 317

Figure 14.5 Message in English

Figure 14.6 Same message number in Spanish

Licensed to James M White <jwhite@maine.edu>

318 CHAPTER 14 MESSAGES AND ERROR HANDLING

NOTE Messages added to the range used by PeopleSoft (1–19,999) or messages
customized in this range may be impacted by future releases of the product.

The next MessageBox parameter is the message number. Each message set is
accompanied by one or more messages identified by the message number. The examples
in figures 14.5 and 14.6 begin with message number 1 (a most logical starting place).
The language, description, and short description fields are part of the message set. The
message number is automatically assigned to the next available number in the message
set and includes the severity, message text, and explanation. To insert an additional mes-
sage number for the message set 20001, we first display the message displayed in
figure 14.5. The next step is to use the Insert Row toolbar icon or F7 function key. The
Insert Row augments the message number and presents a panel that enables the entry
of message severity, text, and explanation. A similar panel is shown in figure 14.7.

Default text is the next parameter and it is displayed under two circumstances.
The first occurs when the message identified by message set and message number is
not found in the message catalog. The second condition occurs when a value less than
1 is supplied in the message set field. A MessageBox as outlined in the following
statement uses the default text because of the zero passed in the message set number.

MessageBox(289, "", 0, 0, "");

Figure 14.7 Inserting additional message number

Licensed to James M White <jwhite@maine.edu>

USING THE MESSAGEBOX FUNCTION 319

The preceding example specifies a null
default text. As a result, the Application
Processor issues the message shown in
figure 14.8.

As illustrated by figure 14.8, Message-
Box uses the style parameter and replaces the
title with a default value. MessageBox then

fills in the default text with its own MESSAGE NOT FOUND verb.
The next and last parameter is the parameter list. It may sound somewhat redun-

dant, but these are the optional parameters that appear in the message or default text.
Variables cannot simply be imbedded into messages, they must be passed as parame-
ters to the message text. The parameters are referenced using the '%' character and
an integer that corresponds to the sequence in which the parameter appears in the mes-
sage text. To include the literal '%' in the text use '%%'.

MessageBox return value

MessageBox returns a value based on which push button is pressed. The return val-
ues are listed in table 14.2. A value of zero returned by MessageBox indicates that
there is insufficient memory to create the message box. A message box containing a
Cancel button returns the same value as when the ESC key is pressed or Cancel but-
ton is selected

Message severity

When used with cataloged messages, MessageBox can specify a message severity.
Message severity is a parameter entered into the message catalog. By specifying the
message severity, a message can be transformed from a warning into an error message
without a change to the PeopleCode that generates the message. To modify the mes-
sage severity for a cataloged message, use the Utilities menu.

Table 14.2 MessageBox return values

Returns Description

0 Insufficient memory

-1 Warning

1 OK button was pressed

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

Figure 14.8 Missing default text

Licensed to James M White <jwhite@maine.edu>

320 CHAPTER 14 MESSAGES AND ERROR HANDLING

The illustration in figure 14.9 indicates that there are four message severity cat-
egories and outcomes:

• Message Output is displayed as a message only.
• Warning Message text is sent as a warning and requires user response.
• Error The message is displayed with an error, which implies that further proc-

essing is halted until the error is corrected.
• Cancel After the message is displayed, cancellation of the current panel is

forced.

Utilizing MessageBox in PeopleCode

The following example performs some verification and generates the message that was
added in figure 14.5. The MessageBox portion of the code contains a style of 289.
As we learned, a style of 289 includes an OK and default Cancel button in addition to
a question mark icon. When the message set number is specified and is not less than 1,
the Explain button is also displayed. This occurs even when the message does not
appear in the message catalog. When a non-zero message set number is supplied, the
message stored in the catalog table is displayed in the message window. However, if the
message is not stored in the catalog, the default text is then substituted. The message

Navigation: Utilities → Use → Message Catalog → Update/Display

Figure 14.9 Message severity levels

Licensed to James M White <jwhite@maine.edu>

USING THE MESSAGEBOX FUNCTION 321

text parameter list contains one parameter identified by '%1'. When the message is
displayed, '%1' contains the value of the field MY_USER_ID. This PeopleCode exam-
ple is utilized when setting up users in the current Problem Tracking application.

The code surrounding MessageBox verifies the existence of the user ID field on
the PSOPERDEFN record. The panel field MY_USER_ID is compared to the contents
of the system variable %OperatorId, which contains the uppercase string of the
operator ID logged on. Assuming the %OperatorId variable contains the value PS,
the following code generates the message displayed in figure 14.10 when executed on
the panel:

If MY_USER_ID <> %OperatorId Then
 If (SQLExec("Select 'x' from PSOPRDEFN where OPRID = :1", MY_USER_ID,
&OPRID)) = True Then
 If %SqlRows = 0 Then
 MessageBox(289, "Verify", 20001, 1, "User id %1 not in system as
operator id", MY_USER_ID);
 End-If;
 End-If;
End-If;

Using the example in figure 14.10, under a similar circumstance a Spanish language
user in Latin America who has a Spanish language setting receives the message shown

Figure 14.10 Our MessageBox in action

Licensed to James M White <jwhite@maine.edu>

322 CHAPTER 14 MESSAGES AND ERROR HANDLING

in figure 14.11. The beauty of this is that no additional changes are made to the Peo-
pleCode program.

The message in figure 14.11 is message set
20001, message number 1. The Spanish
language message text reflects the language
code ESP. When a message number is
duplicated in varying languages, all the
other parameters including push buttons,
defaults, and the question mark icon are
identical to the original language message.

The possibility exists that when a message is translated from one language to another,
the entire message can be different. The example in figure 14.11 could relay a com-
pletely different message than the original intended message in figure 14.10. For
implementations with a worldwide audience, some type of audit should be in place
when messages are entered in different languages.

User Think-Time

At the beginning of this section, we discussed the incidence of User Think-Time.
This can occur during specific PeopleCode events and can be characterized by a mes-
sage box containing buttons other than OK and Explains. These “other” buttons
interrupt system processing and wait until some action is performed with reference to
the buttons. Because the system is in a wait mode, Application Processor suspends the
PeopleCode program. SavePostChg is one event that does not allow user think-
time functions.

Figure 14.12 is an example of a User Think-Time function.

This is the type of code which does not get noticed immediately, but lurks until
a Problem Tracking incident is resolved. When a problem has finally been resolved
and all the information in the resolution text is entered, a message is displayed follow-
ing save action. The message, shown in figure 14.13 is not the message expected by
the user.

Figure 14.11 Display cataloged Spanish

message

Figure 14.12 User Think-Time function

Licensed to James M White <jwhite@maine.edu>

USING THE MESSAGEBOX FUNCTION 323

This is not the type of message that
the developer who implemented the
SavePostChg PeopleCode had in mind
when it was coded. The error occurs
because the style parameter contains three
buttons: Yes, No, and Cancel. The People-
Code can be corrected as follows:

If MY_PROBLEM_STATUS = "5" Then
 MessageBox(0, "Problem Tracking information sucessfully closed", 20004,
1, "Update Complete");
End-If;

The message box can now be displayed (figure 14.14). Because this is a problem
tracking application, the users were kind enough to enter this into the system as well.

Figure 14.13 User Think-Time message

Figure 14.14 Successful display of message during SavePostChg

Licensed to James M White <jwhite@maine.edu>

324 CHAPTER 14 MESSAGES AND ERROR HANDLING

14.2 USING WINMESSAGE

Another common method of communicating messages is through the use of the
WinMessage function. WinMessage can be used to send messages in a manner
similar to MessageBox. As we will see in a later chapter, WinMessage can also be
used as a debugging tool.

14.2.1 WinMessage

WinMessage is used to display an informational message box. With the use of the
style parameter, two or more buttons can be included in the message, but their use is
limited to certain PeopleCode events. When the style parameter is left out of the
function call or contains more than one button, the function becomes user think-
time, which indicates the button action returns a value to the function. As a result of
awaiting a reply, the Application Processor suspends the PeopleCode program until
the user clicks on one of the buttons contained in the message. A program in this
manner cannot be used in the following PeopleCode events:

• SavePreChg
• WorkFlow
• RowSelect
• SavePostChg

From a debugging perspective, WinMessage can also be used to display field
contents while allowing us to “inch” our way through PeopleCode when necessary.

A simple WinMessage can be written as follows:

WinMessage (”This is a basic WinMessage example”);

Example 1

WinMessage can also accept a style
parameter similar to the style used in Mes-
sageBox. The parameter is optional and,
when used, the number of push buttons,
default button and type of icon that appear
in the message box can be controlled based
on the value passed. (Refer to table 14.1 for
a list of style categories and values.) A third

parameter, which contains a message box title, can also be supplied. The following
code generates the message shown in figure 14.15:

WinMessage("A WinMessage with style!", 52, "This is the title");

Figure 14.15 Message generated by

WinMessage

Licensed to James M White <jwhite@maine.edu>

USING WINMESSAGE 325

Example 2

Let’s assume we are examining a PeopleCode program in HRMS and want to know
the values of three fields. The fields are COMPRATE, COMP_FREQUENCY, and
STD_HRS. WinMessage can then be used to concatenate and display fields, vari-
ables, and literal strings. The PeopleCode utilizing WinMessage might be similar
to the illustration in figure 14.16. The resulting message is in figure 14.17.

14.2.2 Additional examples

When fully utilized, the WinMessage function takes three parameters. The example
in figure 14.16 cannot contain a comma in the message portion of the text string.
Any record fields or variables displayed are concatenated with the message text. In the
example, there are three text strings and three record fields. Initially, you may decide
to code the statement differently. Here are some examples of what to expect:

If you separate the message text components with commas as illustrated by
figure 14.18, expect the PeopleCode editor to return a message (figure 14.19) when
performing a syntax check.

Figure 14.16 WinMessage used to display field values

Figure 14.17

Concatenated message using fields

and literal strings

Figure 14.18 Incorrect use of commas in message parameter

Licensed to James M White <jwhite@maine.edu>

326 CHAPTER 14 MESSAGES AND ERROR HANDLING

You may decide to enclose the message text,
record fields or variables within one string. If the code
is written as outlined in figure 14.20, you will then be
able to perform the syntax check correctly, save your
PeopleCode, and move on to another task. However,
when this is tested—or if you are the type of developer
who moves work to production without testing (shame
on you)—then expect a similar message to the one
shown in figure 14.21.

In the message displayed by
figure 14.21, the Application Processor
could not distinguish between record fields,
variables, and text strings in the message
parameter. This is why the concatenation
character '|' is utilized to include strings
and variables when used in such message.

TIP All data types are converted to String when used in WinMessage.

14.3 ERROR AND WARNING

When performing data validation it is sometimes necessary to stop a program and
display a message. Among the various methods used to display messages, PeopleCode
provides two functions that enable us to communicate with the end user. The Error
and Warning functions can be used to perform these tasks.

14.3.1 Error

The Error function is used to display an error message and stop processing of the
active panel. In a manner similar to MessageBox, Error works with messages
stored in the Message Catalog or with a text string supplied to the Error function.
A basic Error statement can be written:

Error (“This is an example of an error message”);

Figure 14.19 Message

returned by PeopleCode

editor

Figure 14.20 Invalid concatenation of fields and variables

Figure 14.21 Incorrect message string

Licensed to James M White <jwhite@maine.edu>

ERROR AND WARNING 327

The value contained in String can be a literal text message or a message stored in the
Message Catalog. A stored message must be retrieved using the MsgGet or
MsgGetText function. This is important when using translated text messages as in
figure 14.6. The Error function, when executed, terminates the PeopleCode program
and prevents further statements from being executed. Error, however, produces vary-
ing results from one PeopleCode event to another. The events in which Error is usu-
ally incorporated include FieldEdit and SaveEdit. When executed in these
events, the message is displayed and processing is halted. In FieldEdit, the field con-
taining the PeopleCode event is highlighted. When used in SaveEdit, no fields are
highlighted. One way we can work around this in the SaveEdit event is to use the
SetCursorPos function for the field, prior to calling the Error function. RowDe-
lete is another PeopleCode event in which Error is sometimes used. When Error
is called from RowDelete, the message is displayed, and the row is not deleted.

The use of Error in other PeopleCode events is not recommended. These
events include:

• FieldDefault
• FieldFormula
• RowInit
• FieldChange
• Prepopup
• RowInsert
• SavePreChg
• SavePostChg

The following illustrates the use of Error:

If MY_USER_ID <> %OperatorId Then
 If (SQLExec("Select 'x' from PSOPRDEFN where OPRID = :1", MY_USER_ID,
&OPRID)) = True Then
 If %SqlRows = 0 Then
 Error (MsgGet(20001, 1, "User id %1 not in system as operator id",
MY_USER_ID));
 End-If;
 End-If;
End-If;

14.3.2 Warning

The Warning function is used to display a warning type message. Warning differs
from Error because processing is not halted by a warning message. The user is pre-
sented with OK and Explain buttons, then has the opportunity to correct or change
data. Warning works with messages stored in the Message Catalog or a text string
supplied to the Warning function.

A basic Warning statement can be written as:

Warning (“This is an example of a warning message”);

Licensed to James M White <jwhite@maine.edu>

328 CHAPTER 14 MESSAGES AND ERROR HANDLING

The value contained in the string passed to Warning can be a literal text message or
a message stored in the Message Catalog. The stored message must be retrieved using
MsgGet or MsgGetText. Warning produces varying results from one PeopleCode
event to another. The events in which Warning is commonly used include
FieldEdit and SaveEdit. When used in FieldEdit, the message is displayed
and the field that contains the PeopleCode is highlighted. Placing the Warning
statement in SaveEdit displays the message but does not highlight fields. One way
we can work around this in the SaveEdit event is to use the SetCursorPos func-
tion for the field prior to the Warning function call. RowDelete is another
PeopleCode event in which Warning is sometimes used. When Warning is called in
RowDelete, the message is displayed with OK and Cancel buttons. The user then
has the option to either delete the row by pressing OK or to back out of the delete by
pressing Cancel.

The use of Warning in other PeopleCode events is not recommended. These
events include:

• FieldDefault
• FieldFormula
• RowInit
• FieldChange
• RowInsert
• SavePreChg
• SavePostChg

Figure 14.22 illustrates the use of the Warning statement in the Operator Class/
Location panel. The resulting warning message text and subsequent explanation are
shown in figures 14.23 and 14.24. The definition for message set 20001, message
number 2 is shown in figure 14.25. Warning is called from the RowDelete event
and contains an OK, a Cancel, and an Explain button.

Figure 14.22 Using the Warning statement

Licensed to James M White <jwhite@maine.edu>

MSGGET AND MSGGETTEXT 329

14.4 MSGGET AND MSGGETTEXT

Various PeopleCode message functions can be used to display messages that are stored
in the Message Catalog table. Retrieving stored messages can be accomplished using the
MsgGet and MsgGetText functions. As you will remember from an earlier discus-
sion, the Message Catalog enables us to define the same message in various languages.
These functions become an invaluable tool when working on a global application.

Figure 14.23 Warning message text Figure 14.24 Explanation associated with

Warning

Figure 14.25 Message Number 2 definition

Licensed to James M White <jwhite@maine.edu>

330 CHAPTER 14 MESSAGES AND ERROR HANDLING

14.4.1 MsgGet

MsgGet has two primary tasks: to retrieve messages from the Message Catalog; and
to substitute the value of each parameter contained in the message text identified by
%1, %2, %3.

MsgGet is used in conjunction with Error, Warning, MessageBox, and
WinMessage to retrieve the corresponding message text from the Message Catalog.
When a message set number less than 1 is supplied or the message is not in the cat-
alog, the default message text is substituted. An example using MsgGet can be writ-
ten as follows:

MsgGet(20003, 1, "Problem Id %1, is not resolved", MY_PROBLEM_ID)

MsgGet is not a function which can be run on its own. Without a preceding
MessageBox, WinMessage, or Error, an 'Invalid Function Statement'
message is issued by the syntax check. The MsgGet function call statement can be
completed with a corresponding WinMessage:

WinMessage(MsgGet(20003, 1, "Problem Id %1, is not resolved",
MY_PROBLEM_ID));

14.4.2 MsgGetText

MsgGetText is similar to MsgGet. The key difference is that MsgGetText
retrieves text from the Message Catalog without the message set and message number
included in the message. MsgGetText cannot be implemented alone. It is used in
conjunction with the other message functions such as WinMessage, MessageBox,
Error, and Warning.

Refer to the code and accompanying message in figures 14.22 and 14.23. In the
example, MsgGetText is used in conjunction with Warning. The message box does
not display the message set and message number, which are 20002 and 1 respectively.

NOTE Fields and variables with a Number or Date/Time data type are convert-
ed to String when displayed in messages.

Licensed to James M White <jwhite@maine.edu>

MSGGET AND MSGGETTEXT 331

KEY POINTS

1 The MessageBox function is used to display messages from within Peo-
pleCode programs.

2 The parameters used in MessageBox control the buttons, default button
and icons in the message box window.

3 Messages can be defined by message set and message number, to the Peo-
pleCode Message Catalog. These messages are then displayed by People-
Code functions.

4 Messages can appear in various languages and are displayed in a chosen lan-
guage, if the user profile is set up with the corresponding language code.

5 The Error and Warning functions work in conjunction with a MsgGet
or MsgGetText, when displaying messages from the Message Catalog.

6 The difference between Error and Warning is that Error terminates the
PeopleCode program and subsequent processing. Warning allows the user
to continue after clicking the OK button.

7 MsgGet and MsgGetText retrieve messages from the Message Catalog.
MsgGetText does not display the message set and message number.

Licensed to James M White <jwhite@maine.edu>

332

C H A P T E R 1 5

Embedded SQL

15.1 When to use embedded SQL 333
15.2 The SQLExec function 333
15.3 Using inline bind variables 336

15.4 Dates and Meta-SQL 337
15.5 Security and maintenance

considerations 339

PeopleCode enables the developer to execute SQL statements for data access and
update. SQL statements submitted from a SQLExec statement do not interact with
the Application Processor. The statements are executed directly on the database
server. Using SQLExec raises inherent issues such as security and the potential for
runtime errors, which may not be identified by the PeopleCode editor.

Licensed to James M White <jwhite@maine.edu>

THE SQLEXEC FUNCTION 333

15.1 WHEN TO USE EMBEDDED SQL

Application Designer and PeopleCode built-in functions offer several methods of
retrieving and updating data. A panel can contain a field defined as a display control
field. A display control field is used to establish a link to a related display field. The
related display field usually contains some type of description loaded from a prompt
or translation table. Retrieving values from a corresponding table requires that some
type of common key is present. The subsequent data retrieval can only be completed
when the panel is loaded into the buffer area.

Additional strategies that can be implemented to update and retrieve data include
the UpdateValue function, which updates a value on a record, and FetchValue,
which retrieves data from a record. UpdateValue and FetchValue are commonly
used with scroll data. These functions, however, have their limitations.

15.2 THE SQLEXEC FUNCTION

When it is necessary to retrieve, update, or delete data outside of the common panel
processor, PeopleCode provides the SQLExec function. SQLExec is a function
which receives an SQL string, circumvents the Application Processor, and works
directly with the database server to perform operations. Rather than selecting an
entire row of data, as the Application Processor does, SQLExec only selects the
field(s) specified. Not unlike other built-in functions, SQLExec has its limitations
and drawbacks and it should be used with discretion. SQLExec can be a powerful
ally to the developer when used correctly and efficiently.

15.2.1 SQLExec

SQLExec executes an SQL command passed as a string from a PeopleCode program.
The SQL string can contain bind variables, subselects, and joins. Data elements
appearing in a Select statement are returned to the PeopleCode program as output
and can be stored in variables or record fields.

A SQLExec statement can be written as follows:

SQLExec("Select NAME from PS_PERSONAL_DATA where EMPLID = :1",

&EMPLID, &NAME);

The preceeding example selects the name field from the HRMS PERSONAL_DATA
record and stores it into a variable called &NAME. The :1 represents a bind variable
that contains an employee ID value used in the search criteria. Bind variables are the
data elements referenced in the SQL string. Two types of bind variables exist: regular
and inline. When regular bind variables are used, each requires a corresponding vari-
able name which replaces the :n reference in the SQL string. These variables appear
outside the double quotes. In the preceding example, the bind variable :1 is substi-
tuted by the &EMPLID variable at runtime.

Licensed to James M White <jwhite@maine.edu>

334 CHAPTER 15 EMBEDDED SQL

SQLExec is one function where unpredictable results can occur if rules are not
followed. Because SQLExec bypasses the Application Processor and heads directly to
the database, no evaluation of the SQL string contained in quotes is performed. Record
fields used as inline bind variables or output variables are evaluated by the PeopleCode
editor when they are not contained in the SQL string. When PeopleCode containing
SQLExec statements are entered into the PeopleCode editor, any undefined record
fields generate an error message during the syntax check or PeopleCode save operation.
SQLExec statements containing inline bind variables are the exception. An incor-
rectly coded SQL statement that contains inline bind variables generates a runtime
error message. Remember, the inline bind variables are enclosed within quotes. A pre-
viously undefined output variable such as &NAME is created at runtime and does not
generate an error.

A SQLExec SELECT statement retrieves one row of data only. When multiple
rows are selected, the data associated with the first row is the only data returned. What
if the example above were rewritten as

SQLExec("Select NAME from PS_PERSONAL_DATA where EMPLID <> :1",

&EMPLID, &NAME);

Only the first employee whose EMPLID does not match the contents of &EMPLID
will have his/her name returned and stored in the &NAME output variable. The maxi-
mum number of output variables when using SELECT is 64.

With SQLExec, UPDATES, INSERTS, and DELETES can be performed, but can
only be done in the following events:

• SavePreChg
• WorkFlow
• SavePostChg

SQLExec returns an optional Boolean. A value of True indicates that the func-
tion was successfully executed.

Let’s now review a statement that contains a SQLExec function call. The People-
Code is shown in figure 15.1. This statement is used in Problem Tracking to verify
the MY_USER_ID field against the PeopleTool security record.

 The SQLExec in this example is part of a nested If statement. In the example,
we are verifying that the value contained in the record field MY_USER_ID exists on
the PSOPRDEFN table. PSOPRDEFN is a Tools table which contains the operator def-
inition (see chapter 3 for a description of the operator ID and class of operators). On
the PSOPRDEFN table, we are comparing the OPRID column, which is the PeopleSoft
operator ID, to the user ID entered into the Problem Tracking application panel. The
bind variable represented as :1 is the first parameter to follow the SQL string. It is sub-
stituted with the contents of the field MY_USER_ID at runtime. If other bind variables
were used, they would follow MY_USER_ID in the order in which they appeared in

Licensed to James M White <jwhite@maine.edu>

THE SQLEXEC FUNCTION 335

the SQL string and would subsequently be identified as :2, :3, and so on as required.
A bind variable cannot reference a LONG data type.

In the example, the next parameter that follows MY_USER_ID is an output vari-
able. This can also be a record field. The example uses an output variable named
&OPRID which does not require pre-definition. Upon closer examination, however,
the output variable &OPRID does not contain the results of the Select. In this exam-
ple we use a convention that substitutes a literal for the OPRID field. This is done to
verify that the value contained in MY_USER_ID exists on the table. Selecting the actual
value into &OPRID is redundant but acceptable. Any references to &OPRID, however,
are not accurate if we select the literal ‘x’ into the variable.

SQLExec returns an optional Boolean. In the example, the code checks for a
value of True to indicate a successful function call. In the context of this example we
are using the Boolean return value to determine if the next statement will be executed.
In the example, the function return value is verified before executing the next state-
ment. An alternative method of writing the SQLExec portion is:

If MY_USER_ID <> %OperatorId Then
 If (SQLExec("Select 'x' from PSOPRDEFN where OPRID = :1", MY_USER_ID,
&OPRID)) Then
 If %SqlRows = 0 Then
 Error (MsgGet(20001, 1, "User id %1 not in system as operator id",
MY_USER_ID));
 End-If;
 End-If;
End-If;

Because SQLExec returns a Boolean value, the comparison operator is not necessary.
People who are new to development may find this convention somewhat strange. The
If statement evaluates the expression in parenthesis. When the expression is True,
any subsequent statements are executed.

The next statement is interesting: SQLExec uses the system variable %SQLRows
to identify the number of rows impacted by the most current SQLExec. The number

Figure 15.1 SQLExec statement

Licensed to James M White <jwhite@maine.edu>

336 CHAPTER 15 EMBEDDED SQL

of rows affected by an UPDATE, INSERT, or DELETE statement is reflected in the
%SQLRows system variable. A SELECT statement, however, returns zero when no
rows are selected and returns a non-zero value if one row is selected.

NOTE When performing a Select, the non-zero value returned in %SQLRows
does not reflect the total number of rows selected. The non-zero value is a
return code, not the actual number of rows selected.

15.3 USING INLINE BIND VARIABLES

Refer to the example in figure 15.1. When an inline bind variable is used to represent
the field MY_USER_ID, the PeopleCode appears as shown in figure 15.2.

The inline bind variable requires
full record field qualification. A runtime
error message is issued when the bind vari-
able is coded as :MY_USER_ID. An error
message however is not issued during the
PeopleCode editor session. No error is gen-
erated because the inline bind variable
appears within the SQL string, and no edits

are performed against it until runtime. When regular bind variables are used, the
PeopleCode editor verifies that the correct record and field combination are defined
to the Application Designer. An example of a runtime error message is displayed in
figure 15.3.

Conversely, if we erroneously code the inline bind variable illustrated in
figure 15.2 as :OUR_USER_TABLE.MY_USER_ID, the PeopleCode editor does not
generate an error during a syntax check or when the code is saved. Instead, we receive
a runtime error as illustrated by figure 15.4.

Figure 15.2 Inline Bind variables

Figure 15.3 Runtime error using

incorrect bind variable

Licensed to James M White <jwhite@maine.edu>

DATES AND META-SQL 337

We should consider several items when
using inline bind variables. The PeopleCode
editor does not check for incorrect record
names or field names referenced as inline
variables in the SQL string. These names are
resolved at runtime. If you are part of a
development team using custom tables, the
possibility exists that someone may rename a

table or a field referenced as an inline bind variable. In the example in figure 15.2, if the
table were actually renamed to OUR_USER_TABLE by someone who thought it more
appropriate than MY_USER_TABLE, the PeopleCode would produce a runtime error.
This assumes that, after the renaming was accomplished, syntax checking was performed
against the PeopleCode. Similarly, a PeopleTools upgrade may also contain table name
changes bundled into the upgrade. If you have developed custom code, the references
to these tables or fields within an SQL string are not updated automatically by the
upgrade process. Any syntax checking will flag record and fields that do not exist, pro-
vided they are not contained in the SQL string as inline bind variables.

15.4 DATES AND META-SQL

There are platform limitations to using embedded SQL particularly for Date/Time
values. Each platform has its own unique method when it comes to handling dates.
The methods are not dramatically different, but the differences are enough so that in
order to remain platform independent, PeopleTools uses its own date formatting. In
PeopleCode programs, the Application Processor converts data for use in PeopleTools
applications. Data that may appear different from one platform to another can
include dates and data types such as LONG. The Application Processor performs these
conversions when data are loaded into buffers for input processing or when the data
are moved from the buffer to the database. The SQLExec statement does not per-
form this type of data conversion. In essence, when using SQLExec, what is read in
as a result of a Select is what appears in the output value.

The Application Processor stores dates as YYYY-MM-DD. When a SQLExec loads
a date value stored on the database as DD-Mon-YYYY, a subsequent comparison
between the two dates will always result in False.

One method that enables us to get around these platform specific issues is the
Meta-SQL function. Meta-SQL functions are imbedded into statements that receive
an SQL string such as SQLExec. Most Meta-SQL functions can be categorized into
two types, either as an in function or an out function.

There are however some functions such as TrimSubStr and SubString that
serve dual roles.

At runtime, In functions containing UPDATE, SELECT, or INSERT statements
extend to become platform specific SQL. These functions generate SQL statements

Figure 15.4 Incorrect record field used as

inline bind variable

Licensed to James M White <jwhite@maine.edu>

338 CHAPTER 15 EMBEDDED SQL

containing variables that are passed to the database. In functions can be used, for
example, when a date is used in the WHERE clause of a Select or Update statement.
In functions can also be used when a date is sent to the database via an Insert state-
ment. Out functions also extend at runtime to become platform-specific SQL which
appear in Select statements.

Definitions of Meta-SQL functions are listed in appendix E.
The examples below compare a SQLExec statement using the platform-specific

ORACLE/DB2 substring against the PeopleCode platform independent %Substring
Meta-SQL. In both examples we are selecting the first ten characters from the NAME
field of the PERSONAL_DATA record. The first example uses the platform-specific
SUBSTR function:

SQLExec("Select SUBSTR (NAME,1,10) from PS_PERSONAL_DATA
where EMPLID = :1", &EMPLID, &NAME)

While this example uses the %Substring Meta-SQL function:

SQLExec("Select %Substring(NAME,1,10) from PS_PERSONAL_DATA
where EMPLID = :1", &EMPLID, &NAME)

The statements are similar but the benefit of the statement in the second example is
platform independence. The SUBSTR function uses the same basic parameters as the
Meta-SQL. The argument string, starting position, and length are even in the same
order. Nothing is as easy as it appears, however, and this is no exception. Suppose we
are using ORACLE specific functions and the MIS management has decided to
migrate functionality to SQLBase. If we were to use platform-dependent functions,
our code would appear as:

SQLExec("Select @SUBSTRING(NAME,0,10) from PS_PERSONAL_DATA
where EMPLID = :1", &EMPLID, &NAME)

We can immediately see that the function is @SUBSTRING. Another and more poten-
tially risky result is that, when using the @SUBSTRING function, the first character in
the string begins at position 0. The ORACLE, DB2, and Meta-SQL start at position 1.
Without careful analysis, these types of changes can lead to major problems later on.

Let’s look at another example using dates. With no edits, dates are selected in for-
mats, depending on the database type. Some databases select dates as YYYYMMDD, and
others select dates as DD-MON-YYYY. In the following example, we are looking for a
total of all employees in PERSONAL_DATA who have a BIRTHDATE <= January 1st

1970. The count is placed into a variable called &SUM. A database specific piece of code
may appear as:

&COMPARE_DATE = "1970-01-01";
SQLExec("Select COUNT(*) from PS_PERSONAL_DATA where BIRTHDATE <= TO_
DATE(:1,'YYYY-MM-DD')", &COMPARE_DATE, &SUM);

Licensed to James M White <jwhite@maine.edu>

SECURITY AND MAINTENANCE CONSIDERATIONS 339

Using an In Meta-string, we can obtain platform independence. The example below
uses the %DateIn function and receives a date in the format YYYY-MM-DD.

&COMPARE_DATE = "1970-01-01";
SQLExec("Select COUNT(*) from PS_PERSONAL_DATA where BIRTHDATE <=
%DateIn(:1)", &COMPARE_DATE, &SUM);

15.5 SECURITY AND MAINTENANCE
CONSIDERATIONS

When using SQLExec with inline bind variables, we need to keep in mind that
future upgrades may rename tables or fields. Syntax checks of inline bind variables
will not indicate this type of discrepancy. Inconsistencies can also occur when a cus-
tom table is modified and any corresponding code does not reflect the change.

More importantly, we need to know that the use of SQLExec has the potential
to allow the end-user to update or delete data. Assuming the user has database privi-
leges, coding SQLExec without giving consideration to security can result in a user
unknowingly changing data. This can most likely occur when the SQLExec statement
has been coded incorrectly, without verifying security. Perhaps the SQLExec updates
data to which the user would not normally have access.

KEY POINTS

1 SQLExec is a function that allows the developer to execute SQL statements
directly on the database server.

2 Bind variables can be passed two ways: regular and inline.

3 Meta-SQL enables SQLExec to work with Date, Time, and String
parameters. This allows some level of platform independence.

4 Of utmost importance is that the use of SQLExec bypasses the standard
PeopleSoft security. The security in place may limit the user access to spe-
cific data. Unless SQLExec code mimics the security functionality,
improper use of SQLExec can result in a security breach.

Licensed to James M White <jwhite@maine.edu>

340

C H A P T E R 1 6

Working with scrolls

16.1 Parent/Child relationship 341
16.2 PeopleCode functions used with scrolls 346
16.3 Additional scroll functions 353

This chapter discusses the methods used to process panels that contain scrolls. Data
consisting of multiple rows may occupy the same panel and include various primary
record definitions. Knowledge of how system buffers are processed is necessary for
panels or panel groups containing multiple occurs levels, because the Application
Processor utilizes PeopleCode in the same order. Not every panel contains or
requires a scroll bar. For panels that do contain scroll bars, specific terminology,
functions, and methods are often used to reference data in the panel buffers. Topics
aimed at providing an understanding of how to use PeopleCode in multiple occurs
levels include:

• the relationship between records on different scroll levels
• the order in which the system processes buffers
• PeopleCode functions used with scrolls
• the SQL string within scroll functions

Licensed to James M White <jwhite@maine.edu>

PARENT/CHILD RELATIONSHIP 341

In part 2, Advanced Panel Design Features, we discussed how to add scroll bar
objects to panels. A panel containing scroll bars may include multiple occurs levels
and occurs count. At the PeopleCode level, a large amount of code can be devoted
to working within multiple occurs levels. Multiple occurs levels impact PeopleCode
execution because the order in which the Application Processor handles scroll buffer
areas and the manner in which PeopleCode is written must work together. Under-
standing the relationship between records at varying occurs levels is important for
writing efficient code.

16.1 PARENT/CHILD RELATIONSHIP

According to PeopleTools terminology, a record at the highest level in a panel is
referred to as the level zero record. From a multiple level perspective, a panel contain-
ing only one record and no scroll bars is elementary. On a panel containing one scroll
bar, two occurs levels exist: zero and one. What we have at occurs level zero is one or
more record definitions that contain one or multiple fields, used to link data in subse-
quent levels. The level zero record is considered the Parent row, and level one is the
Child. When data buffers are processed, level zero records are handled before level
one records. When a panel contains two scroll bars, the level zero records are proc-
essed first and are then followed by one row of level one data. When there are two
occurrence levels, the level one record is parent to level two. After a single level one
record is processed, the system then processes level two records. The cycle is then
repeated; the next level one row of data are processed, then followed by all associated
level two records.

Table 16.1 illustrates parent and child keys:

The parent and child keys are SETID, OPRCLASS, and Location. An additional
child key is Emplid.

A selected parent row contains three key values. Child rows also contain the same
three key values plus an additional key. In this example EMPLID is the additional child

Table 16.1 Relationship between Parent and Child rows

SETID OPRCLASS Location Emplid

USA ALLPANLS 001 6601

USA ALLPANLS 001 7705

USA ALLPANLS 001 6603

USA ALLPANLS 002 8101

USA ALLPANLS 002 8102

USA ALLPANLS 002 8105

USA ALLPANLS 003 8201

USA ALLPANLS 003 8651

USA ALLPANLS 003 8773

Licensed to James M White <jwhite@maine.edu>

342 CHAPTER 16 WORKING WITH SCROLLS

key. A parent key containing '001' as the third key value may have one or more child
rows that contain the same key values. On a panel containing two scrolls representing
the data illustrated in table 16.1, when parent key 001 is encountered, the child keys
6601, 7705, and 6603 are processed before parent key 002 and its corresponding
child key values 8101, 8102, and 8105.

When scroll bars are defined with AutoSelect, all data are retrieved with one
Select statement, regardless of the number of scrolls. The Select is performed
after a search key is chosen. The Application Processor then manages the buffers by
processing level zero records first, then all subsequent levels as discussed previously.

TIP Level zero fields are usually based on search records.

Using the knowledge obtained in part 2, it is possible to build a panel containing
two scroll bars and no PeopleCode. We could define a level zero record, a level one
record, and a level two record. Without PeopleCode, however, the functionality is lim-
ited to certain panel processor functions and to end-user actions such as Insert Row
(F7) and Delete Row (F8). At this basic level, we could define a panel, add scroll bars,
and establish the parent/child relationships. When the panel is processed, any scroll
areas would be populated automatically. There are circumstances, however, under
which we, as the developers, would have to programmatically control the processing
of panel scroll areas. Our work becomes complex and, therefore, more interesting
when PeopleCode is added to enhance the processing behind panel scroll areas.

The objective of this chapter is to enable the reader to develop panels using scroll
bars and, more importantly, to add the necessary PeopleCode that will interact with
data contained in these scrolls. This includes the following items:

• loading data into a scroll
• removing data from a scroll
• removing scroll data from a database table
• determining the number of records in a scroll
• retrieving or updating data in a scroll buffer area

To begin our tour of scroll functionality, we will use two panels containing
scrolls. The concept behind the panels is to link operator security classes and office
locations that are on the LOCATION_TBL record. We then link the employees in the
specified locations to the operator class/location combination. Figure 16.1 illustrates
the Operator Class/Location panel, and figure 16.2 is the panel that links the operator
class/locations to employee data.

Licensed to James M White <jwhite@maine.edu>

PARENT/CHILD RELATIONSHIP 343

Figure 16.1 Operator Class/Location panel

Figure 16.2 Link employees to operator/class locations

Licensed to James M White <jwhite@maine.edu>

344 CHAPTER 16 WORKING WITH SCROLLS

As we can see by the illustrations, one panel contains a single scroll bar, and the
other panel contains two. When using functions that operate on scroll areas, the num-
ber of parameters passed to these functions varies based on the number of scrolls. The
maximum number of scroll levels permitted is three. When adding a scroll to a panel,
a scroll at level 3 cannot be defined without a scroll at level 2. Similarly, a scroll at level
2 cannot be defined without a scroll at level 1. A hierarchy among keys should also
be followed. The level 2 record requires the same key fields as level 1 in addition to
its own unique key. The level 1 record requires the level 0 key fields, with the addition
of a unique key value.

Referring to figure 16.1, we can see several record definitions in the panel
because it is a panel with one scroll containing two primary records. The level 0 pri-
mary record is MY_LOCATION_HDR. This record contains two keys, SETID and
OPRCLASS. The primary record at level 1 is MY_LOCATIONS. This record is a child
of MY_LOCATION_HDR. The order and level of fields for the operator class/loca-
tions panel is illustrated by figure 16.3. MY_LOCATION_HDR is considered the pri-
mary scroll record, because the keys from this table control the data selected into
subsequent scrolls.

NOTE For each scroll level, only one primary scroll record can exist. Other records
can be those of related display fields and Derived/Work fields.

The illustration in figure 16.3 also identifies an additional record at level 0,
MY_DERIVED. This record contains the PeopleCode linked to the push buttons on
the panel. At level 1, we have the record MY_LOCATIONS and the location table

Figure 16.3 Order and level of fields for Operator Class/Location panel

Licensed to James M White <jwhite@maine.edu>

PARENT/CHILD RELATIONSHIP 345

(LOCATION_TBL). The location table is used to retrieve the location description and
effective date.

The record definitions and key fields for the three primary records used in
figures 16.1 and 16.2 are shown in figures 16.4, 16.5 and 16.6.

NOTE Only one row of data for each level 0 record is allowed on a panel. Other
rows are displayed on a list box.

Now that we are better acquainted with the panels, records, and parent/child rela-
tionships involved in the scroll demonstration, we can begin to review the functions
and apply them to the panels in figures 16.1 and 16.2.

Figure 16.4 Fields for MY_LOCATION_HDR

Figure 16.5 Fields for MY_LOCATIONS

Figure 16.6 Fields for MY_LOCATION_EMP

Licensed to James M White <jwhite@maine.edu>

346 CHAPTER 16 WORKING WITH SCROLLS

Navigation: Locations → Operator Locations → Add

From a functional perspective, when an
operator class is linked to one or more loca-
tions, a location header record has to be ini-
tially established. We can use the menu to
select the SETID and OPRCLASS.

After the operator class header is estab-
lished, the PeopleCode behind the push but-

ton is ready to load data into the scroll area (figure 16.8).

The panel shown in figure 16.8 refers to information for MY_LOCATION_HDR
but contains no data in the scroll area referencing MY_LOCATIONS. The objective here
is to load all location codes from the location table for this particular SETID. Several
methods can be used to accomplish this task. One method involves the use of People-
Code Scroll functions.

16.2 PEOPLECODE FUNCTIONS USED WITH SCROLLS

The first function that will be applied is ScrollSelect. Functions that operate on
data contained in a scroll use the ScrollPath to reference the individual row or
scroll levels at which the functions are targeted. ScrollPath defines the records at

Figure 16.7 Establish the operator

class header

Figure 16.8 Initial Operator Class/Location panel

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE FUNCTIONS USED WITH SCROLLS 347

each scroll level as well as the target record name. When we reference a scroll at level
1, ScrollPath is comprised of the target record only. A reference to data at scroll
level 2 requires specification of the level 1 record and the target record name. When
referring to rows or data on scroll level 3, level 1 and level 2 records are required, in
addition to the target record name.

16.2.1 ScrollSelect

The ScrollSelect function selects records from a table and loads them into the
scroll buffer area of a panel. In terms of Parent/Child relationships, ScrollSelect
chooses all corresponding child rows and inserts them under the next higher level
row. The function requires the specification of the target scroll area, a source record
from which to select rows and an optional SQL string. The parameters passed to
ScrollSelect vary based on the scroll level at which the function is targeted:

Level 1

ScrollSelect (1, RECORD.target_recname, RECORD.sel_recname);

Level 2

ScrollSelect (2, RECORD.level1_recname, RECORD.target_recname,

RECORD.sel_recname);

Level 3

ScrollSelect (3, RECORD.level1_recname, RECORD.level2_recname,

RECORD.target_recname, RECORD.sel_recname);

In addition to the parameters required to reference data at the various scroll levels, the
optional SQL string and Turbo parameters can be specified. (Refer to appendix E for
syntax description of ScrollSelect.) Let’s apply ScrollSelect to the panels
presented in figures 16.1 and 16.2.

Example 1

Figure 16.8 contains a push button—Load All Locations. We can use ScrollSe-
lect to load all location codes from the location table for the SETID contained in
the record MY_LOCATION_HDR. The code using ScrollSelect is illustrated in
figure 16.9.

The code in figure 16.9 first verifies that the panel name is MY_LOCATIONS.
This is necessary because the code is executed from a Derived/Work record
(MY_DERIVED), which can be used on different panels. The DeleteRow statement
is used to delete rows from the scroll and database table. In this example, (DeleteRow
is used in a loop. Rows are processed from high to low, because rows are renumbered
each time they are deleted.) The ScrollSelect parameters identify that the target

Licensed to James M White <jwhite@maine.edu>

348 CHAPTER 16 WORKING WITH SCROLLS

scroll area is at level 1. Based on the scroll level, target_recname and
sel_recordname parameters are required. MY_LOCATIONS is the target record
name and the select scroll area. Data are retrieved from MY_LOC_OPR_VW, which is
a view that selects locations with the most current effective date from the
LOCATION_TBL record. This parameter can be the same as the target record name,
but in this example, we are selecting from a view and loading the selected fields into
a different target record. The COUNTER field, , contains the number of active rows
in the scroll area and is reflected on the panel. The True parameter at the end of the
function call indicates that we are using the Turbo feature. When specified in Scroll
functions such as ScrollSelect and ScrollSelectNew, Turbo improves per-
formance of ScrollSelect.

(Refer to figure 16.1 for an illustration of how the panel appears after the
ScrollSelect PeopleCode is executed.)

Example 2

The next panel links employees to the operator class/locations.
The panel illustrated by figure 16.10 contains a push button—Load Employees

This Location. The code behind this button is used to populate the scroll area with
employee IDs that have a current location code equal to the value of the location on
the current level 1 scroll. The code to accomplish this task on scroll level 2 is shown
in figure 16.11.

In addition to ScrollSelect, other functions and statements are used to
accomplish the task of loading employee data for the location at scroll level 1. The
code verifies the panel name is MY_LOCATIONS_EMP. This is necessary because the
code is executed from a Derived/Work record and can be used on different panels.
Conceptually, the code used to load the scroll on MY_LOCATIONS and
MY_LOCATIONS_EMP panels can be localized on the same record and fieldname in
the Derived/Work record. The DeleteRow statement is used to delete rows from the

Figure 16.9 ScrollSelect at level 1 scroll

1

1

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE FUNCTIONS USED WITH SCROLLS 349

scroll area and database table. The DeleteRow is used in a loop. Rows are processed
from high to low, because rows are renumbered each time they are deleted.
DeleteRow will be discussed later in this chapter. The ScrollSelect parameters
identify that the target scroll area is at level 2. This scroll level will contain the selected
employee IDs. Because the target record is at level 2, the level1_recname parameter is
required. In the example the level 1 record name is coded as
RECORD.MY_LOCATIONS. The target record is MY_LOCATION_EMP and resides

Navigation: Locations → Operator/Employee Locations

Figure 16.10 Panel to link operator class/locations and employees

Figure 16.11 ScrollSelect at level 2 scroll

Licensed to James M White <jwhite@maine.edu>

350 CHAPTER 16 WORKING WITH SCROLLS

at level 2. In the example the select record (sel_recordname) is represented by a
view. A view is used to extract the most current effective-dated Job rows and join them
with the corresponding location table entry. The optional Turbo parameter is set to
TRUE so that performance of ScrollSelect can be improved. Because the potential
to load many rows of employee IDs at scroll level 2 exists, the use of this parameter is
vital. The COUNTER field contains the number of active rows in the scroll area. This
count is reflected on the panel as is the value passed by the ActiveRowCount func-
tion. This function will be discussed later, but it is worthwhile to mention that its
parameters are based on the target scroll level referenced.

A function similar to ScrollSelect is ScrollSelectNew.

16.2.2 ScrollSelectNew

ScrollSelectNew resembles ScrollSelect except that ScrollSelectNew
marks records as New when they are loaded into the scroll area. During save process-
ing, these records are automatically added to the database. ScrollSelect is used
to select pre-existing rows into a scroll area. Because ScrollSelect does not mark
rows as New, some other type of activity is required to enable the save button. A
DeleteRow used in combination with ScrollSelect enables the save button for
new rows. ScrollSelectNew requires the specification of the target scroll area, a
source record from which to select rows, and an optional SQL string. The parame-
ters passed to ScrollSelectNew vary based on the scroll level at which the func-
tion is targeted.

Level 1

ScrollSelectNew (1, RECORD.target_recname, RECORD.sel_recname);

Level 2

ScrollSelectNew (2, RECORD.level1_recname, RECORD.target_recname,

RECORD.sel_recname);

Level 3

ScrollSelectNew (3, RECORD.level1_recname, RECORD.level2_recname,

RECORD.target_recname, RECORD.sel_recname);

In addition to the parameters required to reference data at the various scroll levels, the
optional SQL string and Turbo parameters can be specified.

Example

The code in figure 16.12 applies ScrollSelectNew to the level 1 scroll that
appears on the panel MY_LOCATIONS.

As we can see by the sample code, ScrollSelectNew is essentially the same as
ScrollSelect. The parameters and their use are identical. In the example,

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE FUNCTIONS USED WITH SCROLLS 351

ScrollSelectNew operates on target scroll level 1. The key difference is that the
Location Table entries matching the SETID at level 0 are loaded into the scroll buffer
and are marked as NEW. During save processing, they are added to the database.

The panel in figure 16.1 can be used to illustrate the results of ScrollSelect-
New if it were used in place of ScrollSelect.

This panel also contains additional characteristics due to its ability to utilize the
F7 and F8 function keys.

Locations can also be added by using the F7 Insert Row key and the Location
prompt table, rather than using the “Load All Locations” push button. The F8 Delete
Row key can also be used to remove unwanted rows. To give a real world example,
let’s say that the user has elected to load all locations automatically, using the push but-
tons, but then decides to enter the locations manually. At this point, the user can can-
cel out and start again. We can however, make the process more efficient by providing
the ability to clear the scroll area before it is saved. This can be done using the
ScrollFlush function.

16.2.3 ScrollFlush

ScrollFlush is used to remove records from a target scroll area. The function
requires the specification of the target scroll area as the ScrollPath. The parame-
ters passed to ScrollFlush are based on the scroll level from where the rows are to
be removed.

Level 1

ScrollFlush (RECORD.target_recname);

Level 2

ScrollFlush (RECORD.level1_recname, level1_row, RECORD.target_recname);

Figure 16.12 Using ScrollSelectNew at level 1

Licensed to James M White <jwhite@maine.edu>

352 CHAPTER 16 WORKING WITH SCROLLS

Level 3

ScrollFlush (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname);

Rows flushed from the target scroll area are not removed from the database.

Example 1

Figure 16.8 contains a push button labeled “Clear Scroll Area.” The PeopleCode is
shown in figure 16.13. When activated, the PeopleCode behind the push button
clears the target scroll area using ScrollFlush.

A field named MY_SCROLL_FLUSH is added to MY_DERIVED and then placed
on the panel. Because MY_DERIVED is a work record, there is no need to alter or rec-
reate the table after the field is added to the record. The code to accomplish the
ScrollFlush is placed in the FieldChange event. The example takes one param-
eter because we are clearing rows at scroll level 1. As a result, only the target record
name is specified.

Example 2

Figure 16.10 contains a push button labeled “Remove Employees From Location.”
The button can be used to clear out the scroll area after employee data has been
loaded. The PeopleCode utilizes ScrollFlush at the level 2 scroll. The example is
illustrated in figure16.14.

A review of the PeopleCode in figure 16.14 indicates the panel name is verified as
MY_LOCATIONS_EMP. The ScrollFlush parameters use level1_recname. This
parameter is required because the target record is at level 2. The example specifies the
level 1 record name as RECORD.MY_LOCATIONS. ScrollFlush is targeted at scroll
level 2 and as a result, the level1_row parameter is required. The CurrentRowNumber
function is used to identify the row number at scroll level 1. The target record is
MY_LOCATION_EMP, which resides at level 2.

Figure 16.13 ScrollFlush at level 1

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 353

NOTE The ScrollFlush function does not delete records from the database. It
removes them from the target scroll and related buffer areas only.

16.3 ADDITIONAL SCROLL FUNCTIONS

At this point, the reader should have a better understanding of scrolls and some of the
functions used to process them, as discussed in the previous sections. The following
additional scroll functions use parameters similar to those discussed previously.

It is sometimes necessary to identify the number of rows in a scroll area.
PeopleCode uses several functions to count records in a target scroll area. Several count
functions are available because data marked for deletion may not be required in some
routines. ActiveRowCount is one such function:

16.3.1 ActiveRowCount

ActiveRowCount returns a number representing the sum of active rows in a given
scroll area. Records marked as deleted are not included in the count.
ActiveRowCount is often used when we are looping and examining each row in the
target scroll area. The parameters used by ActiveRowCount are based on the scroll
level in which a count of active rows is required.

Level 1

ActiveRowCount (RECORD.target_recname);

Level 2

ActiveRowCount (RECORD.level1_recname, level1_row, RECORD.target_recname);

Level 3

ActiveRowCount (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname);

Example 1

The Operator Class/Location panel in figure 16.1 can be used to illustrate
ActiveRowCount at scroll level 1. The panel contains a label named “Scroll Count,”

Figure 16.14 ScrollFlush at Scroll level 2

Licensed to James M White <jwhite@maine.edu>

354 CHAPTER 16 WORKING WITH SCROLLS

used to indicate the number of non-deleted rows in the scroll area. The COUNTER
field on MY_DERIVED contains the return value from the ActiveRowCount func-
tion that appears on the panel.

The use of ActiveRowCount to display the number of rows in a scroll requires
that it be placed strategically in various events, in order for the count to reflect inserts
and deletes correctly.

The two panels used in the Operator Class/Location application can use
ActiveRowCount in the following events or actions:

• RowInit
• ScrollSelect/ScrollSelectNew
• ScrollFlush
• RowInsert (F7)
• RowDelete (F8)

The example below can be applied to the panel in figure 16.1, which contains one
scroll level. Each time any push button is activated, the “Scroll Count” field is updated.
The field named COUNTER reflects the number of active rows in the scroll area.

COUNTER = ActiveRowCount(RECORD.MY_LOCATIONS);

The preceding code can be applied to scroll level 1. At scroll level 2, the following
code returns the number of active rows. The count is applied to the panel illustrated
in figure 16.2.

COUNTER = ActiveRowCount(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP);

Example 2

The use of ActiveRowCount can be applied during loop processing. The example
below uses ActiveRowCount when using the DeleteRow function. In the exam-
ple, the variable &I initially contains the number of active rows, which enables the
loop to work from the highest to the lowest row in the scroll.

For &I = ActiveRowCount(RECORD.MY_LOCATIONS) To 1 Step - 1;
 DeleteRow(RECORD.MY_LOCATIONS, &I);
End-For;

Functions such as ActiveRowCount and ScrollFlush require a level row number
as part of the ScrollPath. A scroll area can contain one or many rows. Each row has
a number associated with it which indicates its place in the scroll area. The number
can be used to identify a parent row to its corresponding child rows. A function that
returns the number associated with a row in a scroll area is CurrentRowNumber.

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 355

NOTE When no data appears in a scroll, ActiveRowCount returns 1. When
there is one row, the function still returns 1.

16.3.2 CurrentRowNumber

The CurrentRowNumber function is used when it is necessary to identify the row
number of the current row in a scroll area. The function takes a parameter which repre-
sents the level where the row number is retrieved. When the level parameter is not spec-
ified, the function uses the current scroll level from where the function is called as the
default level. CurrentRowNumber is sometimes used with ActiveRowCount to
limit the number of times a loop is processed based on the active rows in the scroll area.

Example

The following example uses CurrentRowNumber during execution of the
ActiveRowCount and DeleteRow functions. When used in conjunction with
ActiveRowCount and DeleteRow, CurrentRowNumber returns the parent row
number as a path to the child row MY_LOCATION_EMP. In this context, the parent
row may reference one or more child rows.

For &I = ActiveRowCount(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP) To 1 Step - 1;

 DeleteRow(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP, &I);

End-For;

16.3.3 DeleteRow

A number of PeopleCode programs imitate user actions performed using toolbar
icons or function keys. The DeleteRow function can be used to delete records from
a scroll area and database.

The DeleteRow function enables rows to be deleted by a PeopleCode program.
The function triggers the RowDelete event that mimics the F8/Delete Row opera-
tion. DeleteRow removes records from the target scroll as well as from the database.
DeleteRow requires the specification of the ScrollPath and the target row num-
ber to delete. The parameters passed to DeleteRow are based on the scroll level and
target record number from where rows are to be removed. Using the DeleteRow
function at various levels can be written as follows:

Level 1

DeleteRow (RECORD.target_recname, target_row);

Licensed to James M White <jwhite@maine.edu>

356 CHAPTER 16 WORKING WITH SCROLLS

Level 2

DeleteRow (RECORD.level1_recname, level1_row, RECORD.target_recname,
target_row);

Level 3

DeleteRow (RECORD.level1_recname, level1_row, RECORD.level2_recname,
level2_row, RECORD.target_recname, target_row);

NOTE DeleteRow cannot be called from the same scroll level as that of the target
scroll area.

Example 1

The panel in figure 16.10 used to link operator classes to employees contains a but-
ton labeled “Remove All Employees.” When activated, the PeopleCode removes
employee data only and removes it from every record at scroll level 1. The code uti-
lizes two loops. The outer loop retrieves the number of active rows for scroll level 1.
The inner loop references the child rows that contain employee data and deletes
them. The code to accomplish this task is shown in figure 16.15. Data for the parent
record MY_LOCATIONS remains intact after the code completes execution.

Example 2

Another push button on the panel in figure 16.10 is labeled “Remove Employees
From Location.” The code behind this button (figure 16.16) removes employee data
from the current scroll level 1 row.

Example 3

An additional button on the panel is labeled “Remove All Locations/Employee.” This
piece of code removes all locations as well as all the employee data associated with the

Figure 16.15 DeleteRow at scroll level 2

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 357

locations. From a conceptual perspective, it appears that the code to complete this
task would be complex. Actually the code (figure 16.17) is not as intricate as one
might expect.

The DeleteRow function is used in a loop and removes all active records at scroll
level 1. Because the record MY_LOCATIONS is parent to the data at scroll level 2,
DeleteRow removes all lower child level records. The removal of child rows is done
automatically by DeleteRow as each scroll level 1 record is deleted.

The ActiveRowCount function is used to compute the number of active rows.
The DeleteRow function works from the bottom of the scroll bar and is illustrated
by the Step -1 parameter in the For statement.

NOTE DeleteRow marks records as deleted. During save processing, rows
marked for deletion are removed from the database. ScrollFlush clears
data from the scroll buffer area only and does not routinely delete rows
from the database.

16.3.4 FetchValue

When working with scrolls, it is sometimes necessary to reference data which appears
in the individual rows located in the panel scroll buffer. A function used to extract
data from these rows is FetchValue.

The FetchValue function retrieves the value of a field from a row stored in the
panel buffer of a scroll area and places it into a variable or fieldname. In addition to

Figure 16.16 DeleteRow at scroll level 2

Figure 16.17

Using DeleteRow to

remove all rows from

both scrolls

Licensed to James M White <jwhite@maine.edu>

358 CHAPTER 16 WORKING WITH SCROLLS

the ScrollPath parameter, FetchValue requires target_row and
recordname.fieldname parameters as well. To use FetchValue at the various
levels, the following syntax is used:

Level 1

FetchValue (RECORD.target_recname, target_row, [recordname.] fieldname);

Level 2

FetchValue (RECORD.level1_recname, level1_row, RECORD.target_recname,

target_row, [recordname.]fieldname);

Level 3

FetchValue (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname, target_row, [recordname.]fieldname);

Example

Using figure 16.10 let’s assume that employee IDs contain a specific level of informa-
tion based on the type of ID. An ID beginning with the letter “L” represents
employee populations excluded from the Operator Class/Location functionality. As a
result, the code should prevent any employee ID, which has a leading “L,” from
appearing on the panel. To accomplish this task, the PeopleCode associated with the
“Load All Locations” push button can be rewritten as shown in figure 16.18.

FetchValue is used after the scroll area has been populated using
ScrollSelect. In the example, FetchValue is used in a loop that is executed at
scroll level 1. FetchValue takes five parameters; MY_LOCATIONS is the level 1

Figure 16.18 Using FetchValue to exclude Emplids

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 359

record name. The level 1 row is supplied by the CurrentRowNumber function. The
third parameter is the target record name, MY_LOCATION_EMP. The fourth parame-
ter is the variable &I, which contains the row number in the target scroll area. The fifth
parameter, [record name.] fieldname is also required. The record name prefix is used
because the FetchValue call is made from the MY_DERIVED record, which is dif-
ferent from the record that contains the EMPLID fieldname.

After the call to FetchValue, the variable &EMPLID contains the result and is
tested using the SubString function to determine if the first character is an “L.” In
the example, DeleteRow is used to remove rows that match the selection criteria.

One additional bit of information regarding FetchValue is the empty scroll
area. Because the ActiveRowCount function returns 1 when there are no rows in a
target scroll, FetchValue may return erroneous data. The PeopleCode in
figure 16.18 can be written to include a verification for &EMPLID by adding the fol-
lowing PeopleCode before the If SubString statement.

If ActiveRowCount(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP) = 1 Then

 If None(&EMPLID) Then
 /* Scroll is Empty */
 Break;
 End-If;

In this example, the verification of an empty scroll is not vital. Other applications
using FetchValue, however, may require empty scroll verifications before addi-
tional operations are performed.

When working with scrolls, it sometimes becomes necessary to hide rows of data
rather than delete or flush them from the scroll area. PeopleCode contains two func-
tions that are used to hide specific rows or an entire scroll area. The functions are
HideRow and HideScroll.

16.3.5 HideRow

HideRow is used to hide a specific row and any child rows in subordinate scroll lev-
els. The parameters passed to HideRow are based on the scroll level and target record
number where rows are to be hidden. The syntax for HideRow at various levels can
be written as follows:

Level 1

HideRow (RECORD.target_recname, target_row);

Level 2

HideRow (RECORD.level1_recname, level1_row, RECORD.target_recname,

target_row);

Licensed to James M White <jwhite@maine.edu>

360 CHAPTER 16 WORKING WITH SCROLLS

Level 3

HideRow (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname, target_row);

Example

The example presented in figure 16.18 can be rewritten using HideRow in place of
the RowFlush function. HideRow does not remove rows from a scroll. The code
shown in figure 16.19 hides the target row , but, during save processing, any hid-
den rows are written to the database.

In addition to hiding rows of data in a scroll area, it is sometimes necessary to hide
an entire scroll bar. Hiding a scroll changes the look of a panel because the scroll bar
cannot be viewed. The HideScroll function is used to hide a scroll bar and its cor-
responding data.

16.3.6 HideScroll

HideScroll is similar to HideRow except that instead of hiding a row, the com-
plete scroll area is hidden, including all data in the scroll and the scroll bar. For each
scroll level, the syntax for HideScroll can be written as follows:

Level 1

HideScroll (RECORD.target_recname);

1

Figure 16.19 HideRow function

1

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 361

Level 2

HideScroll (RECORD.level1_recname, level1_row, RECORD.target_recname);

Level 3

HideScroll (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname);

Example

On some occasions, work scrolls are used to store rows of data subsequently used else-
where in a routine. Work scrolls do not usually appear on a panel; they can be hidden
using HideScroll. The objective is to hide the entire scroll for selected locations at
level 2. Level 2 contains employee data and is hidden following the HideScroll.
Figure 16.20 contains the panel without the implementation of HideScroll.

The following example (figure 16.21) contains the necessary PeopleCode
required to hide the child scroll area at level 2 for location codes 100 and 300.

The panel illustrating the hidden scroll area for location 100 is shown in
figure 16.22. The Delete label that appears on the scroll level 2 area is static text and
is not impacted by HideScroll.

Figure 16.20 Level 2 scroll data

Licensed to James M White <jwhite@maine.edu>

362 CHAPTER 16 WORKING WITH SCROLLS

16.3.7 RowScrollSelect

The ScrollSelect and ScrollSelectNew functions read data from the specified
Select record into a scroll area and distribute child keys based on their corresponding
parent key values. The PeopleCode functions RowScrollSelect and RowScroll-
SelectNew are similar to their counterparts ScrollSelect and ScrollSelect-
New. The difference is that RowScrollSelect and RowScrollSelectNew do not
automatically allocate child rows to their corresponding parent rows.

Figure 16.21 Using HideScroll on specific locations

Figure 16.22 Panel after HideScroll is executed

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 363

To illustrate, refer to figure 16.20. When implemented correctly, ScrollSelect
and ScrollSelectNew automatically load child keys G701, G702, and G703 on a
panel containing two scroll levels when parent key 100 is encountered. Conversely,
RowScrollSelect and RowScrollSelectNew require that the SQL string be used
to limit the keys of the rows loaded, to those of the parent row. RowScrollSelect
requires the specification of the target scroll area, a source record from which to select
rows, and the SQL string. The parameters passed to RowScrollSelect vary based on
the scroll level at which the function is targeted:

Level 1

RowScrollSelect (1, RECORD.target_recname, RECORD.sel_recname);

Level 2

RowScrollSelect (2, RECORD.level1_recname, level1_row,

RECORD.target_recname, RECORD.sel_recname);

Level 3

RowScrollSelect (3, RECORD.level1_recname, level1_row,

RECORD.level2_recname, level2_row, RECORD.target_recname,

RECORD.sel_recname);

Example

The following code (figure 16.23) demonstrates the use of RowScrollSelect at
the level 2 scroll. It operates on the panel illustrated by figure 16.10.

The populated panel using RowScrollSelect is shown in figure 16.24.
The example has one flaw. The panel illustrated in figure 16.24 contains more

data than the number of employees for the location at level 1. Note the scroll count
field and compare it to figure 16.20. A big difference! In the example, the code erro-
neously does not contain a WHERE statement and results in all level 2 rows being
loaded into the scroll level 2 buffer, for ALL employees! Without limiting the scroll

Figure 16.23 RowScrollSelect at level 2

Licensed to James M White <jwhite@maine.edu>

364 CHAPTER 16 WORKING WITH SCROLLS

level 2 rows to those of the parent at level 1, data for all employees in the
sel_recordname are loaded into the scroll buffer.

The correctly coded RowScrollSelect function is illustrated in figure 16.25.
The WHERE SQL clause is inserted to limit keys to those of the parent, . The code
produces the same results as those in figure 16.20.

A review of the PeopleCode in the example illustrates how RowScrollSelect
is used with the other PeopleCode statements. First, the panel is verified so that the
statements within the scope of the If statement are executed when the panel name is

Figure 16.24 Panel using RowScrollSelect

1

Figure 16.25 Correctly coded RowScrollSelect

1

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 365

MY_LOCATIONS_EMP. This is necessary because the code is executed from a
Derived/Work record, which may contain code used on different panels. The
DeleteRow statement is used to delete rows from the scroll and database table. In this
example, DeleteRow is used in the context of a loop. Rows are processed from high
to low, because rows are renumbered each time they are deleted. The level number
identifies the target scroll area is at level 2. The level1_recname parameter is required
because the target record is a level 2. CurrentRowNumber is used to obtain the level
1 row. Level 1 row is required when the target record is at level 2. The target record-
name is MY_LOCATIONS_EMP and represents the target record into which data will
be selected. The sel_recordname parameter is identified by MY_LOC_EMPL_VW, which
is a view used to extract the most current effective-dated JOB rows and join them with
the corresponding location table entry. This parameter can be the same as the target
record name, but, in the example, we are selecting from a view and loading the selected
fields into the MY_LOCATIONS_EMP target record. The COUNTER field contains
the number of active rows in the scroll area. This count is reflected on the panel.

TIP Understanding the record key definitions for parent and child records fa-
cilitates the construction of SQL strings for RowScrollSelect and
RowScrollSelectNew functions.

16.3.8 RowScrollSelectNew

RowScrollSelectNew resembles RowScrollSelect the only exception being that
RowScrollSelectNew marks records as NEW when they are loaded into the scroll
area. RowScrollSelectNew does not automatically place child rows under the corre-
sponding parent data within the scroll buffer. It requires that the SQL string be used to
limit the rows loaded into the scroll to those of the parent row. RowScrollSelectNew
requires the specification of the target scroll area, a source record from which to select rows
and an SQL string. The parameters passed to RowScrollSelectNew vary based on
the scroll level at which the function is targeted:

Level 1

RowScrollSelectNew (1, RECORD.target_recname, RECORD.sel_recname);

Level 2

RowScrollSelectNew (2, RECORD.level1_recname, level1_row,

RECORD.target_recname, RECORD.sel_recname);

Level 3

RowScrollSelectNew (3, RECORD.level1_recname, level1_row,

RECORD.level2_recname, level2_row, RECORD.target_recname,

RECORD.sel_recname);

Licensed to James M White <jwhite@maine.edu>

366 CHAPTER 16 WORKING WITH SCROLLS

Example

The PeopleCode example for RowScrollSelectNew (figure 16.26) loads the
selected data into MY_LOCATIONS using MY_LOC_OPR_VW as the sel_recordname.
In the example, sel_recordname is a view used to select the most current effective
dated LOCATION_TBL entry for the specified SETID field. Because the records
selected into the target scroll are marked as NEW, they are inserted into the database
during save processing. For this example, another SETID value has been selected. The
panel is shown in figure 16.27.

Figure 16.26 RowScrollSelectNew at the level 1 scroll

Figure 16.27 Operator/Class locations using RowScrollSelectNew

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 367

16.3.9 RowFlush

RowFlush is a scroll function used to remove a particular row of data from the panel
scroll and scroll buffer area. RowFlush does not delete rows from the database.
RowFlush requires the specification of the target ScrollPath and the target row.
The parameters passed to RowFlush vary based on the scroll level at which the func-
tion is targeted. To use RowFlush on specific levels, it can be coded as follows:

Level 1

RowFlush (RECORD.target_recname, target_row);

Level 2

RowFlush (RECORD.level1_recname, level1_row, RECORD.target_recname,

target_row);

Level 3

RowFlush (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname, target_row);

Example

The level 2 scroll area in figure 16.24 contains a checkbox labeled Delete. RowFlush
can be used after the push button labeled “Load Employees This Location” has been
activated. The associated employee data are selected into the scroll area and can sub-
sequently be saved. If the need to delete employee data are required, the Delete Row
(F8) toolbar option can be used. The F8 or Delete Row however requires that we
confirm the delete, thereby adding an additional step for the user. The Delete check-
box can be applied during save processing to use RowFlush, which removes the
identified rows prior to their insertion into the database table. Figure 16.28 illustrates
the use of the panel before it is saved.

The illustration identifies two rows that have the Delete checkbox indicator
turned on. During save processing, the code shown in figure 16.29 is executed. For
rows having the DELETE_ROW field set to "Y", the PeopleCode calls the RowFlush
function. The result of the RowFlush function is illustrated in figure 16.30.

Licensed to James M White <jwhite@maine.edu>

368 CHAPTER 16 WORKING WITH SCROLLS

Figure 16.28 Using RowFlush to remove scroll data

Figure 16.29 RowFlush PeopleCode at level 2

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 369

The PeopleCode surrounding RowFlush in figure 16.29 contains verification of
the panel name MY_LOCATIONS_EMP. In the example, the code is executed from
the SaveEdit event of the record MY_LOCATIONS. FetchValue is used to
retrieve the indicator field MY_DERIVED.DELETE_ROW. The field is checked for a
value "Y". A True condition causes the RowFlush function to be called. The
RowFlush parameters include level1_recname. This parameter is required because
the target record is at level 2. The parameter is specified as RECORD.MY_LOCATIONS.
Because the target record is at level 2, the level1_row parameter is also required.
CurrentRowNumber is used to obtain the level 1 row. The target record name is
specified as MY_LOCATIONS_EMP. At level 2 the last parameter passed to RowFlush
is target_row. The variable &I, which is used to loop through the data at scroll
level 2, identifies the row number to be removed from the specified target scroll area.
An additional line of code references MY_DERIVED.COUNTER, which is updated
after RowFlush so that the panel contains the actual number of active rows following
save processing.

It is important to note that RowFlush does not remove rows from the database;
it only removes them from the panel scroll buffer. In the example presented,
RowFlush does not work for data that has been saved to the database, then subse-
quently deleted using the Delete indicator. Let’s review again. Refer to figure 16.20 and
assume the data on that panel has now been saved. The panel is then subsequently
retrieved, and two rows are checked off (figure 16.28) with the assumption that the

Figure 16.30 Resulting panel with selected rows removed

Licensed to James M White <jwhite@maine.edu>

370 CHAPTER 16 WORKING WITH SCROLLS

rows will be deleted during save processing. Following save processing, the rows marked
for deletion will be gone and will appear to have been deleted. However, when the scroll
buffer is reloaded with data from the table or view, the “deleted” rows reappear. For this
reason, RowFlush is limited to specific applications. It is more common to use
DeleteRow because data are removed from the scroll and deleted from the database.

Figure 16.31 illustrates the DeleteRow function as a replacement for RowFlush.

TIP The RowFlush example does not necessarily have to be replaced with
DeleteRow to obtain the desired functionality. The use of the Delete
Row toolbar icon or F8 also removes rows from the scroll area while main-
taining the RowFlush PeopleCode. This will require an additional step
for the user, however.

16.3.10 UpdateValue

The UpdateValue function works in a similar manner to FetchValue to update
the value of a field using the value parameter passed to the function. UpdateValue
requires the target_row and recordname.fieldname parameters as well as a
value that can be specified as a variable, constant, or record field. To use
UpdateValue at various levels, the following syntax is used:

Level 1

UpdateValue (RECORD.target_recname, target_row, [recordname.] fieldname,

value);

Level 2

UpdateValue (RECORD.level1_recname, level1_row, RECORD.target_recname,

target_row, [recordname.]fieldname, value);

Figure 16.31 Using DeleteRow in place of RowFlush

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 371

Level 3

UpdateValue (RECORD.level1_recname, level1_row, RECORD.level2_recname,
level2_row, RECORD.target_recname, target_row, [recordname.]fieldname,

value);

Example

The Operator Class/Locations panel contains a button labeled “Update Effdt.” When
the button is activated, a secondary panel is displayed which accepts a date value. The
date entered from the secondary panel is used to update an effective date field located
on MY_LOCATIONS record. The effective date is used for reporting and internal
tracking purposes, but does not appear on the panels illustrated. Figure 16.32 illus-
trates the secondary panel.

The PeopleCode utilizing UpdateValue is shown in figure 16.33. This code
works in conjunction with the Update Effdt push button (in figure 16.32) and uses
the date entered from the secondary panel.

The UpdateValue parameters specify target record name as
RECORD.MY_LOCATIONS. The target_row parameter is specified as a variable &I,
which is incremented using the For statement. The variable &I represents the row
numbers in the target scroll area. Record name is required as a prefix to fieldname

Figure 16.32 Update Effdt secondary panel associated with UpdateValue

1

1

Licensed to James M White <jwhite@maine.edu>

372 CHAPTER 16 WORKING WITH SCROLLS

because the PeopleCode is executed from the MY_DERIVED record. As a result, the
target fieldname is prefixed with MY_LOCATIONS. The last parameter received by
UpdateValue is a value. In the example, the value is entered into the secondary panel
and contained in the work field MY_DERIVED.EFFDT.

TIP Regular data assignment can be used instead of UpdateValue when the
field to be updated appears on the same record as the PeopleCode.

16.3.11 TotalRowCount

As previously discussed, it is sometimes necessary to identify the number of rows in a
scroll area. ActiveRowCount is a function used to count the number of active rows
in a target scroll area. When it is necessary to count active as well as deleted rows, the
TotalRowCount function can be used. TotalRowCount returns the aggregate
number of rows in a scroll area including deleted rows.

The parameters required by TotalRowCount are based on the target scroll level
for which a count is required:

Level 1

TotalRowCount (RECORD.target_recname);

Level 2

TotalRowCount (RECORD.level1_recname, level1_row, RECORD.target_recname);

Level 3

TotalRowCount (RECORD.level1_recname, level1_row, RECORD.level2_recname,

level2_row, RECORD.target_recname);

Example 1

To obtain the total number of rows contained in the scroll area of the Operator Class/
Location panel, the following code using TotalRowCount can be used:

MY_DERIVED.COUNTER = TotalRowCount(RECORD.MY_LOCATIONS);

Figure 16.33

UpdateValue PeopleCode

Licensed to James M White <jwhite@maine.edu>

ADDITIONAL SCROLL FUNCTIONS 373

Example 2

The following example uses TotalRowCount on the level 2 scroll to count the
number of child rows containing employee data:

MY_DERIVED.COUNTER = TotalRowCount (RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

TIP Rows marked as “deleted” remain in the buffer until an SQL commit is is-
sued after the SavePostChg PeopleCode event.

KEY POINTS

1 A panel can contain up to three scroll levels. A panel with two scroll levels con-
tains primary records at occurs level zero, occurs level 1, and occurs level 2.

2 The level zero record is considered the parent row and level 1 is the child. A
level 1 row is parent to a level 2 row. Each level can contain multiple
records, but only one primary record can exist for each level specified.

3 During processing of data buffers, records at occurs level zero are handled
before occurs level 1. A panel containing two occurs levels will process the
level zero records first, then a single row of level 1 data, and all level 2 rows
which are children of the level 1 row.

4 Some PeopleCode functions used to operate on scrolls include ScrollSelect,
ScrollSelectNew, and ScrollFlush. Additional functions such as
RowSelect, RowSelectNew, and RowFlush require the use of the WHERE
block in the SQL string to match parent keys.

5 Other functions used to complement scroll processing include FetchValue,
UpdateValue, ActiveRowCount, and CurrentRowNumber. These
functions allow us to process specific data with a scroll area.

Licensed to James M White <jwhite@maine.edu>

374

C H A P T E R 1 7

Function libraries

17.1 Function overview 375
17.2 PeopleCode built-in functions 376
17.3 PeopleCode internal functions 389

17.4 PeopleCode external functions 393
17.5 External non-PeopleCode

functions 396

A Function Library is a collection of one or more routines that can be called from
another program. Function Libraries offer us the opportunity to reuse code and to
write special routines which can be shared by applications running under People-
Tools. In addition to writing and calling functions written in the PeopleCode lan-
guage, we can also call external programs written in languages such as C/C++. A
function usually accepts one or more values and can either return a value or not.

Licensed to James M White <jwhite@maine.edu>

FUNCTION OVERVIEW 375

17.1 FUNCTION OVERVIEW

Functions are pieces of code that, in their most basic form, accept a string of parame-
ters and can either return a value, return no value or in some instances call another
function and eventually return home. Functions are everywhere and not only in
PeopleCode. An SQL Select statement that utilizes specialized date functions will
enable formats to be used as input and output based on patterns passed to the func-
tions. Similarly, the SQR statement RTRIM is also a function. COBOL has functions
such as NUMVAL, which work in conjunction with a Move or Compute statement.
All types of functions share these characteristics:

• They can be called from almost anywhere in a program.
• They may be called once or thousands of times by a program.
• They perform a specific task that can be shared by systems. Some functions are

bundled into software packages and are used to make the software more efficient
or to relieve the application developer from writing redundant routines.

• They do not have to be written in the same language as the calling routine.
PeopleCode can call C functions as well as C++. If we are daring enough, we can
also write callable Assembler routines.

An important requirement of a function is that it establishes a calling convention
to allow parameters to be passed back and forth. A function which formats dates could
be written to accept one format and pass back another format. The function must
know what the input format is and what the output format will be. Assume we have
a function called DATE_FUNCTION, which accepts a Julian date in the form YYDDD
and returns the value YYYYMMDD. Such a function will be flawed in several ways. First,
the function should be flexible enough that it can accept a variety of formats and out-
put them in the manner desired by the calling program. So while we may have some
issues with a YYDDD format we could also accept D/M/Y, MMDDYY, or dd-Mon-YYYY
where Mon is a three character representation of Month. January 1, 2000 would be
01-JAN-2000. The routine would also require indicators to identify the input and
output formats. This style of coding helps eliminate redundancy and allows for the
localization of functions.

NOTE PeopleCode functions cannot be called by any other type of programs writ-
ten in a language other than PeopleCode.

PeopleCode programs utilize various types of functions. The function types are as follows:

• built-in
• internal
• external PeopleCode
• external non-PeopleCode

Licensed to James M White <jwhite@maine.edu>

376 CHAPTER 17 FUNCTION LIBRARIES

17.2 PEOPLECODE BUILT-IN FUNCTIONS

Built-in functions are the standard PeopleCode functions developed by PeopleSoft
which can be called without being declared. Built-in functions are used to manipulate
dates, strings, scrolls, and messages. Functions can be grouped into functional catego-
ries. Built-in functions differ from Internal and External PeopleCode functions
because they do not necessarily have to be written in PeopleCode. Many built-in
functions are written in C++.

Functions, by definition, are basically routines that can be shared among different
programs or, at the very least, among programs common to an application. A good
example of such a function is the PeopleCode built-in function RTrim. This is a great
little built-in function that removes characters, usually blanks, from the rightmost por-
tion of a string. You pass it the string or list of strings you wish to remove from the
source string, and it works just fine. Most of the PeopleCode built-in functions can
be used by other PeopleCode programs when necessary.

PeopleCode built-in functions can be grouped into functional categories. For the
current release of PeopleTools, some of the most frequently used categories and cor-
responding functions are:

• Conversion
• Date/Time
• Effective Date/Sequence
• Logical
• Mail
• Math
• Message Catalog/Display
• Panel Buffer
• Panel Control
• Process Scheduler
• Save/Cancel
• Scroll Functions
• SQL
• String
• Transfers
• Validation

Many of the frequently used functions in these categories are listed in appendix E.
Some have been discussed in previous chapters. For example, Message functions are
discussed in chapter 14 and the SQLExec function is illustrated in chapter 15. In chap-
ter 16, we examined scroll functions and how they can be applied to panels containing
multiple scroll levels. A discussion of a few more frequently used categories follows.

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 377

17.2.1 Conversion functions

Functions categorized as conversion are primarily used to translate data values from
one character set or data type to another. Some functions belong to more than one
category. An example of this is the String function, which can be used to convert
from a non-string data type to a string. The String function is categorized as both a
String and Conversion function.

Another example of a conversion function is Char. The Char function is used
to convert numeric values to their corresponding character values. An example of the
Char function follows:

&CHAR_STRING = Char(72) | Char(69) | Char(76) | Char(76) | Char(79);

The target variable contains HELLO based on the ASCII number values passed to the
Char function.

17.2.2 Date/Time functions

PeopleCode provides a number of date and time handling functions categorized as
Date/Time. Functions in this category can be used to convert dates represented by
numbers into a Date data type. Date/Time functions can also be used to extract the
date or time portion of a DateTime data type. An example of a Date/Time function
is Date. The Date function converts a numeric date into a Date data type. An
example of Date follows:

&DATE_NUMBER = 20000122;
&DATE_OUT = Date(&DATE_NUMBER);

The variable &DATE_OUT contains a date represented as 2000-01-22.
The DateValue function is another Date/Time function that accepts a date in

the Windows regional format setting and returns a Date data type. Assuming the
Windows regional date setting is yy/mm/dd, the DateValue function can be applied
in this manner:

&DATE_FORMAT = "000122";
&THIS_DATE = DateValue(&DATE_FORMAT);

After the DateValue function is called, the variable &THIS_DATE contains a Date
data type containing 2000-01-22.

Time is a function which receives a number representing a time value and obtains
a Time data type. The parameter passed to the Time function is a number based on
a 24-hour clock with the format HHMMSS[.SSSSSS].

&REPORT_TIME = 143041.000001;
&TIME_VALUE = Time(&REPORT_TIME);

Licensed to James M White <jwhite@maine.edu>

378 CHAPTER 17 FUNCTION LIBRARIES

The Time function obtains a time value from the numeric variable &REPORT_TIME
and stores it in &THIS_TIME, which now contains the value 14.30.41.000001.
Notice that the precision goes out to .000001 seconds.

Additional built-in functions that operate on date or time values can be used to
perform arithmetic on date or time variables. AddToDate is a function which receives
a date parameter and three values representing number of years, months, and days.
The values are added to the date value supplied and a Date value is returned which
contains the original date and the aggregate value represented by years, months, and
days. Here is an example of AddToDate.

&RETURN_DATE = AddToDate(%Date, 5, - 4, 3);

Based on the preceding example, when the AddToDate function receives control,
the function receives the current system date, the number of years represented as 5,
number of months as –4, and number of days as 3. Assuming the current date is
2000-01-22, the value of &RETURN_DATE is now 2004-09-26. This represents a date
five years in the future, less four months, plus three days from the current date.

NOTE Passing negative numbers to represent years, months, or days has the effect
of subtracting from the date value passed.

17.2.3 Effective Date/Sequence functions

In PeopleSoft, most applications are built around the concept of Effective Date and
Effective Sequence. With effective-dated records, data can be managed chronologi-
cally in the order of events. Under varying circumstances, the need for multiple
records with the same effective date is inevitable. To handle such conditions, the
Effective sequence key field is utilized. The combination of Effective Date (EFFDT)
and Effective Sequence (EFFSEQ) enables the existence of unique rows with the same
effective date. Functions categorized as Effective Date/Sequence operate primarily on
scroll areas containing effective-dated rows or tables which contain Effective Date
and Effective Sequence as part of their key structure.

The CurrEffdt function is used to return the effective date of the current record
on the specified scroll level. The function can be used to extract the effective date,
which is returned as a Date value or used in a conditional statement.

To extract the effective date of the current record we can code:

&RETURN_DATE = CurrEffDt(CurrentLevelNumber());

The function can also be used in a conditional context. For example, when specific
processes are performed based on effective date values, the following can be used:

If CurrEffDt(CurrentLevelNumber()) < %Date Then
 Audit_Changes(EMPLID);
End-If;

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 379

In this example, the Audit_Changes function is executed when the effective date of
the current record is less than the %Date system variable, which stores the current
system date.

The CurrEffSeq function is used to obtain the effective sequence of a specified
scroll level. The following example grays out the Account Code field on a panel when
the current Effective Sequence contains a higher value than the prior record:

If CurrEffSeq(1) > PriorEffdt(EFFSEQ) Then
 Gray(ACCT_CD);
End-If;

Based on data in table 17.1, let’s assume that the HRMS application contains a cur-
rent record with an effective date of 1999-07-01 and an ACTION_REASON of XFR.
When the ACTION_REASON value for the next record is required, the NextEffDt
function can be used. NextEffDt returns the value of the specified record field
which exists in the next effective-dated row. To obtain the next ACTION_REASON,
the function call can be written as:

&NEXT_ACTION_REASON = NextEffdt(ACTION_REASON);

After the function call, the variable &NEXT_ACTION_REASON contains PRO. Using
table 17.1, when the current record’s Effective Date is 2000-01-05, the NextEffDt
function call is skipped because a next record does not exist.

Another function categorized as Effective Date/Sequence is PriorEffDt. This
function works in contrast to NextEffDt and is used to return the contents of the
specified field from the prior effective-dated row. Using table 17.1, the following
statement retrieves the XFR ACTION_REASON when the current effective-dated row
is 2000-01-05.

&PRIOR_ACTION_REASON =PriorEffdt(ACTION_REASON);

A statement using PriorEffdt is ignored when the current effective-dated row is
1996-01-01.

Table 17.1 Effective Date and Action/Reasons

EFFDT ACTION_REASON

2000-01-05 PRO

1999-07-01 XFR

1998-06-30 MER

1996-01-01 HIR

Licensed to James M White <jwhite@maine.edu>

380 CHAPTER 17 FUNCTION LIBRARIES

NOTE CurrEffdt retrieves the value of the current row’s effective date.
NextEffDt and PriorEffDt are used to obtain the value of a specified
field that does not necessarily have to be an effective date.

17.2.4 Logic functions

Functions in this category are used to test for the existence of blank values. The com-
monly used All function is used to determine whether one or more fields contain a
value. The All function statement is useful in the SaveEdit PeopleCode event if
we wish to verify that one or more fields have been entered. For the Problem Tracking
application, the All function can be used to determine if specific fields have been
entered. The All function can be used to test several fields with one call. The follow-
ing code can be placed into the SaveEdit event for one of the specified fields; it ver-
ifies that the three fields passed as parameters each contain a value before calling
MyScheduleFunction function:

If All(PRIORITY, MY_USER_ID, MY_PROBLEM_TRACKER) Then
 MyScheduleFunction();
End-If;

An additional logic function used to test for the existence of values is None. The func-
tion returns TRUE if the field or list of fields supplied do not contain a value. A Bool-
ean FALSE is returned when one or more fields contain a value. A variation on the
All function can be written using None to test for the existence of specific values.

If None(PRIORITY, MY_USER_ID, MY_PROBLEM_TRACKER) Then
 Error ("Enter all required fields");
End-If;

PeopleCode programs can be reduced in terms of lines of code by combin-
ing multiple fields when using Logic functions such as All or None.

17.2.5 Math functions

Functions categorized as Math operate primarily on numeric data and can be used to
assist with complex calculations. Some of these functions are invaluable when using
PeopleSoft Financials, Payroll, or Manufacturing applications. When assigning
numeric data elements that result from a multiplication or division operation, it is
sometimes necessary to obtain a specific number of decimal positions before inserting
values into a database table. One function used to accomplish this task is Round. The
Round function returns a decimal number rounded up to the number of positions

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 381

specified by the second parameter. If we are required to round the HRMS data ele-
ment COMPRATE to three decimal positions, the following statement can be used:

JOB.COMPRATE = Round(JOB.COMPRATE, 3);

An additional function, which operates on numeric data but is not interested in deci-
mal positions, is the Int function. The Int function removes decimal positions
from a number and returns an integer value. As an example let’s assume one of the
payroll subroutines calculates hours worked, based on whole hours only. The follow-
ing code can be used to calculate overtime hours using the Int function:

If &HOURS_WORKED > JOB.STD_HOURS Then
 &OVERTIME_HOURS = Int(&HOURS_WORKED) - JOB.STD_HOURS;
End-If;

Based on that Int example, employees working overtime hours that are not whole
hours will not be too happy on payday. That is because the Int function does not
perform any rounding. In the example, when the value of &HOURS_WORKED is
65.753 the Int function uses 65.

When dividing numbers, it is sometimes necessary to interpret the value of the
remainder field. This can be accomplished using the Mod function. Mod divides one
number by another and returns a value representing the remainder. We can see an
application of the Mod function when a specified number is divided by number of
years. Let’s assume we have shares of stock and wish to allocate them evenly in whole
numbers over a period of seven years. One rule is that, when the number cannot be
divided evenly, the first year contains one additional share. This may appear compli-
cated at first but can be facilitated using Mod:

&YEARLY_STOCK = (&STOCK_SHARES / 7);
&YEARLY_STOCK = Int(&YEARLY_STOCK);
&REMAINING_SHARES = Mod(&STOCK_SHARES, 7);
If &REMAINING_SHARES <> 0 Then
 &FIRST_YEAR_STOCK = &YEARLY_STOCK + 1;
End-If;

Observe how the routine uses both Mod and Int to determine the yearly stock and
any remaining shares.

17.2.6 Panel buffer functions

Functions in this category are used to identify changes to records residing in panel
buffers. A panel buffer can contain scroll data as well as non-scroll data. Panel Buffer
functions can also be used to mimic operator functionality such as InsertRow (F7)
and DeleteRow (F8). These functions are essential during save processing because
they can be used to perform specific routines based on user actions.

Licensed to James M White <jwhite@maine.edu>

382 CHAPTER 17 FUNCTION LIBRARIES

The Problem Tracking application referred to throughout this book uses a main
data entry panel (figure 17.1) which contains several editable fields. The task of identi-
fying changes made to fields can be accomplished by including PeopleCode which tests
each record field for changes. Such a task requires several lines of code. A more efficient
method can be applied by incorporating the RecordChanged panel buffer function.
The function returns a Boolean (TRUE) when the contents of a record have been changed
on a panel or modified programmatically since being retrieved from the database.

An example of RecordChanged can be applied as follows:

If RecordChanged(RECORD.MY_PROBLEM_TRKG) Then
 &RETURN_VALUE = MyScheduleFunction();
End-If;

FieldChanged is another panel buffer function. However, unlike RecordChanged
which operates on the entire record, FieldChanged can be used to identify if one or
more fields have been modified The function thereby operates at the field level. To test
specific fields in Problem Tracking, a statement can be written as illustrated by the fol-
lowing example:

If FieldChanged(MY_PROBLEM_TRKG.PRIORITY) Or
 FieldChanged(MY_PROBLEM_TRKG.MY_USER_ID) Or

Figure 17.1 Problem Tracking panel

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 383

 FieldChanged(MY_PROBLEM_TRKG.MY_PROBLEM_STATUS) Or
 FieldChanged(MY_PROBLEM_TRKG.MY_PROBLEM_TRACKER) Then
 &RETURN_VALUE = MyScheduleFunction();
End-If;

Additional panel buffer functions can be used to delete records or identify records
marked for deletion. When it is necessary to delete a record, the DeleteRecord
panel buffer function can be used. The function deletes a level zero record and any
associated child rows. The records are marked for deletion and are removed from the
database during save processing. The function accepts any field values from the target
record to be marked for deletion:

If &DELETE = "Y" Then
 DeleteRecord(MY_LOCATIONS.OPRCLASS)
End-If;

This example deletes the corresponding record from the table MY_LOCATIONS as
well as any associated child rows.

Records marked for deletion by a panel buffer function such as DeleteRecord
can be identified using the RecordDeleted function. An example of how
RecordDeleted can be applied to scroll data at level 2 follows:

If RecordDeleted(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP) Then
 &RETURN = My_Audit_Function();
End-If;

Panel buffer functions can also be used to insert records into a scroll or to identify
records as new to the database. The InsertRow function is used to insert a new row
of data into the scroll buffer. The operation is followed by the RowInsert
PeopleCode event. InsertRow mimics the F7 operator function. To insert data at
the level 2 scroll, InsertRow can be written in the following manner:

InsertRow(RECORD.MY_LOCATIONS, CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

During save processing, records added to the database can be identified using the
RecordNew panel buffer function. When used in SaveEdit before the record is
inserted into the database, RecordNew is used to identify new records. This can be
useful when special routines are necessary for newly added data. It is important to
identify new data which can be added using F7 (Row Insert) or the InsertRow
function. In order to recognize a new record at scroll level 1 for the table
MY_LOCATIONS, the following code can be used:

If RecordNew(RECORD.MY_LOCATIONS) Then
 &RETURN = My_Audit_Function();
End-If;

Licensed to James M White <jwhite@maine.edu>

384 CHAPTER 17 FUNCTION LIBRARIES

17.2.7 Panel control functions

Consider the following scenario: we have implemented the HRMS module among a
large number of users, many having access to the same panels. There are, however,
some clients who do not require access to a number of fields distributed throughout
the panel group. The objective is to allow access to these panels without displaying
the fields. Several methods exist for accomplishing this task. One method involves
creating several panels without the specified fields. We then have to create a new
panel group and add the corresponding panel group to a menu. This approach
requires additional panels. An alternative and more efficient method is to use
PeopleCode. Using system variables and specific PeopleCode panel control functions,
the selected fields can be hidden or made inaccessible on selected panels. One panel
control function that can be utilized is the Hide function. Hide can render the spec-
ified panel fields invisible. Assuming the panels containing these fields are on a spe-
cific panel group, the following code can be applied to accomplish this task:

If (Substring(%PanelGroup, 1, 8) = "SPECIAL_DATA") Then
 Hide(COMPRATE);
 Hide(SAL_ADMIN_PLAN);
 Hide(GRADE);
 Hide(HOURLY_RT);
 Hide(ANNUAL_RT);
 Hide(MONTHLY_RT);
End-If;

Other circumstances exist in which hiding fields in not necessary. If we simply wish to
prevent certain editable fields from being written over, the panel control function, Gray
can be used. The Gray function is commonly used in the RowInit event and can also
be used in events such as FieldChange after the contents of a field are modified.

In the Problem Tracking application, when an issue is considered closed, certain
fields can be presented as display only using the Gray built-in function contained in
the following code:

If MY_PROBLEM_STATUS = "5" Then
 Gray(PRIORITY);
 Gray(MY_USER_ID);
 Gray(MY_PROBLEM_TRACKER);
 Gray(DESCRLONG);
End-If;

Additional Panel Control functions can be used to make panel fields visible again.
The UnHide function can be used for this task, but only works on fields that were
hidden using the Hide function. Fields initially set to invisible, based on the panel
field properties tab, are not impacted by UnHide. The following example is used to
Hide or UnHide a field on the Problem Tracking panel:

If MY_PROBLEM_STATUS <> "5" Then
 Hide(MY_PROBLEM_RESOLTN);

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 385

Else
 UnHide(MY_PROBLEM_RESOLTN);
End-If;

The UnGray function can be used to make a previously protected field editable using
Gray. UnGray is commonly used in the RowInit event and can also appear in
events such as FieldChange after the contents of a field are modified.

In the Problem Tracking application we can see the UnGray function when a
Problem Status is changed from resolved back to another status:

If PriorValue(MY_PROBLEM_STATUS) = "5" And
 MY_PROBLEM_STATUS <> "5" Then
 UnGray(PRIORITY);
 UnGray(MY_USER_ID);
 UnGray(MY_PROBLEM_TRACKER);
 UnGray(DESCRLONG);
End-If;

17.2.8 Save/Cancel functions

Functions in the Save/Cancel category enable the PeopleCode program to force a
cancel from an active panel or to save the contents of a panel. The DoCancel func-
tion is used to cancel the activity on a panel and imitate the Esc or Cancel toolbar.
Figure 17.2 illustrates the use of DoCancel after a Warning statement has been
issued. The panel is canceled after the user replies OK to the warning message.

NOTE If Error were used in place of Warning, the DoCancel function would
have no effect, because the Error function negates any further processing
until the error has been corrected.

In addition to providing the ability to cancel a panel, PeopleCode functions enable
save processing to be performed without a user save action. This can be accomplished
using the DoSave function which can be executed from specific PeopleCode events.
DoSave performs save processing at the conclusion of the current PeopleCode program

Figure 17.2 Using the DoCancel function

Licensed to James M White <jwhite@maine.edu>

386 CHAPTER 17 FUNCTION LIBRARIES

in the FieldEdit, FieldChange, and MenuItemSelect events. Any statements
following DoSave are executed through the remainder of the program and then the
associated save events are triggered. These events include SaveEdit, SavePreChg,
WorkFlow, and SavePostChg. An example of DoSave in the Problem Tracking
application is illustrated by figure 17.3.

17.2.9 String functions

String functions enable the developer to manipulate String data types. This cate-
gory of functions can be used to extract portions of a string, determine the length of a
string, or to remove specified leading and trailing characters.

The Substring function references a string for a specified length and starting
position. The following example uses Substring to verify a portion of the
%PanelGroup system variable and to hide a panel field:

If (Substring(%PanelGroup, 1, 8) = "SPECIAL_DATA") Then
 Hide(COMPRATE);
End-If;

LTrim and RTrim are functions that can be used to remove specified leading or trail-
ing characters respectively. Both functions accept up to two parameters. When the
second parameter is specified, any characters appearing in the parameter string are
removed from the first string parameter. If the second parameter is not supplied, any
leading or trailing blanks are removed by default. MY_PROBLEM_RESOLTN is a
field that contains a text field. To remove any unwanted trailing asterisks from this
field, RTrim can be applied as follows:

MY_PROBLEM_RESOLTN = RTrim(MY_PROBLEM_RESOLTN, "*");

It sometimes becomes necessary to represent data in one common format or case. This
may be necessary when data are maintained for interface purposes and are sent to a
third party application. Some of these third party applications may require that alpha-
betic data are sent in a specific case only. PeopleCode functions Lower and Upper
can be used to convert alphabetic characters to lower case or upper case, respectively.

Figure 17.3

Using DoSave function

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE BUILT-IN FUNCTIONS 387

The following example illustrates how the field MY_PROBLEM_RESOLTN can be
converted to uppercase:

MY_PROBLEM_RESOLTN = Upper(MY_PROBLEM_RESOLTN);

Alternatively, we can convert the text in the field MY_PROBLEM_RESOLTN to all
lowercase using the Lower function:

MY_PROBLEM_RESOLTN = Lower(MY_PROBLEM_RESOLTN);

Another application of the Upper function can be illustrated when comparing two
fields which may contain mixed case data. The following example compares two
Name fields and performs a function call when the names match:

If Upper(PERSONAL_DATA.NAME) = Upper(&EXTRACT_NAME) Then
 ProcessVerification(PERSONAL_DATA.NAME);
Else
 WinMessage("Names are not equal");
End-If;

Another commonly used string function is Len, which determines how many charac-
ters are contained in a string. To find out the number of characters stored in the field
MY_PROBLEM_RESOLTN, the Len function can be used in the following manner:

&FIELD_LENGTH = Len(DESCRLONG);

17.2.10 Panel transfer functions

Functions in this category are associated with the transfer of control from one panel to
another. PeopleCode programs using functions related to Transfer can be used to steer
clients through related panels without prompting for key values. AddKeyListItem
is a transfer function that can be used to help clients move around related panels with-
out prompting for key values. Let’s assume we are using the Operator Class/Locations
application. The user links operator classes to locations and then links the operator
classes to employee data. In order to set up a list of keys to facilitate transferring con-
trol to the next panel, AddKeyListItem can be implemented as follows:

AddKeyListItem(MY_LOCATION_EMP.SETID, MY_LOCATIONS.SETID);
AddKeyListItem(MY_LOCATION_EMP.OPRCLASS, MY_LOCATIONS.OPRCLASS);
AddKeyListItem(MY_LOCATION_EMP.LOCATION, MY_LOCATIONS.LOCATION);

A function used to transfer control when the operator presses F6 or presses the Next-
Panel toolbar icon is the SetNextPanel function. Continuing with the previous
example, SetNextPanel can be used to transfer control to the panel
MY_LOCATION_EMP after data on the operator class location panel is saved. The
function verifies that the panel name appears on the current menu:

Licensed to James M White <jwhite@maine.edu>

388 CHAPTER 17 FUNCTION LIBRARIES

SetNextPanel("MY_LOCATION_EMP");

SetNextPanel identifies the panel to which control will be transferred following user
actions such as F6 or activation of the NextPanel toolbar icon. The TransferPanel
function is not activated based on user actions; it transfers control to the next panel in
the panel group, the panel name supplied to the function, or the panel identified by a
previous SetNextPanel. To illustrate the use of the SetNextPanel and
TransferPanel functions, we make the assumption that the operator class location
panels reside in the same panel group as the departmental security panels. The follow-
ing statement transfers control to either the panel used to link locations and employees
or the standard departmental security panel:

If %Panel = "MY_LOCATIONS" Then
 SetNextPanel("MY_LOCATIONS_EMP");
Else
 SetNextPanel("SCRTY_TABL_DEPT");
End-If;
TransferPanel();

An alternative method in which to code the TransferPanel function can be writ-
ten using a variable set based on a conditional statement:

If %Panel = "MY_LOCATIONS" Then
 &NEXT_PANEL_NAME = "MY_LOCATIONS_EMP";
Else
 &NEXT_PANEL_NAME = "SCRTY_TABL_DEPT";
End-If;
TransferPanel(&NEXT_PANEL_NAME);

The example passes a variable to the TransferPanel function rather than using
SetNextPanel to identify the next panel name.

17.2.11 Process Scheduler functions

PeopleCode can be used to submit a batch process that will run on a client or server
location. A process can be associated with an SQR or a COBOL program and can be
used to generate reports or processes, such as payroll batch cycles. ScheduleProcess
is a function used to submit processes to the PeopleSoft Process Scheduler. The func-
tion accepts a number of parameters and stores a row of data into the process request
table (PSPRCSRQST), which enables the system to schedule the process or job. The fol-
lowing example establishes the required and optional parameters to call the
ScheduleProcess function. The example submits an SQR Report and identifies the
process as INSERTS:

&PRCSTYPE = "SQR Report";
&PRCSNAME = "INSERTS";
&RUNLOCATION = "2";

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE INTERNAL FUNCTIONS 389

&RUNCNTLID = "INSERTS";
&PRCSINSTANCE = "";
&RUNDTTM = %Datetime;
&RECURNAME = " ";
&SERVERNAMERUN = "PSUNX";
&RETURN_VALUE = ScheduleProcess(&PRCSTYPE, &PRCSNAME, &RUNLOCATION,
&RUNCNTLID, &PRCSINSTANCE, &RUNDTTM, &RECURNAME, &SERVERNAMERUN);

17.3 PEOPLECODE INTERNAL FUNCTIONS

An internal PeopleCode function is defined and used within the same PeopleCode
program. The function can be declared in any PeopleCode program event, and the
actual function definition requires that it be placed at the beginning of a program.
Multiple functions can be defined within the same program, provided they are
defined before any PeopleCode statements. In some functions, return values can be
passed back to the calling program. Other types of functions perform some kind of
operation on one or more fields.

17.3.1 Defining an internal function

An internal function is defined using the Function statement, which identifies the
function name, parameters, and return value. A simple function definition can be
written as follows:

Function MyFunction(&PARAMETER1, &PARAMETER2) Returns string;
End-Function;

The Function statement identifies the function name and any parameters passed to
it. In the preceding example, the function MyFunction receives two parameters and
returns a string. When a return value is specified, the data type of the returned value
must also be specified. These return values can be any of the supported data types.

Example

An internal PeopleCode function can be defined and used in the Problem Tracking
application. This internal function, illustrated by figure 17.4, will “live” in the
SaveEdit event of the field MY_PROBLEM_STATUS. The purpose of the function
is to verify that some text has been entered into the problem resolution field, when an
issue has been resolved (&MY_PROBLEM_STATUS = “5”). The function also initial-
izes the contents of the resolution text field (MY_PROBLEM_RESOLTN) when a
value other than 5 is entered, and a Yes reply is entered from the message box.

The Function statement defines the function name as MyTextFunction. This
function receives two parameters, &PROBLEM_STATUS and &TEXT. In the example,
the fields passed are MY_PROBLEM_STATUS and MY_PROBLEM_RESOLTN.
MyTextFunction returns a Boolean back to the calling routine as a return value.

The actual code contained in the function verifies if the variable
&PROBLEM_STATUS has a value of 5 (resolved). If the value is resolved, the code then

Licensed to James M White <jwhite@maine.edu>

390 CHAPTER 17 FUNCTION LIBRARIES

checks the length of the variable &TEXT. Any length less than or equal to 10 produces
an error message, which requires that a problem resolution text be entered. A length
of 10 is used because there should be some type of dialogue that can be followed when
reviewing problems and resolutions.

The other part of this function is enabled when a user had previously entered a
problem resolution text and the problem is actually not resolved. With good intention,
the user may have thought everything was working correctly, changed the problem sta-
tus to 5, and entered comments into the resolution text field. Upon later review, how-
ever, this problem has not been resolved and requires additional analysis. When the
value of MY_PROBLEM_STATUS is changed from resolved to another value, the user
has the option of allowing the function to clear out the resolution text field or leaving
it intact.

Figure 17.5 illustrates the use of MyTextFunction in the Problem Tracking
application panel.

After the problem has been resolved, the problem status is changed to 5, and the
problem resolution text is verified. The PeopleCode in the function statement verifies
that a resolution text has been entered. An example of a resolved problem status is dis-
played in figure 17.6.

Figure 17.4 Internal PeopleCode function

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE INTERNAL FUNCTIONS 391

Figure 17.5 Example of an unresolved problem status

Figure 17.6 Resolved incident and resolution text

Licensed to James M White <jwhite@maine.edu>

392 CHAPTER 17 FUNCTION LIBRARIES

An additional feature of MyTextFunction provides the ability to clear out the
problem resolution text when the status is prematurely set to 5 and subsequently set to
another value at a later time. In the example, if the problem is not actually resolved and
is changed to 4 (User Testing), a message (figure 17.7) is presented to the operator.

Now that the problem status is no longer resolved, the existing problem resolu-
tion text may not necessarily apply after a final resolution. The PeopleCode in the
function allows the user to keep the resolution text or remove it. The statement fol-
lowing the function call should reset the resolution text as well as the CLOSE_DT field.
The statement can be written as follows:

If &RETURN_VALUE = True Then
 SetDefault(MY_PROBLEM_RESOLTN);
 SetDefault(CLOSE_DT);
End-If;

For PeopleCode internal and external functions, parameters are passed by reference.
The MyTextFunction example in figure 17.4 contains the function call as follows:

&RETURN_VALUE = MyTextFunction (MY_PROBLEM_STATUS, MY_PROBLEM_RESOLTN);

Figure 17.7 Internal PeopleCode function at work

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE EXTERNAL FUNCTIONS 393

The calling program passes the fields MY_PROBLEM_STATUS and MY_
PROBLEM_RESOLTN. Because PeopleCode function parameters are passed by refer-
ence, any modification to the contents of either field contained in MyTextFunction
are reflected in the calling program upon completion of the call. While the variables
&PROBLEM_STATUS and &TEXT have unique names, they are actually pointers to the
address of the fields MY_PROBLEM_STATUS and MY_PROBLEM_RESOLTN.

The internal function example presented in figure 17.6 is limited to the Problem Track-
ing application and, more specifically, to the MY_PROBLEM_STATUS.SaveEdit event
for the problem resolution text field. A preferred objective is to write functions that can be
used by more than one PeopleCode record field event. Nothing is lost when a function such
as MyTextFunction is used, but there is also little to gain. Greater efficiencies can be real-
ized by writing External PeopleCode functions, which are the next topic of discussion.

17.4 PEOPLECODE EXTERNAL FUNCTIONS

PeopleCode external functions do not have to be stored in the same record event as
internal functions. The PeopleCode convention of storing functions places the code
in Derived/Work records with either of two prefixes, FUNCLIB_ or DERIVED_. Gen-
erally, these functions by convention are stored in the FieldFormula event. Two
key items to understand when working with PeopleCode functions are defining a
function and declaring one. A function such as MyTextFunction is defined in fig-
ure 17.4. Because the function is an internal PeopleCode function, it cannot be called
from another PeopleCode program. However, if the function in figure 17.4 were an
external PeopleCode function and called from another PeopleCode program, it
would still be defined in the same manner. A PeopleCode function not defined in the
calling program must be declared before it can be called.

Functions are useful when repetitive code is required and, more importantly,
when the function can be called from various programs.

To effectively use external PeopleCode functions several steps must be followed:

1 Define the external function.

2 Declare the function.

3 Call the function.

4 Interpret any return values when necessary.

Licensed to James M White <jwhite@maine.edu>

394 CHAPTER 17 FUNCTION LIBRARIES

17.4.1 Define the External function

In figure 17.8 we have defined an external PeopleCode function. An externally
defined function is defined in the same manner as a function called internally from
the same Recordname.Fieldname.Event.

A review of the code in figure 17.8 identifies the following:

• The function statement names the function MyScheduleFunction and indi-
cates that the function receives no parameters but returns a number value.

• The statements contained within the function verify that the current mode is
Add before continuing.

• A function can call another function. In the example, MyScheduleFunction
is calling the built-in function ScheduleProcess and passes parameter values
initialized by the statements preceding the call.

• The function returns a zero when the mode is not Add. The ScheduleProcess
function returns a value that is also the return value passed back by
MyScheduleFunction.

• End-Function signals the end of the PeopleCode function. This statement is
required for both internal and external function definitions.

Figure 17.8 External PeopleCode function definition

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE EXTERNAL FUNCTIONS 395

17.4.2 Declare the function

Now that we have a function defined, it would be great to call it occasionally. Before
a PeopleCode function can be called, however, it must be declared in the calling pro-
gram. A Declare Function statement is required for each unique function that it
calls. If a program calls five distinct functions it will require five function declara-
tions. The function declaration identifies the function name—and where it resides—
in terms of record name, field name, and event. A Declare Function statement
can be written as follows:

Declare Function MyFunction PeopleCode MY_DERIVED.MY_USER_ID FieldFormula;

A PeopleCode function can be defined on any record definition. All PeopleCode
function declaration statements must appear at the top of the calling program before
any of the regular program code.

Example

For the Problem Tracking application, we would like to execute a process each time a
new user is added to the database.

The external function is defined in figure 17.8. With the exception of comments,
which can appear anywhere in a program, the Declare Function statement(s) must
be at the top of the calling program. When adding new users to MY_USER_TBL, the
function call can be inserted into the SavePostChg event and written as shown
figure 17.9.

The code illustrated in figure 17.9 uses the Declare Function statement to
identify the function name as MyScheduleFunction. The additional parameters
specify that it is a PeopleCode function and resides in the record field
MY_DERIVED.MY_USER_ID. The function is stored in the FieldFormula event.
The function call statement is used in the context of a conditional If, which interprets
the function call return value. A non-zero value issued by the function call implies an
unsuccessful call, which generates an error message.

Figure 17.9 Declaring and calling the external function

Licensed to James M White <jwhite@maine.edu>

396 CHAPTER 17 FUNCTION LIBRARIES

17.4.3 Call the function

In the example presented in figure 17.9, the MyScheduleFunction call does not
pass any parameters. An external PeopleCode function call can simply be written as
Function_Name(). Any parameters passed are enclosed in parentheses.

17.4.4 Interpret return values

Many circumstances require that the return value of a function be interpreted before
proceeding with the remaining code. A return value can be any data type. A common
convention is to return zero when the function call is successful or neutral. The exam-
ple used in figure 17.9 utilizes the return value in the context of an If statement. The
external function MyScheduleFunction returns a zero when the mode is not Add.
This type of verification could certainly be done before the function is called, so that
no function call is made from modes such as Update/Display or Correction.
When writing functions, however, it is important to be prepared for all types of param-
eters and circumstances. While one developer may call MyScheduleFunction dur-
ing Add mode only, other developers may call it, regardless of mode. Similarly, some
functions may require data types such as Number or String exclusively. Such func-
tions should be written in a manner that can handle incorrect data and pass the appro-
priate return codes that can be useful when the need for debugging arises.

The Return statement is used to transfer control from the current active func-
tion back to the calling program. After the calling program has received control, pro-
gram execution resumes with the next logical statement following the function call.

17.5 EXTERNAL NON-PEOPLECODE FUNCTIONS

Another type of function to consider is an external Non-PeopleCode function. This
type function is declared differently from a PeopleCode function and is stored in a C-
callable library. PeopleCode can call an external program, which may be useful to us
when a required complex function already exists in a C-library or when we wish to
interface with Windows (DLL) or equivalent UNIX accessible Dynamic Link Librar-
ies (shared libraries/shared objects). The idea here is to take advantage of these librar-
ies when the function already exists outside of PeopleCode or when the need for
performing unusual or behind-the-scene types of tasks becomes necessary. Some of
these functions can interact with the operating system, system hardware, or perform
operations that require programs at levels such as C++, JAVA, or Assembler. When
calling external Non-PeopleCode functions, the Declare Function statement is
somewhat different than the external PeopleCode declaration.

Example

An External non-PeopleCode function declaration can be written as:

Declare Function OpenTextFile Library "My_Lib.dll" Alias "OpenFile"
 (string, integer) Returns integer;

Licensed to James M White <jwhite@maine.edu>

EXTERNAL NON-PEOPLECODE FUNCTIONS 397

The Declare Function statement identifies the function name as OpenTextFile.
The function resides in a Dynamic Link Library named My_Lib.dll. The optional Alias
name is OpenFile.

In the example, the ext_datatype parameters which refer to the data types the
function expects are identified as String and Integer. Any parameters passed to
the external function are enclosed within one set of parentheses. The Return state-
ment indicates the function returns an integer.

The function declaration example can be written in a more complex manner by
identifying optional parameters:

Declare Function OpenTextFile Library "My_Lib.dll" Alias "OpenFile"
 (string Ref As string, integer Value As number) Returns integer As
number;

The preceding example contains additional parameters. One parameter in particular
may impact program results. The parameter list identifies the first parameter expected
by the called function to be a String. Additionally, REF indicates it is passed by ref-
erence, which implies that the address of the data element is passed to the called func-
tion. The pc_type of the first parameter identifies it as being a String data type in
the calling PeopleCode program. The called function expects the second parameter to
be an integer. Its pc_type is a number in the calling program. The potential impact
is that the second parameter is passed by Value. As previously discussed, passing a
parameter by Value signals that the actual value is passed to the called function.
How can this impact a program? When a value is passed by reference (REF), the
address of the data element is passed to the called function. Any subsequent modifi-
cations made to that data element in the called function are reflected when control is
returned to the calling program. Specifying Value passes the actual value of the data
element; however, any changes made to the data element in the called function are
not reflected in the calling program after control is returned to it. Consequently, a
calling program which expects modified data following a function call, will not
receive modified data when the parameters are passed by Value.

A non-PeopleCode external function call is identical to the other types of
PeopleCode function calls. For the code presented in the preceding examples, the first
parameter represents a file name and its corresponding path, passed as a string. The sec-
ond parameter identifies the manner in which the file will be opened. The '1' represents
Open for Input and a '2' represents Open for Output. The function call is shown as:

&FILENAME = "MyInput.txt";
&IO_TYPE = 1;
&RETURN_VALUE = OpenTextFile(&FILENAME, &IO_TYPE);
Rem Verify Return Value 0 = Ok;
If &RETURN_VALUE <> 0 Then
 Error ("File " | &FILENAME | " Cannot be opened");
End-If;

Licensed to James M White <jwhite@maine.edu>

398 CHAPTER 17 FUNCTION LIBRARIES

KEY POINTS

1 A function is a collection of programs or subroutines which, when called,
perform a specific task.

2 A PeopleCode function can be stored on any record event.

3 Internal PeopleCode functions are defined within the same record event in
which they are called.

4 Callable PeopleCode functions are referred to as external PeopleCode func-
tions and are defined in a record event. The function call passes any vari-
ables to the called function.

5 PeopleCode external functions can be shared by different programs and can
improve efficiency by reducing program code.

6 All functions are defined with a Function statement, regardless of
whether they are internal or external.

7 The Declare Function statement is required when calling a PeopleCode
or non-PeopleCode external function.

8 External non-PeopleCode functions are not commonly used, but can help
to perform tasks that cannot be easily done by standard PeopleCode
functions.

Licensed to James M White <jwhite@maine.edu>

399

C H A P T E R 1 8

PeopleCode
debugging tools

18.1 The first bug 400
18.2 Using WinMessage 400
18.3 The Application Reviewer 401

18.4 Search in PeopleCode 411
18.5 PeopleCode Trace 413

If you are new to PeopleTools and have read, understood, and applied the techniques
and information provided thus far, then you are on your way to becoming a
PeopleTools developer. Of course, your introduction will not be complete and should
not be complete until you have encountered problems with records, panels, and
PeopleCode. A good developer is one who writes code that works, is efficient, and can
be reused. A great developer is one who can use debugging tools and knows how and
where to look for bugs.

Licensed to James M White <jwhite@maine.edu>

400 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

18.1 THE FIRST BUG

According to computer industry folklore, the first stored program computer was
invented in 1944 by the U.S. Army; it was called EDVAC. As fate would have it, the
first reported computer “bug” was a moth, which was caught up in the computer and
discovered by a U.S. naval officer and mathematician, Grace Murray Hopper. Web-
ster’s New World Dictionary of Computer Terms defines a bug as “a mistake in a com-
puter program or system, or a malfunction in a computer hardware component. To
DEBUG means to remove mistakes and correct malfunctions.”

As with nature, computer bugs come in all sizes. Minor computer bugs cause little
inconvenience; more serious bugs can impact a payroll or financial posting process;
and real serious bugs can create catastrophes similar to the NASA Mars Climate
Orbiter lost in 1999. That problem was initially reported as either human error or soft-
ware error. Most likely, there is no difference. At this point in time, computer pro-
grams which can “think” for themselves are quite basic and mostly left to Hollywood
films. To some extent, computer bugs will always exist. Even HAL 9000 was (or will
be?) bug-ridden. Our objective as developers is to minimize bugs, and when they do
arise, limit their impact and know how to go about resolving them. Knowing how to
detect bugs and use debugging tools are most important.

18.2 USING WINMESSAGE

WinMessage can be a useful debugging tool because it can be used to display infor-
mation in a message box window. A WinMessage statement containing an OK but-
ton can be used in any PeopleCode event. If more than one button is used, the
function becomes a user think-time function limited to specific PeopleCode
events only. With the exception of an Object data type, WinMessage converts any
data type into a string and displays it in the message box window.

NOTE Refer to chapter 14 and appendix E for additional information regarding
WinMessage.

Debugging a program using WinMessage enables PeopleCode to display the
contents of variables, system variables, and record fields. A constant can be displayed
alone or concatenated with multiple data elements.

Let’s assume we have a panel group
comprised of six panels. Each panel
requires multiple data elements and fires
off many calculations. When an error
message similar to the one in figure 18.1
is issued, WinMessage can be used to
help locate the code and data responsible.Figure 18.1 Error message returned

Licensed to James M White <jwhite@maine.edu>

THE APPLICATION REVIEWER 401

The suspect code can be identified by inserting WinMessage statements into the Peo-
pleCode programs linked to the events in question. This can be accomplished by inserting
a simple message to identify the program and event.

To identify the suspect code, WinMessage statements can be written as follows:

WinMessage("This is JOB.COMPRATE.SaveEdit");
WinMessage("Now in DERIVED_HR.COMPRATE.FieldFormula");

After the program is identified, WinMessage can then be used to narrow down the set
of statements generating the error. Let’s assume the following statements are suspect:

If &A > &OLD_RATE Then
 &NEW_RATE = ((&X + &Y) / (&Z * &OLD_RATE));
End-If;

WinMessage can be used to combine string constants and variables into one
statement.

For example:

WinMessage("The value of &X is " | &X | " Y = " | &Y | " Z= " | &Z);

From a debugging perspective, WinMessage is a simple debugging tool used to
locate and identify PeopleCode programs and data elements. In some applications of
WinMessage, however, the process of identifying and localizing bugs may appear
redundant and sometimes tedious. Complex functionality which involves many
PeopleCode programs, functions, and data elements may be more difficult to track
using WinMessage. A more intuitive debugging PeopleTool which is flexible and
takes some of the guesswork out of tracking down errors, is the Application Reviewer,
which is the next topic of discussion.

18.3 THE APPLICATION REVIEWER

The Application Reviewer is used to trace the path of PeopleCode programs as they
execute. It enables the developer to stop a program at a specific point in its execution,
list the contents of variables, and trace external or internal function calls. Program
return values and PeopleCode function parameters can also be logged. Features of
Application Reviewer include establishing breakpoints, viewing data elements, and
tracing programs, data, and program calls.

After acquiring a good working knowledge of Application Reviewer, the task of
debugging can be simplified.

18.3.1 Breakpoints

A breakpoint is a preset area of code where the program will stop execution. When
setting breakpoints with Application Reviewer, we have the opportunity to inspect
code and view the contents of variables or record fields. Stepping through

Licensed to James M White <jwhite@maine.edu>

402 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

PeopleCode and identifying what effect each statement has on variables and fields can
be easily accomplished using Application Reviewer. Alternatively, we can review all
the PeopleCode associated with a particular panel group. This can be done using the
Break at Start menu option.

The Application Reviewer works on one panel group at a time. As a result, the
Application Reviewer is opened after the panel group that needs to be debugged has
been started.

The modification of a user name in Problem Tracking can be used to track
PeopleCode programs using Application Reviewer. First, start the menu of the appli-
cation to be debugged. In this example, the Problem Tracking menu is started
(figure 18.2).

The display of the Problem Tracking menu is then followed by the display of the
Application Reviewer menu (figure 18.3).

NOTE The Application Reviewer panel is not available in the PeopleTools menu
until after an application has been started

Navigation: Go → Problem Tracking

Figure 18.2 Start panel before application reviewer

Licensed to James M White <jwhite@maine.edu>

THE APPLICATION REVIEWER 403

Break at Start

To establish a generic breakpoint after the Application Reviewer
menu is displayed, choose Break, Break at Start as shown in
figure 18.4.

The next step is to enter the specific application panel group
that is being debugged. When Break at Start is selected from the
Application Reviewer menu, any PeopleCode executed at panel
startup is displayed. This includes PeopleCode events such as
SearchSave and SearchInit.

TIP For a better understanding of PeopleCode and event processing, refer to
chapter 13.

The steps required to use break are now set. Be aware, however, that if the break
is set correctly and no PeopleCode break point is detected, it is possible the People-
Code programs may only execute after the panel is displayed. Events executed after the
panel group is displayed include FieldEdit and FieldChange. Consequently, the
Application Reviewer is displayed when the first PeopleCode program is detected and
not necessarily when the application panel is displayed.

Navigation: Go → PeopleTools → Application Reviewer

Figure 18.3 Initial Application Reviewer panel

Figure 18.4

Break at Start

Licensed to James M White <jwhite@maine.edu>

404 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

For the example presented, no breaks have been encountered so far. We can see
by the illustration in figure 18.6 that PeopleCode exists for this record in FieldEdit,
SaveEdit, and SavePostChg.

The PeopleCode illustrated in figure 18.6 explains why no breaks have been dis-
played up to this point. It is worth mentioning that, when PeopleCode exists in an
event such as FieldDefault—where we expect to have a break before the panel is
displayed—the PeopleCode may not necessarily get displayed. Recall that any
FieldDefault PeopleCode is not executed for record fields containing data when

Navigation: Problem Tracking → Setup → Users

Figure 18.5 Setup Users Panel

Figure 18.6 PeopleCode events for MY_USER_TABLE

Licensed to James M White <jwhite@maine.edu>

THE APPLICATION REVIEWER 405

a record is subsequently displayed. FieldDefault PeopleCode is, however, an iter-
ative process that continues to execute until a field has a value.

We have changed the name field for user MYUSER. After tabbing out of the field
or pressing the save button, the Application Reviewer screen is displayed as shown in
figure 18.7.

Several options are available after the Application Reviewer panel is displayed.
Pressing F4 or using the View, Show Panel menu item enables a jump between the
user panel and Application Reviewer.

The Run menu option, shown in figure 18.8 contains several
Step features which add flexibility when stepping through
PeopleCode.

 When Break at Start is used, F5 or Run → Go enables the
current program to execute until the next PeopleCode program is
detected. After breakpoints have been specified throughout the
program, pressing F5 resumes processing until the next break in
the program is found.

The F7 or Run → Step to Cursor steps through the
PeopleCode until the cursor location.

The F8 or Run → Step is used to execute the current line of
PeopleCode and step into functions. In the example in figure 18.7,

the PeopleCode verifies if MY_USER_ID, entered from the User ID panel
(figure 18.5), exists as a valid ID on the Operator security record. If the ID does not
exist, as detected by the SQLExec statement, the PeopleCode sends out a message
using MessageBox. When stepping through code, the message is displayed, and no
more stepping is allowed until the message box is closed. In the example, we have an
OK and Cancel button based on the style parameter. Pressing OK allows the Appli-
cation Reviewer to continue.

The F10 or Run → Step Over option steps through the line of code but does not
step into functions. The functions are still executed, but with this option they are not
stepped into.

The Run → Step Return menu option stops after the current function has returned.

Figure 18.7 Application Reviewer window

Figure 18.8

Application

Reviewer Run

menu items

Licensed to James M White <jwhite@maine.edu>

406 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

Run → Step Instr is used with the Log view and allows simulated machine code
instructions to be processed.

Break at Start is one method of setting breakpoints. Establishing one or multiple
breakpoints in one or more PeopleCode programs can be accomplished using the
Application Reviewer.

Break at Cursor

Using Break at Start on a panel with many fields and corresponding PeopleCode pro-
grams may require stepping through a range of programs and events. A specific break-
point can be set in one or more programs using Break at Cursor. This can be
accomplished as follows:

The PeopleCode events associated with MY_USER_ID are shown in figure 18.9, .
For this example, the MY_USER_TABLE.MY_USER_ID.FieldEdit event is selected.
The PeopleCode for the event is presented in figure 18.10.

Navigation: Application Reviewer → File → Open → MY_USER_TABLE

Figure 18.9

Opening a record field event PeopleCode

1

1

Figure 18.10 PeopleCode opened for Break at Cursor

Licensed to James M White <jwhite@maine.edu>

THE APPLICATION REVIEWER 407

To establish a breakpoint, move the cursor to the line of PeopleCode on which
to break. Breakpoints can then be set using one of the following methods:

• double-clicking on the cursor line,
• pressing F9, or
• selecting Break at Cursor from the Application Reviewer menu.

In the example, the breakpoint is set on the second
line of the program. The message in figure 18.11 is issued,
which indicates the breakpoint is set on the second state-
ment. When a breakpoint is set, the same options avail-
able when using Break at Start apply to Break at Cursor
as well. These include stepping through the PeopleCode
after a break is encountered.

Navigation: Application Reviewer → Break → List

Additional breakpoints set in the current
PeopleCode program or other events in the
Problem Tracking panel group can be identi-
fied using the Break, List option. List is used
to display the breakpoint dialog box, which
contains the breakpoints for records, fields,
and events contained in the panel group.

Breakpoints can be cleared in two ways.
One manner is to clear all breakpoints using
the menu Break, Clear All, which removes all
breakpoints. To clear one or more particular
breakpoints and keep the remaining ones
intact, use the Breakpoints dialog box.

18.3.2 Viewing data

Navigation: Application Reviewer → Data → PeopleCode Variable

Viewing data elements can also be accom-
plished using Application Reviewer. This is
very useful when debugging because it
enables us to see the impact that PeopleCode
statements and functions have on data. Some
functions have a black box effect, but with
Application Reviewer, the return values of
functions can be examined. After a break is
executed, data can be viewed using the Appli-
cation Reviewer menu shown in
figure 18.13.

Figure 18.11

Breakpoint confirmation

Figure 18.12 Breakpoint dialog box

Figure 18.13 PeopleCode variable

dialog box

Licensed to James M White <jwhite@maine.edu>

408 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

The previous section illustrated how to set breakpoints in a PeopleCode program.
A breakpoint was set on statement 2 (figure 18.11), which is the SQLExec.

To view the value of the record field MY_
USER_ID, the display variable dialog box can
be entered as shown in figure 18.14.

Characteristics of the Display Variable dia-
log box include the record fieldname, data type,
and value of the field. Upon conclusion of the
SQLExec statement, the contents of variable
&OPRID can also be displayed. What is the
value of the variable &OPRID after SQLExec?

The &OPRID variable (figure 18.15) does
not contain a value because SQLExec selects
the literal x and, therefore, the variable is not
populated even when the Select statement
finds a match. Using a literal in a Select
statement is a common practice when all that
is required is the verification of data without
the need for return values. This is pointed out
because it is important to understand what the
PeopleCode statements and function calls are
doing. In this particular example, knowledge
of SQL is important to avoid inaccurate con-
clusions when it is discovered that &OPRID
does not contain a value.

18.3.3 Additional Application Reviewer options

Local or global variables can be viewed using the View Locals menu option, which
displays the Local Temps screen illustrated in figure 18.16.

Application Reviewer can be used to view log files which reflect selected system
activity. This can be set by selection of the menu option as shown in figure 18.17.

Figure 18.14 Value of MY_USER_ID

field

Figure 18.15 Value of &OPRID variable

Figure 18.16

Viewing local variables

Licensed to James M White <jwhite@maine.edu>

THE APPLICATION REVIEWER 409

As illustrated in figure 18.17, PeopleCode log options are divided into three
categories:

• Execution Trace
• Data Trace
• Call Trace

The Execution Trace option enables PeopleCode programs to be traced at the
start of each program, each program statement, or each program instruction. The
default is set to each statement.

The next option available is Data Trace. The options are Assignments, Fetches,
and Stack. Assignments log all data assignments made to variables or record fields. The
log window in Application Reviewer must be open to log data assignment activity to
a file. Some caution must be used when logging activity. It is possible to generate very
large log files during a PeopleSoft session. Logged traced data assignments are written
to the default file PSDEBUG.log. A typical log window may look like the following:

7
 0 If MY_USER_ID <> %OperatorId Then
>> Begin MY_USER_TABLE.MY_USER_ID-FieldEdit
^^^^^^^^^^ PeopleCode Program Listing End
 396, stop
 377, statement Next=396
 376, pop
 364, builtin - MessageBox #Parms=6
 348, fetch MY_USER_TABLE.MY_USER_ID
 298, push User id %1 not in system as an
 274, push 1
 251, push 20001
 234, push Verify
 212, push 289

Navigation: Application Reviewer → Options → Log

Figure 18.17

PeopleCode log options

Licensed to James M White <jwhite@maine.edu>

410 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

 202, branch <> 377
 180, push 0
 164, fetch Builtin - %SqlRows
 152, br False 377
 140, builtin - SQLExec #Parms=3
 126, push &OPRID (temp #0)
 112, push MY_USER_TABLE.MY_USER_ID
 60, push Select 'x' from PSOPRDEFN whe
 52, branch = 377
 36, fetch Builtin - %OperatorId
 20, fetch MY_USER_TABLE.MY_USER_ID
 1, statement Next=377
 0, start Field=MY_USER_TABLE.MY_USER_ID-FieldEdit Temps=1 Stack=6
vvvvvvvvvv PeopleCode Program Listing:

The panel activity is displayed in the log window. To write the contents to a file, a
File Save operation is required before closing the Application Reviewer. Depending
on the log options set, a significant amount of information is stored in a trace log file.
Some of this information requires further interpretation.

A log file can be viewed using an ASCII text editor such as PFE. The components
in a log file include

• line number in the file
• internal tracing reference numbers
• address of instructions in a program
• operation code
• operation operands represent information used by each operation

The operation code and operation operands work in conjunction with one
another and are available to the list and trace options. The operation code refers to the
internal operation performed by the program. The operand is the value required by
the specific operation. Some operation codes and operands used in the preceding code
example are as illustrated in table 18.1:

Table 18.1 Operation codes and operands

Operation Operands Description

Start identifies the beginning of a PeopleCode program

Push constant pushes the operand into the stack

BR True location This instruction works with the internal program stack. It checks the
current item on the stack for a Boolean return value. When the value
is True, program control is transferred to the operand location.

Branch location Program control is transferred to the operand location. No return
value is tested.

Fetch Record.field retrieves a record field value and pushes it onto the stack

BR False location works with the internal program stack (It checks the current item on
the stack for a Boolean return value. When the value is False, pro-
gram control is transferred to the operand location.)

Licensed to James M White <jwhite@maine.edu>

SEARCH IN PEOPLECODE 411

We can use the information in table 18.1 to examine selected log file entries
found in the preceding code example.

18.4 SEARCH IN PEOPLECODE

Application Designer contains a search facility that can be used to look for strings
contained in PeopleCode programs. Search can be performed against record
PeopleCode, menu PeopleCode, or both. The search can be tailored to look in a spe-
cific record or several records. The search can also be used to search all PeopleCode
programs. When searching for an exact string a Match Case option exists. The results
are sent to a search output window, with the additional option of sending the output
to a file. To begin searching, select Edit → Find in PeopleCode from the menu.

The dialog box (figure 18.18) is used when searching the entire database for the
MessageBox string. Searching the entire database is necessary when no additional
information is known about the location of the PeopleCode string. Clicking on the
Define List button can be used to narrow a search. This produces the Define Search
List window (figure 18.19) where the number of records or menus to search can be lim-
ited to specific records or prefixes. Using this feature produces more efficient results.

BuiltIn Function
#Parameters

executes the specified function
represents the number of parameters

Call DLL calls a routine stored in a Dynamic Link Library

Internal function calls an internal PeopleCode function

External function calls an external PeopleCode function stored in record.fieldname

Error halts the PeopleCode program

Exit exits the PeopleCode program

Return returns control to the next higher level program

Store record.field stores the top stack item into the operand record field

Stop identifies the end of a PeopleCode program

Pop Removes top item from the stack

Line # Details of operation performed

348 The Fetch Operand retrieves the record.field operand and pushes it onto the stack. In
this example, the record.field is MY_USER_TABLE.MY_USER_ID

298 The Push statement is used to move the constant to the stack.

202 The branch <> statement compares the two top items on the stack. In this example,
control is passed to line 377. This specifies the location of the next statement, which is a
Stop operation.

Table 18.1 Operation codes and operands (continued)

Operation Operands Description

Licensed to James M White <jwhite@maine.edu>

412 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

The search can be narrowed to a
specific record key—in this example,
record names that begin with MY_. A
list of available records containing MY_
as the record name prefix is used. The
selected records are moved to the left
side of the dialog box. Clicking OK
closes the Define Search List dialog.
The Find button is then pressed, and
the search begins. The status is dis-
played in figure 18.20.

When a search list is not specified,
the search may run for several minutes,
depending on the number of records
searched. A search which specifies a list
containing many records may also
require additional time. Pressing the
Cancel button while performing a
search can stop the search process.

The search results are displayed in
the Find in PeopleCode output win-
dow. The results of the search can also
be sent to a file for later viewing. This
can be done by clicking the “Export to
File” checkbox in the Find in
PeopleCode dialog box.

Navigation: Application Designer → Edit → Find in PeopleCode

Figure 18.18

Find in PeopleCode dialog box

Figure 18.19 Define Search List dialog

Figure 18.20 Search status

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE TRACE 413

18.5 PEOPLECODE TRACE

PeopleCode Trace is another tool used for debugging. Trace produces an output file
defined in the trace page of Configuration Manager. Two methods of producing a Peo-
pleCode Trace file exist: the Trace PeopleCode menu option and the SetTracePC
Function.

18.5.1 Trace PeopleCode utility

The Trace PeopleCode feature enables the tracing of PeopleCode programs using pre-
set options in the Trace PeopleCode panel.

The illustration in figure 18.21 identifies how several trace options can be set
before beginning a Problem Tracking panel session. The trace file is a standard text
file that can be opened and read with a file editor such as PFE or Notepad. The trace
file contains the operation codes and operands generated by the program. The file is
similar to the log file discussed in the Application Reviewer section. There is good rea-
son for this similarity: the trace utility can be replaced by the Application Reviewer
trace without losing trace option functionality.

A second trace method is the SetTracePC function. This function helps control
PeopleCode Trace settings from one or more PeopleCode programs.

Navigation: Utilities → Use → Trace PeopleCode

Figure 18.20 Trace PeopleCode utility

Licensed to James M White <jwhite@maine.edu>

414 CHAPTER 18 PEOPLECODE DEBUGGING TOOLS

18.5.2 SetTracePC

The SetTracePC function controls PeopleCode Trace, based on parameter values
passed to the function. The function takes one parameter, which represents the trace
settings used in producing the output trace file. If multiple trace options are required,
each option number is added, and the sum is passed to the SetTracePC function.

SetTracePC produces a file named DBG1.tmp in the Windows Temp direc-
tory. We can specify a unique name if necessary and this can be done from within the
configuration manager trace option. The Set Trace options are as follows:

Based on the values identified in table 18.2, a statement using SetTracePC can
be written as follows:

&OPTION_VALUE = 14;
SetTracePC(&OPTION_VALUE);

In the example, the option value passed to SetTracePC generates a file containing
the following:

• Program listing +2
• Results of variable assignments +4
• Values of variables fetched +8

At this point, we have a better understanding of how to use PeopleCode program
debugging tools.

Table 18.2 SetTrace PC options

Value Option description

1 This option traces the program that is executed. It includes options 64, 128 and 256 spec-
ified below.

2 Lists the entire program.

4 Displays the outcomes of assignments made to variables.

8 Identifies the values retrieved for all variables.

16 Identifies the contents used in the internal stack.

64 This trace option identifies when each program is started.

128 Identifies the calls made to external PeopleCode routines.

256 Identifies the calls made to internal PeopleCode routines.

512 Displays the value of parameters passed to a function.

1024 This option displays the values of parameters at the conclusion of a function call.

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE TRACE 415

KEY POINTS

1 WinMessage is a function which can be used to help in debugging by dis-
playing the contents of variables and record fields. WinMessage can be
used in any PeopleCode event provided only one button exists in the mes-
sage box.

2 The Application Reviewer is a key tool used in debugging PeopleCode pro-
grams. With Application Reviewer we can set breakpoints and examine the
results of PeopleCode statements and function calls. The value of record
fields and variables can also be displayed.

3 The Application Reviewer can be used to identify local and global variables.

4 Trace options in Application Reviewer can be applied to program execu-
tion, data, and function calls.

5 Search PeopleCode is an Application Designer tool that enables the search
of strings contained in PeopleCode programs. The search can be done
across the entire database or against specific records.

6 PeopleCode Trace is a utility that can also trace PeopleCode programs. It
produces a report and can be initiated from the Utilities menu option or
from within a PeopleCode program using the SetTracePC option.

Licensed to James M White <jwhite@maine.edu>

416

C H A P T E R 1 9

PeopleCode—
PeopleSoft 8

19.1 File object 417
19.2 SQL object 418
19.3 Associating PeopleCode with panel

groups 419

19.4 Enhanced scroll functions 420
19.5 Array class 422
19.6 PeopleCode Debugger 423

With release 8 of PeopleTools and, more specifically, PeopleCode, we have vast
amounts of new knowledge to acquire. In regard to PeopleCode, features in release 7.5
are not lost. Backward compatibility and the integration of new PeopleCode function-
ality enables PeopleCode to work with features available in release 8. Release 8 con-
tains key enhancements to the PeopleCode language and the environment in which
these new tools are used.

In this chapter, we briefly discuss some new items which make the development
and implementation of PeopleCode more exciting and challenging than ever before.
As the World Wide Web becomes a major player in business and personal use,
PeopleCode is there with Web Client and Internet Client design.

An attempt to list and describe the new features in PeopleCode release 8 would
practically require a small book on its own. Some of the topics selected for this

Licensed to James M White <jwhite@maine.edu>

FILE OBJECT 417

discussion of release 8 were reviewed in previous chapters. This should provide the
reader some perspective between releases 7 and 8. PeopleCode release 8 is also very
object oriented. As a result, the File and SQL objects are briefly illustrated. Additional
topics include new panel events, enhanced scroll processing and working with arrays.
In release 8, a tool that we will use at one time or another is the PeopleCode Debugger.
The debugger includes increased functionality and can be entered directly from the
Application Designer.

19.1 FILE OBJECT

One of the more important features in PeopleTools 8 is PeopleCode object syntax.
Standard classes and the use of dot notation enable us to access functions and objects
contained in these classes. The use of object syntax allows PeopleCode to execute in
Application Engine programs not linked to panel groups. This signals a move away
from the relationship between PeopleCode and panel groups. PeopleCode can now
be written so that it is run in a stand-alone mode. This C++ type syntax also contains
classes comprised of methods (which are the functions contained in a class). One
such class is the File class, which contains methods (functions) and properties (fields)
that can be used to open, read, and write to external or “flat” files. If you are a C++ or
Visual Basic developer, you’ll appreciate these classes.

To define a File object, the statement can be coded as:

Local File &MyTextFile;

This example creates a file object named &MyTextFile, which is a pointer to an
object that contains file-handling methods. Because the variable is a pointer, the file
object is passed by reference to PeopleCode functions and methods. Now, let’s assign
the File object an address of a file contained on a floppy disk:

&MyTextFile = GetFile (a:\”Interface.txt”, “R”);

The statement calls the GetFile function used to create a new instance of a file
object based on the File class. The function links the file object with an external file
and then opens the file Interface.txt. After the file is opened, additional methods con-
tained in the File class can be used to read from or write to the file. In the example,
the second parameter passed to the GetFile function represents the mode in which
the file is read. An “R” indicates the file is opened for Reading.

We now wish to read the file into a string using the ReadLine method.
ReadLine is a File object-associated method that reads a line of text from the file
object. In the following example, text is read into the string &Interface_Record
and passed to an external PeopleCode function named ProcessInterfaceData:

Local String &Interface_Record;
While &MyTextFile.ReadLine(&Interface_Record);

Licensed to James M White <jwhite@maine.edu>

418 CHAPTER 19 PEOPLECODE—PEOPLESOFT 8

 &RETURN_VALUE = ProcessInterfaceData(&Interface_Record);
End-While;

To close and unlink the file object &MyTextFile from the external file Interface.txt, we
can use the Close method, which frees up all resources connected with the file object:

&MyTextFile.Close();

19.2 SQL OBJECT

Earlier releases of PeopleCode used the SQLExec statement to perform database
operations such as Select or Update. For release 8 of PeopleTools, SQL definitions
can be created in the Application Designer and can subsequently be used as SQL pro-
grams. Components of the SQL statements can subsequently be re-used. In
PeopleCode 8, programs can now access SQL definitions through the SQL class.
While the SQLExec function can still be used in release 8, the SQL class has added
functionality which enables multiple rows to be selected. When performing a
Select using SQLExec, the function only selects the first row. The SQL class is sim-
ilar to SQLExec because it supports bind values and output variables.

The following example defines an SQL object named &MySQL. The CreateSQL
statement is used to create an instance of an SQL object, which is opened based on
the values passed in the SQL string.

CreateRecord is a method associated with a Record object. Data rows will be
selected from the record in this example:

/* Define SQL and Record objects */
Local SQL &MySQL;
Local Record &MyRecord;

&MyRecord = CreateRecord(Record.MY_LOCATIONS);
&MySQL = CreateSQL (“%Selectall (:1) where SETID = :2 and OPRCLASS = :3”);

Our next step is to execute the SQL statement of the object &MySQL. This statement
Selects from the record MY_LOCATIONS and loads the corresponding fields into
&MyRecord, which is an object of MY_LOCATIONS:

/* Execute the attached statement */
&MySQL.Execute (&MyRecord, &SETID, &OPRCLASS);

The next statement is Fetch, which is a method associated with an SQL object. The
Select statement in the preceding example retrieves the rows, based on the value of
bind variables supplied during execution of the statement. The following Fetch
operation retrieves each subsequent row processed by the Select statement associated
with &MySQL objects.

Licensed to James M White <jwhite@maine.edu>

ASSOCIATING PEOPLECODE WITH PANEL GROUPS 419

/* Fetch from the select row */

If &MySQL.Fetch(&MyRecord) Then
 ProcessMyLocationRecord(&MyRecord);
 End-if;

After data rows have been processed, it is necessary to close the SQL statement. The
Close method associated with an SQL object disconnects &MySQL from the
Select statement. The Close statement is illustrated as follows:

/* Close the SQL object */
&MySQL.Close();

19.3 ASSOCIATING PEOPLECODE
WITH PANEL GROUPS

Some PeopleCode used throughout this book—more specifically, the programs con-
tained in fields shared between two or more panels—may contain statements which
identify the panel name. These statements are executed before any processing is per-
formed. The code used by a particular panel must first be prefixed with an If
statement:

If %Panel = "MY_LOCATIONS" Then
/* Statements associated with this panel */
End-if;

The preceding code is associated with specific functionality for the panel only. A sim-
ilar If statement, related to another panel with a different set of statements, can also
reside in the same record field event. This approach works but is usually not efficient,
particularly in terms of record reusability. In release 8, PeopleCode can be linked to
panel groups and the elements that make up a panel group such as panels, panel
records, and panel fields. The PeopleCode associated with panel groups and their cor-
responding components include:

• Panel group record field PeopleCode
• Panel group record PeopleCode
• Panel group PeopleCode
• Panel PeopleCode
• Panel field control PeopleCode

This type of PeopleCode is only available from a panel group definition and the
events for the specific panel group components. Panel group record field PeopleCode
is different from record field PeopleCode because the former is associated with record
fields which exist on a panel group and its related events. Panel group PeopleCode is
not available from a record definition; it can only be retrieved through a panel group’s
structure. An example of a panel group structure and corresponding panel group
record field PeopleCode is illustrated in figure 19.1.

Licensed to James M White <jwhite@maine.edu>

420 CHAPTER 19 PEOPLECODE—PEOPLESOFT 8

Panel groups contain several new events associated with panels and panel groups.
The events are Activate, PreBuild, and PostBuild.

19.3.1 Activate event

When a panel is initially displayed the Activate event is triggered. The event is also
generated when tabbing between panels contained in a panel group. PeopleCode
which resides in this event is specific only to the panel and can include some of the
functionality related to panel display, such as Hide and UnHide. Each panel contains
its own Activate event. PeopleCode in this event can only be linked to panels.

19.3.2 PreBuild

PreBuild PeopleCode is related to panel groups only and is triggered before the
remaining panel group build events are executed. PeopleCode in this event can be
used to hide or unhide panels.

19.3.3 PostBuild

PeopleCode in this event is triggered after the other panel group build events have
been generated. Programs in this event are linked to panel groups only and can be
used to set panel group variables.

19.4 ENHANCED SCROLL FUNCTIONS

In chapter 16, we learned how to implement PeopleCode scroll functions such as
ScrollSelect and RowScrollSelect. In release 8, the new Rowset class can
be used to work with ScrollSelect or RowScrollSelect using the class meth-
ods, Select and SelectNew. These class methods enable the PeopleCode program
to control the selection of data into panel scroll areas. Select and SelectNew are
used with a Rowset, which is equivalent to a scroll area. The level zero area of a
panel is also the level zero Rowset. The level zero Rowset also contains data in the
panel buffers. In chapter 16, we learned about parent and child relationships.

Figure 19.1

Panel group record field

PeopleCode from the panel

group structure

Licensed to James M White <jwhite@maine.edu>

ENHANCED SCROLL FUNCTIONS 421

Release 8 uses child Rowsets controlled by a higher level Rowset known as the par-
ent Rowset. The process of selecting into Rowsets also includes child Rowsets
when autoselect is enabled. Child Rowsets, however, are processed in a manner sim-
ilar to RowScrollSelect and utilize a WHERE to limit child Rowsets to that of
the parent Rowset.

19.4.1 Using Select

The Select method associated with a Rowset class is used to retrieve rows from an
SQL table or view. The record definition of the SQL table or view from which rows
are retrieved is referred to as the select record. The top level Rowset containing the
PeopleCode which executes the Select is referred to as the default scroll record.
Select automatically positions child Rowsets under the corresponding parent row
executing the method. As with ScrollSelect and RowScrollSelect, Select
also accepts an optional SQL string which can include a WHERE block used to limit
the rows into the scroll area.

Let’s apply the Rowset class and its corresponding Select method to the
level 2 ScrollSelect example presented in chapter 16.

The first step creates an instance of a record object named
&MY_LOCATIONS_REC and a Rowset object, based on the MY_LOCATIONS
record. The PeopleCode is shown as follows:

Local Record &MY_LOCATIONS_REC;
Local Rowset &MY_LOCATIONS;

The next step (illustrated following) uses GetRecord to create a record object which
references the MY_LOCATIONS record. The GetRowSet method is used to create a
Rowset object and the current MY_LOCATIONS row.

&MY_LOCATIONS_REC = GetRecord(RECORD.MY_LOCATIONS);
&MY_LOCATIONS = GetRowSet (SCROLL.MY_LOCATIONS);

The Select method is implemented using the child Rowset MY_LOCATION_EMP,
which is passed as the first parameter to the Select method. The next parameter is
the select record represented by the view MY_LOC_EMPL_VW. The new Meta-SQL
function %KeyEqual extends into a conditional phrase that can be used in the
WHERE clause. When more than one key exists in the record, the phrase will include
an AND for each of the record keys. %KeyEqual performs the task of automatically
applying the Meta-SQL functions %Datein(), %TimeIn() and %DateTimeIn(),
based on the data type of the field. When the value is a string it will be enclosed in
quotes. A NULL value will be replaced with "IS NULL". The bind variable (:1)
passed to %KeyEqual is the record object &MY_LOCATIONS_REC.

&MY_LOCATIONS.Select (SCROLL.MY_LOCATION_EMP, RECORD.MY_LOC_EMPL_VW, "WHERE
%KeyEqual(:1)", &MY_LOCATIONS_REC);

Licensed to James M White <jwhite@maine.edu>

422 CHAPTER 19 PEOPLECODE—PEOPLESOFT 8

NOTE SelectNew behaves like Select except that SelectNew marks
records as new.

19.5 ARRAY CLASS

The PeopleCode Array class enables the definition of array objects without necessarily
specifying a fixed size. The array size expands and contracts based on whether data are
added to or removed from the object. A simple array can be declared as:

Local Array of String &MyStringArray;

Multi-dimensional arrays can also be specified. A two-dimensional array comprised
of numbers can be declared as:

Local Array of Array of Number &MyNumberArray;

Referencing elements in an array can be accomplished using indexes. The array
&MyStringArray can be referenced as follows:

&String_Element = &MyStringArray[5];

19.5.1 Populating an array

An array can be populated several ways. On method uses CreateArrary when the
array is initially created and can be written as:

&MyStringArray = CreateArray(“String 1”,”String 2”,“String 3”);

An array can also be populated by assigning values to the individual array elements:

&MyStringArray = CreateArray();
&MyStringArray [1] = “String 1”;
&MyStringArray [2] = “String 2”;
&MyStringArray [3] = “String 3”;

Push is a method associated with an array class:

&MyStringArray.Push(“String 1”);
&MyStringArray.Push(“String 2”);
&MyStringArray.Push(“String 3”);

Unshift is another method associated with an array class. It can be used to add
items to the beginning of the array:

&MyStringArray.Unshift (“String 1”);
&MyStringArray.Unshift (“String 2”);
&MyStringArray.Unshift (“String 3”);

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE DEBUGGER 423

19.5.2 Removing items from an array

Two methods associated with an array class include Pop and Shift. To select and
remove array items from the end of an array using Pop, the code can be written in the
following manner:

&String_Field = &MyStringArray.Pop();

In the preceding example, the value of &String_Field is “String 3” after using
the Pop method.

The Shift method can be used to select and remove items from the beginning
of an array:

&String_Field = &MyStringArray.Shift();

Because Shift targets the beginning of an array, the value of &String_Field is
“String 1” following execution of the Shift method.

19.5.3 Using an array in a loop

A basic PeopleCode For loop can be written to reference the values in an array. A
numeric data element can be utilized as an index to reference array items. The code
can be written as follows:

For &I = 1 to &MyStringArray.Len;
 &String_Field = &MyStringArray [&I];
End-For;

Len is an array class property that represents the current number of items in an array.

19.6 PEOPLECODE DEBUGGER

The PeopleCode Debugger, formerly known as Application Reviewer, offers increased
functionally and simplicity of use. In release 7, the Application Reviewer is entered
using Go → Application Reviewer. Now, the PeopleCode Debugger is included in
the Application Designer. A panel group can now be started, and the PeopleCode
Debugger can be entered from Application Designer. Alternatively, another panel
group can be entered and automatically run in debug mode.

19.6.1 Improved visual support

In chapter 18, we saw how Application Reviewer enables breakpoints to be set so that
PeopleCode statements can be tracked. The PeopleCode Debugger includes a visual
indicator of breakpoints and an arrow that identifies the current line of code. Figure 19.2
shows an arrow which illustrates how the current line of code is identified, .1

Licensed to James M White <jwhite@maine.edu>

424 CHAPTER 19 PEOPLECODE—PEOPLESOFT 8

 The PeopleCode Debugger also visually identifies breakpoints using indicators
as shown by in figure 19.3.

 Another great feature of the PeopleCode Debugger is referred to as “Hover
Inspect.” This feature enables the visual inspection of simple variable or field contents
displayed in a pop-up window. An example of using Hover Inspect is illustrated in
figure 19.4. The contents of the variable after the data assignment is denoted by .

Figure 19.2 Identification of current line executing

1

1

Figure 19.3 Visual indicator of breakpoint

1

1

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE DEBUGGER 425

Variables can now be viewed from different windows based on the type. These
variable types and their associated window include Local, Global, Panel Group, and
Parameter. The Parameter window can be used to view user-specified parameters
included in function calls. An example of a Local variable window is shown in
figure 19.5.

 The visual representation of objects can be extended to display the object prop-
erties. The “+” convention is used and appears next to the variable name. The example
in figure19.5 identifies Rowsets at several levels. The level 1 Rowset is expanded

Figure 19.4 Using Hover Inspect

1

Figure 19.5 Local variable window

Licensed to James M White <jwhite@maine.edu>

426 CHAPTER 19 PEOPLECODE—PEOPLESOFT 8

(figure 19.6) to reveal properties that comprise the Rowset. Some properties include
Effdt, Name, and ActiveRowCount.

Field object values are listed under the value column when viewed in the debug-
ger. The field value can now be viewed without having to navigate to the value prop-
erties. Figure 19.7 illustrates how the PERSONAL_DATA record and its associated
fields can be viewed.

Figure 19.6 Expanded Rowset object

Figure 19.7 Viewing record field values

Licensed to James M White <jwhite@maine.edu>

PEOPLECODE DEBUGGER 427

19.6.2 Additional options

Additional options which can be selected after the debugger is running include:

• Exit Debug Mode
• Abort Running Program
• Edit Breakpoints

The Exit Debug Mode option automatically saves all breakpoints before leaving
debug mode. The PeopleCode program currently running can be terminated using the
Abort Running Program option. The Edit Breakpoints option displays a menu iden-
tifying the lines containing breakpoints (figure 19.8).

This menu enables us to remove specific breakpoints or to remove all breakpoints.
The View Code button will display the code containing the breakpoint. The menu also
identifies the line number in the PeopleCode program which contains the breakpoint.

Figure 19.8 Edit breakpoints menu

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

P A R T

Customizing PeopleSoft-
delivered applications

To be recognized as one of the leading contenders in the ERP arena is no small feat. Each
packaged application produced by the ERP vendor must have functionality to accommodate a
wide range of companies with varying business requirements. Some requirements may be dic-
tated by the particular laws of a given state or even country. With the expansion of companies
into the global marketplace, the challenge to provide complete ERP solutions is greater than ever.
PeopleSoft has responded to these challenges and has produced an impressive set of functional
applications in areas such as Finance, Human Resource Management, Manufacturing, and Stu-
dent Administration. These applications may provide customers with all the functionality they
need right-out-of-box. This is known as running plain “vanilla” PeopleSoft. Some companies,
especially the larger variety, are inundated with rules, regulations, and requirements unique to
their businesses. These companies are faced with a decision: to either re-engineer their business
processes or customize the PeopleSoft applications. The philosophies and perceptions toward
customization vary. Some companies avoid customization at all costs while others embrace the
opportunity. In many cases, you will find no other alternative exists but to customize the deliv-
ered applications.

PeopleSoft provides a full set of tools to create and manage these customizations. We discuss
these tools in detail while providing information on the customization process, project manage-
ment, and software upgrades. The reader can follow along with sample customizations while
maintaining a project that contains all of the modified objects. Through the use of PeopleTools,

4

Licensed to James M White <jwhite@maine.edu>

430

customers are also afforded the opportunity to create application extensions and sub-
systems which provide increased functionality while having relatively little impact on
upgrades. It is always in your best interest to fully understand the impact and man-
agement of customizations to get the most out of PeopleSoft.

Licensed to James M White <jwhite@maine.edu>

431

C H A P T E R 2 0

“Vanilla” vs. customized
20.1 What is customization? 431
20.2 Upgrade considerations 433
20.3 Identifying objects for customization 437
20.4 Performing an upgrade 438

20.1 WHAT IS CUSTOMIZATION?

As you’ve seen in the previous chapters, PeopleSoft delivers a great suite of tools that
are simple to use and that allow for speedy development cycles. Some of our readers
are probably anxious to start the development and customization using PeopleTools.
But is this always necessary? And what kind of considerations should we always keep
in mind?

All of us in the PeopleSoft world have probably heard the frequently used term
“Vanilla.” Strictly speaking, this means no customizations are allowed to the delivered
system. In a more liberal interpretation, this means you should customize only when
necessary. The perpetual dilemma—to customize or not to customize—remains. Both
approaches present advantages and disadvantages (which we will discuss) but as always
in real life, a reasonable compromise, in most cases, is the best way to go. Our goal
after all is to make the new system functional, convenient, and user-friendly. First let’s

Licensed to James M White <jwhite@maine.edu>

432 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

agree on what is considered a customization, what kind of customizations may be nec-
essary, and what kind of customizations are better to avoid.

A customization is any change to a delivered application. Let’s divide the entire
pool of all customizations into additions to the PeopleSoft-delivered application (or
system extensions); and true modifications to these applications.

Imagine a situation when your old system had a functionality not present in the
PeopleSoft-delivered system. You have the following choices to consider:

• change your company business practice and drop the old functionality
• develop a manual desk procedure to support the old functionality
• create an external (Excel, Access, Visual Basic, and so forth) application that can

interface with the delivered PeopleSoft application
• change PeopleSoft-delivered objects and programs to incorporate the desired

functionality into the delivered application
• develop an addition to the delivered application by creating your own menus,

panels, records, and processes utilizing PeopleTools.

Let’s first briefly characterize each option. Later, we will discuss some of these
alternatives in greater detail.

20.1.1 Changing your company business practice

Often (this is more common to small and midsize companies), management tries to
save on both system development and future maintenance by changing the current
business rules and processes in order to fit the PeopleSoft-delivered system. Generally
speaking, implementing PeopleSoft creates a good opportunity to review current proc-
esses and procedures and bring them up to industry standards. PeopleSoft has done
considerable research and has built systems that are supposed to address all possible
needs of an average company. In reality, not all businesses are able to fully adapt the
delivered applications. The problem is that this “average” company is an abstraction. It
simply does not exist. Real companies have traditions. They may follow unique busi-
ness practices that separate them from other businesses in the industry and (who
knows?) may help them to compete on both labor and primary business markets.
Implementing PeopleSoft-delivered systems already means big changes and a tremen-
dous psychological impact, but it should not also involve cutting off important and
healthy business functionality just because aspects don’t fit the “Vanilla” option.

20.1.2 Developing a manual desk procedure

Can we keep the good old functions and still spare ourselves the development cost?
Let’s make every function that is not available in the delivered system a manual desk
procedure! This may be the perfect approach for seldom-used tasks, but if the func-
tion has to be performed on a regular basis, automation is the way to go.

Licensed to James M White <jwhite@maine.edu>

UPGRADE CONSIDERATIONS 433

20.1.3 Creating a satellite application

with interface to PeopleSoft

Oftentimes, the management realizes that changes are inevitable, but may still insist
on keeping the system “Vanilla.” They may then try to augment the PeopleSoft-deliv-
ered modules with satellite applications using available desktop computing tools such
as Microsoft Excel, Access, and so on. Developing satellite applications just to avoid
any changes to the PeopleSoft system may not always be the best choice. Instead of
maintaining one centralized PeopleSoft system, you may end up maintaining a num-
ber of different applications and interfaces between them. On the other hand, if a sat-
ellite system already exists and has all the functionality that users need, developing an
interface to PeopleSoft may be a good idea.

20.1.4 Changing PeopleSoft-delivered objects and programs

In some cases, changes to the PeopleSoft-delivered objects are absolutely necessary to
suit business needs. This option comes with a hidden price tag. Later in this chapter,
we will discuss in greater detail the considerations you would have to bear in mind to
minimize the impact on a delivered application. The most important consideration is
a future upgrade. What happens when PeopleSoft delivers a new release? Your
changes then have to be merged with the new application release. Some changes may
be straightforward, and others may be more complex. A simple task such as adding a
new field to an existing PeopleSoft table, for example, may be a dangerous exercise. In
the subsequent chapters we’ll discuss what to look for as well as how to minimize
impact on the delivered application.

20.1.5 Developing additions with PeopleTools

If added functionality can be independent of the PeopleSoft-delivered system, our
preference would be choice number five: Developing a subsystem by using
PeopleTools. With PeopleTools, you can develop entire subsystems to supplement the
“Vanilla” application while keeping them separate from the delivered application.
Why is it so important to keep new objects isolated from the delivered ones? Well,
one reason is to minimize the impact on future application upgrades. Another reason
is to prevent changes made to the application from interfering with the delivered
PeopleSoft application.

20.2 UPGRADE CONSIDERATIONS

What is an upgrade to a new PeopleSoft release, and why should this be an important
consideration when making changes to the delivered application?

We all know that software applications constantly go through upgrades, improve-
ments, and even total restructuring and redesign to be competitive, but how do these
changes affect customizations? Usually, a good software package makes its releases back-
ward-compatible. The problem is that PeopleSoft not only delivers software develop-
ment tools, it also delivers an entire suite of applications. In addition, PeopleSoft

Licensed to James M White <jwhite@maine.edu>

434 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

usually delivers a new major PeopleTools and application release once a year. Some-
times, a PeopleTools release is delivered twice a year in order to compete with other
software companies. PeopleSoft has a strict schedule that you would have to follow in
order to keep your software package current and be supported by PeopleSoft.

It is important to understand the concept of upgrade procedure in order to make
good and educated decisions on customizations.

PeopleSoft did its best to develop good tools that are designed to perform upgrades
to new releases. Nevertheless, the process of upgrades remains cumbersome. The most
difficult part of the upgrade process is usually comparing the currently used application
to the base application of the same release and to the new release of the application.
Even though the compare programs will identify the differences for you, you still have
to go over every change and decide—and this is an extremely important decision—
whether to carry a change over to the new release, drop the change, or merge the change
with the PeopleSoft changes. This last option is the most difficult. It happens when the
changes to the object are done by both you and PeopleSoft.

All in all, the fewer changes you make to the delivered application, the less time
required to perform an upgrade.

Although a detailed discussion of all steps involved in a release upgrade is not in
the scope of this book, we want to describe ways to make the maintenance of
PeopleSoft applications easier.

Rule 1. When performing system modifications, document every change. For example,
if you have changed an existing Record definition or created a new one, put your ini-
tials, Date/Time stamp, type of modifications (New, Change), and a brief explanation
in the comments section (figure 20.1).

Figure 20.1

Documenting a change

in the record properties

1

2

Licensed to James M White <jwhite@maine.edu>

UPGRADE CONSIDERATIONS 435

The record has a prefix of MY_ to identify a customization.

The header specifies the initials, the Date/Time of customization, the modification
type, and the short description.

Always insert extensive comments when changing PeopleCode programs. It is a
good idea to develop a standard change header and use it all the time when performing
customizations. It should include the developer’s name, date/time, reason for change,
and any other useful information. Developers must also put in trailers to mark the end
of any changes they have made when customizing PeopleCode or any other program
(figure 20.2).

The header marking the beginning of PeopleCode customizations.

The trailer marking the end of PeopleCode customizations.

When you prefix changed objects with certain characters, such as your company
name or abbreviation, you can easily identify all the changes you or your colleagues
have ever made. You can use any prefix letters that suit your needs.

In our Problem Tracking application developed in part 2, we used the prefix MY_
to identify all custom records, fields, panels, and so on. A new record definition may
include both the existing and custom fields. Hence, if you prefix all custom fields, you
can identify the changes immediately.

Rule 2. Use a prefix to identify your custom objects. For example, in figure 20.3 you
can see that we named our custom record as MY_APPLCTN_TBL and the custom field
as MY_APPLICATION_ID. The other two fields in this record are PeopleSoft-deliv-
ered fields (figure 20.3).

1

2

Figure 20.2 Documenting PeopleCode changes

1

2

1

2

Licensed to James M White <jwhite@maine.edu>

436 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

Prefix “MY” is used to identify custom record

Prefix “MY” is used to identify custom field.

Carefully examine the change requirements and always consider different ways to
accomplish the customizations. If there is a way to isolate the changes, consider mak-
ing them an addition to the system rather than changing the delivered system.

Let’s suppose a user requests that a new field be added to an existing panel. As a
PeopleSoft developer, you know that the related record may have to be modified as
well. Be careful. A simple change like this can sometimes lead to major problems once
a new version of PeopleSoft is released. Consider a situation when you just need to add
one custom field to an existing record definition. During an upgrade to a new
PeopleSoft release, you would have to add this field to the Record definition and alter
the table. But this is not the only thing you would have to consider. What if the new
release includes an SQR or COBOL program that uses the same table and inserts a
record into this table? Since all fields in PeopleSoft tables (except date fields) are defined
as NOT NULL fields, the SQR or COBOL program delivered by PeopleSoft will result
in the following database error: 'Inserting a NULL value to a column where
NOT NULL specified'. Here’s why: When the above-mentioned program inserts a
record into the modified table, it does not know anything about your modifications.
As a result, the program only inserts the values into the specified table columns, causing
the database engine to insert NULL values into the custom columns. To avoid this

Figure 20.3 Using a prefix to identify custom objects

1

2

1

2

Licensed to James M White <jwhite@maine.edu>

IDENTIFYING OBJECTS FOR CUSTOMIZATION 437

problem, you have to search all programs for any possible inserts into the changed table
and modify the programs as necessary.

Another way to perform the same changes is to create a new custom record and
add a custom panel to an existing panel group. In this case, the initial work requires
more effort, but later during the upgrade you only need to be concerned with adding
another panel to the panel group. Is this the recipe for all customizations? Not neces-
sarily, because every particular case may have its own twists and each should be con-
sidered individually. If, for example, you have simple panel changes to apply, it may
make more sense to perform modifications in place. In this case, you can take advan-
tage of the Upgrade Compare process that identifies the changes you performed. (We
will discuss all of these and more in the subsequent chapters.)

Rule 3. Add rather than modify when you need to perform extensive changes to the
delivered system.

If you are utilizing PeopleSoft-delivered fields, don’t change their properties.
Changing field properties may affect all other objects where the field is used. If you
cannot find existing fields with characteristics that you need, you are better off creating
new ones.

Rule 4. Do not change properties of PeopleSoft-delivered fields.
Avoid moving fields around in panels just for cosmetic reasons. Even if you just

click on a panel field and move it inadvertently and then save the panel, the system
considers this a change, and reports it during the upgrade, thereby adding to the
upgrade effort.

Rule 5. Do not move fields in delivered panels just for cosmetic reasons.
The next and final rule is simple and obvious.
Rule 6. Never delete any fields from delivered records or panels. You can always use

PeopleCode to hide fields in panels, if necessary.

• document every change
• use prefix letters to identify your custom objects
• add rather than modify when you need to perform extensive changes to

the delivered system
• do not move fields in delivered panels just for cosmetic reasons
• never delete any fields from delivered records or panels

20.3 IDENTIFYING OBJECTS FOR CUSTOMIZATION

PeopleSoft allows you to modify the existing system. The important questions to ask
are “what are the objects that have to be modified?” and “what is the best way to per-
form the modifications?” As we have already discussed in the previous chapter, you
should always keep upgrade considerations in mind. At the same time, you should
think of other implications, such as development time, ease of maintenance, possible

Licensed to James M White <jwhite@maine.edu>

438 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

impact on response time, panel design constraints, coordination with other sub-
systems, and so on.

In order to customize a PeopleSoft-delivered application, you need to identify all
objects that will be impacted by your changes. Since in real life there are usually several
approaches to the same task, we will present different methods of customization in the
next chapters, discussing the pros and cons of each approach.

You’ve already learned that a simple request to add a field to a panel may not be
as simple as it appears at first glance. Therefore, when you are getting a request or even
a simple question about what will be involved in the customization, do not rush to
reply. Gather requirements and assess the situation by looking at the objects involved.
Consider all the alternatives and select the most appropriate one. Depending on the
method you selected for your customization, there may be one object or a multitude
of objects that have to be customized.

Also, while deciding on the best way of customization, do not forget about the
major constraint in PeopleSoft panel development: you cannot have multiple records
within the same scroll bar. The only exceptions are fields from Derived/Work records
and the related display fields. Based on your specific requirements, you may need to
add another panel to your existing panel group.

In subsequent chapters, we will present examples of the most frequently used cus-
tomizations. We’ll not only discuss those examples, we’ll customize the delivered
PeopleSoft application using real life situations.

20.4 PERFORMING AN UPGRADE

When performing customizations to PeopleSoft-delivered applications, knowledge of
the upgrade process is crucial. A good understanding of the long-term consequences
of a particular change to the delivered system puts you in a better position to make a
more intelligent decision on how customizations should be performed.

Let’s highlight some important upgrade concepts and demonstrate them on sim-
ple examples. (Please refer to the PeopleSoft-delivered technical documentation and
to the upgrade instructions when performing an upgrade process.)

First, to avoid any confusion in the upgrade’s terminology, let’s take a look at the
PeopleSoft’s definitions of different types of upgrades.

PeopleSoft categorizes upgrades into three types: PeopleTools upgrade, Application
upgrade, and Customization upgrade.

During the PeopleTools upgrade, you move to a new PeopleTools release. This
type upgrade requires installing new software and usually involves upgrading
PeopleTools database objects. PeopleSoft provides database scripts to perform this
type upgrade, which also involves copying new executables and dynamic link libraries
delivered by PeopleSoft.

During the Application upgrade, you move to a new PeopleSoft application release.
It can either be a minor application release upgrade or a major application release

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 439

upgrade. Periodically, PeopleSoft delivers application updates and fixes that you'll need
to apply to your database. You use the Data Mover tool to import update projects into
a stand-alone, application update database (AUDB). After that, you copy the objects into
your database using Application Designer. PeopleSoft always provides the documenta-
tion (associated with a particular fix or update) that you need to follow. For the latest
information on updates and fixes for PeopleSoft products, you should check the updates
and fixes database in Customer Connection at www.peoplesoft.com.

When you need to migrate your newly developed or customized PeopleSoft
objects from one database to another (for example, from development to production),
you are performing the Customization type of upgrade within the same release level.

The aforementioned upgrades are performed differently, depending on the type
of upgrade (PeopleTools, Application, or Customization) and the level of your current
and the future releases.

Usually, however, you’ll go through the following steps while performing any
type of upgrade:

• Populate a project As discussed in part 2 of this book, a project is a set of
records, panels, fields, and other objects grouped together to help you in applica-
tion development, customization, and upgrade. A project is populated either
manually while performing a customization or automatically by the Upgrade
Compare and Report process.

• Perform a comparison Execute the Compare and Report process. Depending on
the Compare Type you select, this process either compares objects in your
project to the corresponding objects in your target database or compares all
objects in your source and target databases and repopulates your project.

• Change or verify the upgrade settings The system assigns the default settings for
each object in your project for the source and target databases based on the result
of comparison. You can specify whether or not to upgrade each object by chang-
ing the object’s Upgrade flag.

• Perform a copy Execute the Upgrade Copy process to copy objects from the
source database to the target database or delete objects in the target database.
Only objects with the Upgrade flag set to On are added, replaced, or deleted in
the target database.

• Execute any Alter/Create scripts as necessary If your project contains any
records that are specified as SQL tables or views you should execute the proper
SQL scripts to synchronize the underlying database structure with PeopleTools
records and index definitions.

• Stamp the target database The target database is usually “stamped” to indicate
that it has changed from its previous release level. When upgrading to a new
PeopleSoft release, this step is required. The target database should be stamped
with the PeopleSoft release level, specified in the upgrade instructions.

Licensed to James M White <jwhite@maine.edu>

440 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

Let’s illustrate the Customization type of upgrade using a simple example of mod-
ifying a record definition:

Suppose we need to modify our custom MY_COMPANY_TBL record by adding
a custom field, MY_COMP_BUSINESS, to it. Let’s assume that this record was created
as a child to COMPANY_TBL some time ago and already resides in the development,
test, and production databases.

First, we create a new custom field (figure 20.4).

After saving the field, let’s add the new field to a new project by pressing the F7
function key or selecting Insert → Insert Current Object into Project from the Appli-
cation Designer tool bar menu (figure 20.5).

Navigation: GO → Application Designer → File → New → Field

Figure 20.4 Creating a custom field MY_COMP_BUSINESS

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 441

Our next step is to add this field to the MY_COMPANY_TBL record definition.
From the Application Designer menu, select File → Open → Record and type
MY_COMPANY_TBL. After the record is displayed, highlight the field after which you
want the new field to be inserted, then select Insert → Field → MY_COMP_BUSINESS.
Save the record definition and add the modified object to our project by pressing the F7
function key (figure 20.6).

Navigation: Insert → Insert Current Object into Project

Figure 20.5 Adding a new object to a project.

Licensed to James M White <jwhite@maine.edu>

442 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

As you can see from figure 20.6 , all our modified objects are listed in the
Application Project workspace. Let’s save this project as MY_COMPANY_CHG by
selecting File → Save Project As.

Figure 20.6 Adding the modified table to a project

1

1

Figure 20.7 Saving our new project

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 443

Two tabs exist in the Application Designer project panel: the Development tab
and the Upgrade tab. These allow you to work with the project in two different modes.
The Development tab helps you perform operations on objects listed in the project.
It allows you to see the object’s dependencies and lists all the objects by their type. You
can simply double-click on an object in the project workspace to bring the object up
for any further modifications or review.

The Upgrade tab displays all objects available for upgrade from one database
(source) to another (target). Let’s switch from the Development tab to the Upgrade tab
in our project and double-click on the field folder in the Project workspace (figure 20.8.)

Project Workspace. The Upgrade View.

The Upgrade Definition window.

The Upgrade Definition window, which appears in the object workspace, dis-
plays the upgrade options available for the MY_COMP_BUSINESS field. The options
displayed for this particular object are just the default options that have been initially
set by the system automatically. In our example, we have two objects that have to be
migrated to the target database, the MY_COMP_BUSINESS field and the
MY_COMPANY_TBL record. The MY_COMP_BUSINESS field is a custom object

Figure 20.8 Reviewing a project in the Upgrade mode. The MY_COMP_BUSINESS

field default upgrade options.

1

2

1

2

Licensed to James M White <jwhite@maine.edu>

444 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

that we just created. Therefore, it is safe to copy this object to the target database with-
out fear of overlaying any existing objects.

Another object, the MY_COMPANY_TBL record, is an example of an existing
object modification. Let’s double-click on the record and display the record’s upgrade
default options (figure 20.9).

Using this simple example of customizing a record definition, we can demon-
strate all the steps involved in the customization type of upgrade process.

Usually, all customizations and initial testing are done in the development data-
base. The next step is the migration of modified objects to the test database for more
thorough testing. And the last step is the migration of the project that includes all the
changes to the production database. A migration of modified objects from one data-
base to another is considered a Customization type of upgrade.

During the Customization Upgrade, you usually populate a project with the
modified objects and copy the objects from your project to the test and production
databases. Before copying the modified objects, you can execute the Upgrade Com-
pare and Report process to compare all objects in your project with the corresponding
objects in the target database.

Please note that, when executing a Customization Upgrade, it is not always nec-
essary to execute the Compare and Report process. We can run the Compare process
for our record modifications just to verify if this table has been modified by a concur-
rent development while we were testing it in the test database. However, if you have
a strict mechanism for locking the objects before any customization, (which is always
advisable), it may be safe to execute the Upgrade Copy process right away.

Let’s run the comparison process (figure 20.10).

Figure 20.9 The MY_COMPANY_TBL record default options before the comparison

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 445

The system asks us to sign on to the target database (figure 20.11).

After connecting to our test database, we are presented with the Compare and
Report panel, which is a key panel in the upgrade process (figure 20.12). You can find
a multitude of parameters in this panel that we will explain in more detail.

Navigation: Tools → Upgrade → Compare and Report

Figure 20.10 Executing the Upgrade Compare and Report process

Figure 20.11

Log in to the Target database

Licensed to James M White <jwhite@maine.edu>

446 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

In the panel shown in figure 20.12, we see all parameters required for our Com-
pare process. The first thing we need to verify is if the source and the target databases
are specified correctly. In our example, we are comparing the objects in the HRDEV
database to the objects in the HRTEST database.

The Compare Type can be either Project or Database. If a Project comparison is
selected, only the objects in the current project are compared (of the types specified
in the Object Type(s) box). The contents of the project do not change.

When a Database comparison is chosen, all objects selected in the Object Type(s)
box are compared. Unlike the Project type comparison, if you choose the Database
comparison, the contents of the current project are replaced with objects found during
the comparison.

You can specify if you want to compare either by the release common to your
source and target databases or by a particular date. The comparison process labels
objects as Changed or Custom/Changed if they've been changed since the Date/
Time stamp for that release level or since the date that you specify.

Depending on where you execute your comparison process, on Client or Server,
you can select either one or multiple types of objects to compare. If you execute the proc-
ess on Client, you can only select one object type at a time, due to locking constraints.

TIP Execute your Comparison process on Server (set Run Location to
Server) in order to compare multiple objects at the same time. In this
case, you should select more than one object type or select all from the Ob-
ject Type(s) group box .

If you chose to select all object types, you can deselect any unwanted object types
pressing the CTRL key and using the left mouse pointer simultaneously.

Figure 20.12 The Compare and Report panel

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 447

TIP PeopleSoft recommends that you execute the Menu PeopleCode and
Record PeopleCode comparisons either before or after running compari-
sons for other object types. PeopleCode compare can be executed only on
the client.

In our example, we execute the Upgrade type of Customization and compare
only one object type, the record. Therefore, we can run our process on the Client.

The target orientation allows you to select either the PeopleSoft Vanilla orienta-
tion or Keep Customizations option. The target orientation tells the system how to
set the upgrade checkboxes in the Upgrade Definition window for objects that were
last modified by the customer in one database and last modified by PeopleSoft in the
other database. If you select the PeopleSoft Vanilla orientation, the upgrade check-
boxes in the Upgrade Definition window will be set to preserve PeopleSoft's changes.
If you select the Keep Customizations option, the checkboxes will be set to preserve
your changes. We’ll talk more about the target orientation later in this chapter.

TIP During the major PeopleSoft upgrade, set your target orientation to
PeopleSoft Vanilla unless your system is highly customized.

Let’s now execute the Compare and Report process by clicking on the Compare
button. The Upgrade Compare and Report process is initiated. You can verify the sta-
tus of the job on your Process Monitor screen. The process name for the Record type
of compare that we selected is UPGCREC.

NOTE As soon as the process is successfully executed, your project is automatically
saved and closed.

If you open your project again in the Upgrade mode and double-click on the
record in the project workspace window, you can see the online comparison messages
in the lower part of the panel in your output window (figure 20.13). You can also print
the messages by right-clicking in the output window and selecting the Print option.

Are you surprised to see two lines in our Upgrade Definition window after the
record comparison is executed? The Compare process recognized that the
MY_COMP_BUSINESS field is absent in the target database and repopulated our
project with the new MY_COMPANY_TBL. MY_COMP_BUSINESS record field.
Note that this is the only situation in which the Compare and Report process will
repopulate a project during a Project type comparison.

Licensed to James M White <jwhite@maine.edu>

448 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

NOTE When records are compared either during a database or a project compari-
son, any differences found in record fields will be populated into the project.

Why did the process turn on the Upgrade flag only for the second line in our
project? We’ll explain this in the next subsection.

20.4.1 Understanding how the

Upgrade Compare process works

In the Upgrade Compare process, PeopleSoft first compares the object definition in
the source database to the object definition of the target. If it recognizes a difference,
it checks to see if either of these objects had changed since the comparison release.

PeopleSoft tracks the object’s Date/Time stamp (LASTUPDDTTM) value stored in
the PeopleTools System Catalog tables. For example, it stores this value in the
PSRECFIELD and PSDBFIELD tables for our custom field MY_COMP_BUSINESS.
Since we added a new field, MY_COMP_BUSINESS, to these catalog tables, the compare
program identifies the change and marks this field as Custom Changed in our source
database and as Absent in our target database.

Another system catalog table, the PSRECDEFN table, contains the Date/Time
stamp equal to the last time we modified the MY_COMPANY_TBL record definition.
It is stamped by the system only if any of the record properties (such as the record
description, a query search record, a parent record, and so forth.) are modified. Since,
in our example, we have not modified any of the record properties, the system is not

Figure 20.13 Viewing the results of the Record Comparison

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 449

going to update the PSRECDEFN table in the target database and, therefore, the first
line in figure 20.13 has not been marked for upgrade.

Please refer to appendix C of this book for a list of the PeopleSoft System Catalog
tables. A familiarity with these tables will definitely help you to understand the
PeopleSoft system from inside and will no doubt make you a better developer.

Another important component of the compare process is the release date/time
value for the comparison release level. This value, RELEASEDTTM, is stored in another
PeopleSoft table, PSRELEASE.

PeopleSoft then compares the date our object was last modified with the release
date. If the date of the object is greater than the release date, PeopleSoft considers this
object changed.

In addition to the date comparison, the system checks the last operator ID that
modified the object. It then considers the object changed if it was modified by some-
one other than PeopleSoft (LASTUPDOPRID <> 'PPLSOFT').

During the Comparison Upgrade process, the system determines Status,
Action, and Upgrade values for each object. The Status value is defined for both
the source and target objects.

Status may have the following values: Unknown, Absent, Changed,
Unchanged, Changed * , Unchanged *, Same.

As you can see from figure 20.9, the status values for our source and target data-
bases are Unknown. This is a default status, and it means that the object has not been
compared. This is also a temporary status, assigned when an object is manually
inserted into a project. As soon as the compare process is executed, this status is
replaced with the appropriate status.

The Absent status value means that the object was found in the other database,
but not in this one. In our example, as you can see in figure 20.13, after we ran the
compare process, the status value of Absent is specified for the target database.

The status value Changed/Unchanged means that the object was changed/
unchanged by PeopleSoft (PSOFT user) since the last comparison release.

The status value Changed * means that the object was modified by someone
other than PeopleSoft (the LASTUPDOPRID value is not PPLSOFT) since the last com-
parison release. That is exactly why we can see the value of Changed* in figure 20.13
for our source database modified object.

The status value Unchanged * means that the object was modified by the cus-
tomer (LASTUPDOPRID is not PPLSOFT) prior to the comparison release.

Finally, the status value Same means that the object has not been modified. This
status appears only as a result of a Project type of compare and not a Database
type of compare.

When upgrading to a new PeopleSoft release, all custom objects developed by
users should have the Absent status in the source (new release) database. On the other
hand, all of the new objects developed by PeopleSoft should have the Absent status
in the target (your Production) database.

Licensed to James M White <jwhite@maine.edu>

450 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

The Upgrade process assigns one of the following Actions to each object: Add,
Delete, or Replace, based on the comparison process.

Action Add means that the object will be added to the target database. Action
Delete means that the object will be deleted from the target database. Action
Replace means that the object in the target database will be replaced with the cor-
responding object in the source.

In our example, the record field object MY_COMP_BUSINESS has Action =
Add, because this field will be added to the target database.

You would be able to decide whether to execute the Action during the Upgrade
Copy process, which is the actual migration. Take a look at the next value, the
Upgrade. This value could be set to Y or N, which indicates to the Copy process
whether the corresponding Action should or should not be executed. During the new
release upgrade, it is the upgrade team’s responsibility to make certain that all the val-
ues are set correctly. The system can only set the Upgrade values to Y or N based on
the comparison results and the target orientation. The target orientation allows the
user to either choose the upgrade to keep PeopleSoft changes or retain custom changes
in the target database.

Suppose the new release came with some modifications to the PERSONAL_DATA
record. Let’s assume that we also modified this record. During the Upgrade Compare
and Report process, the status of this object will be Changed in the source database
(the PeopleSoft’s new release database) and Changed * in the target database. The
Action will be Replace, and the Upgrade value will be set to Y or to N, depending
on the orientation that is selected for our upgrade. If we choose to take PeopleSoft’s
objects when both have been changed, then our modifications will be overwritten. If
we choose to keep the target unchanged, then PeopleSoft’s changes will be dropped.
In cases such as this, the customizations have to be examined, and the decision made
on whether to keep the customizations, abandon them, or merge with the new
PeopleSoft-delivered modifications. Each case should be looked up separately in sit-
uations similar to the one described.

Let’s get back now to our Compare process. Since we execute our process on the
Client, we should perform the compare for each object type separately. Our Upgrade
project contains two objects: a record and a field. We just executed the record com-
parison. Should we now compare the field? In this particular case, it is not necessary
since we created a new field, and we know that this field does not exist in the target
database. We can go directly to the Copying process.

20.4.2 Copying a project to the target database

When you have completed all your upgrade settings, the next step is to copy the
project into your target database. It is a good idea to check the Change Control
locking status of your target database and check your copy options before initiating a
Copy process. (Please refer to PeopleSoft technical documentation for information
about Locking and Upgrades.)

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 451

Let’s select File → Project Properties to verify our Copy options.

As you can see from figure 20.14, the default commit limit is set to 100. You
can modify this number based on the amount of time it takes you to complete the
process. Increasing this number speeds up your process. Be careful: if something goes
wrong, it may increase the amount of work in your recovery process. Always consult
your Database Administrator before you change the commit limit.

In the Audit Flags box, you specify the Audit Flags setting to either Keep
Target Audit Flags On or Set Target Audit Flags from Source. This
allows you to preserve your target database audit (PSAUDIT) settings if you choose the
default option or to bring flags from the source database to the target.

For our task, let’s leave all the default options on, click on the Cancel button, and
initiate a Copy process.

The system asks you to sign on to the target database. Let’s sign on to our
HRTEST database and click on the OK button.

The system displays the Copy dialog panel (figure 20.15).

Figure 20.14

Verifying the project’s Copy Options

Navigation: Tools → Upgrade → Copy

Figure 20.15 The Upgrade Copy

dialog panel

Licensed to James M White <jwhite@maine.edu>

452 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

TIP Always verify if your source and target databases are specified correctly be-
fore you execute a Copy process.

If you have the option of Reset Done Flags turned on, the system will reset
all done flags for selected objects before performing a copy. If you have not selected
Reset Done Flags, it will only copy the objects with Done flags turned off.

When Copy Non-base Languages option is on, the system copies all base and
related language objects to the target database. Otherwise, it copies only base language
version tables.

You can also check the Export Project box ON to copy the current project to your
target database before copying any other objects.

Now we can perform the actual copy process. Just click on the Copy button from
the Upgrade Copy dialog panel.

When the Copy process is executed, it displays the messages on the Upgrade
Project output window. You can click on each object to check the messages and to ver-
ify if the Done flag is set to Y as shown in figure 20.16.

Just as with the panel shown in figure 20.16, if you click on field in your project
workspace, you see that the Done flag is ON for field copy as well.

Figure 20.16 Verifying the results of the Upgrade Copy process

Licensed to James M White <jwhite@maine.edu>

PERFORMING AN UPGRADE 453

20.4.3 Executing Alter/Create scripts

Since we modified the record definition in the target database, we should create and
execute the SQL necessary to synchronize the underlying database structure with the
PeopleTools record.

Navigation: Build → Current Object

Let’s login to the HRTEST database, open
our project, and switch to the Development
tab. Double-click on the MY_COMPANY_TBL
table in the project workspace to display the
record definition.

Since MY_COMPANY_TBL already exists
in the target database, we use the Alter Tables
as our Build Options, and Build Script file as
Build Execute Options. The results of the
Build operation are written to a script file that
our Database Administrator can execute.

After MY_COMPANY_TBL is altered, we
move to the next step. Our last step in the
Upgrade process is to stamp the target
database.

20.4.4 Stamping the database

After copying a project into the target database, you can change the customer release
number to specify that it has changed from its previous customer release level. This
process, called “stamping the database,” helps you keep track of all customer releases
to this version of your database.

This step is necessary only for PeopleTools and Application types of upgrade.

NOTE In order to stamp your database with the customer release number, you
have to be logged on to this database.

Figure 20.17 Building a script to alter

the MY_COMPANY_TBL table

Navigation: Tools → Upgrade → Stamp Database

Figure 20.18

Stamping the database

Licensed to James M White <jwhite@maine.edu>

454 CHAPTER 20 “VANILLA” VS. CUSTOMIZED

The stamping of your database is optional when you change your customer
release, but it is required by PeopleSoft when upgrading to another PeopleSoft release
level. It is usually included in the upgrade instructions.

KEY POINTS

1 A customization is any change to a delivered application.

2 When performing customizations, try to minimize the impact on the future
system upgrades.

3 Document every change.

4 Use prefix letters to identify your custom objects.

5 Use “add” vs. “modify” approach when performing the extensive changes to
the delivered PeopleSoft system.

6 Avoid changing PeopleSoft-delivered field properties and cosmetic changes
in the delivered panels.

7 Do not delete any fields from the delivered panels and records.

8 PeopleSoft divides all upgrades into three types: PeopleTools Upgrade,
Application Upgrade, and Customization Upgrade.

9 The following steps are usually performed in any kind of upgrade:

• populating a project

• performing a comparison

• changing or verifying the upgrade settings

• performing a copy

• executing Alter/Create scripts as necessary

• stamping the target database

Licensed to James M White <jwhite@maine.edu>

455

C H A P T E R 2 1

Customizing
delivered panels

21.1 What objects should be
customized? 456

21.2 Modifying a panel 460

21.3 Testing the modifications 465
21.4 Possible impacts on future

upgrades 469

Adding a field to a panel is one of the most frequent requests PeopleSoft developers
receive. This task can be greatly simplified if the added field already exists in one of
the records attached to the panel. We’ll start with the simplest example, one which
PeopleSoft marketing representatives usually use to demonstrate how easy it is to cus-
tomize delivered PeopleSoft applications using PeopleTools. Our goal is not only to
show you how to do customizations, but to discuss different ways to perform custom-
izations. We also want to stress the importance of thinking about the impact of a par-
ticular change on future upgrades.

We’ll begin with exercise 1:

Add a field to the Personal Profile panel to specify whether the employee
belongs to the Highly Compensated Employee category.

Licensed to James M White <jwhite@maine.edu>

456 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

Our objective here is to customize a delivered PeopleSoft panel to achieve the
panel illustrated in figure 21.1.

If you have some experience with PeopleSoft, you may know which of the
PeopleSoft objects (fields, records, and panels) are involved in this change. PeopleSoft has
so many records and fields that it’s impossible to remember everything. We will discuss
some handy PeopleTools techniques that can be used in order to obtain this information.

21.1 WHAT OBJECTS SHOULD BE CUSTOMIZED?

Let’s do a little research here. Open a panel that your user wants to customize and
find out what records are linked to this panel. Before we open the Personal Profile
panel, let’s also turn on the option of displaying the panel name (figure 21.2).

Now we can access our panel and find the physical object name of the Personal
Profile panel.

Navigation: GO → Administer Workforce → Administer Workforce (U.S) →
Use → Personal Data.

Let’s select Update/Display and enter a part of an employee name, for exam-
ple, “Smith.” The system presents you with a list of all employees whose last name
starts with “Smith.” Let’s select “Smith, John” and bring up the Personal Profile panel
for the selected employee (figure 21.3).

Figure 21.1 The Personal Profile panel that includes a new field

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED? 457

Navigation: View → PanelName

Figure 21.2 How to display the actual panel name

Figure 21.3 The Personal Profile panel

1

2

Licensed to James M White <jwhite@maine.edu>

458 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

Add Highly Compensated Employee field to this sub panel

Panel Name as it is referenced in PeopleTools

As you can see in figure 21.3, the system displays the panel name at the bottom
of the screen. Now that we know the name of the panel, our next step is to look at
the panel via the Application Designer and find out what records are used by this panel
(figure 21.4).

 To see the records and fields used in this panel, click on Layout and select Order.

1

2

Navigation: Go → PeopleTools → Application Designer → File → Open → Panel →
PERSONAL_DATA2_US

Figure 21.4 The Personal Profile panel (PERSONAL_DATA2_US)

displayed via the Application Designer

Figure 21.5 Subpanels, records, and fields that are used in the

PERSONAL_DATA2_US panel

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED? 459

As we scroll through the panel shown in figure 21.5, we can see all the records
used in the PERSONAL_DATA2-US panel and its subpanels. Let’s examine records in
this panel and see if the Highly Compensated Employee field belongs to any of them.
The PERSONAL_DATA is one of the core records in the HRMS database. Let’s open
it in the Application Designer.

Two fields exist which may be used for our purposes: The first is Highly Com-
pensated for the previous and current year. After verifying requirements with our user,
we decide to use the second one.

Stay in touch with your users during all stages of development. Do not wait
until the end of your implementation to find the answers to your questions.

This makes our task simple. We just need to add the field to the panel. Take a look
again at the panel in figure 21.4. Our users want to add a new field to the upper portion
of the panel. As you can see, we need to modify the PERSONAL_DTA2A_SBP subpanel.

Navigation: Go → PeopleTools → Application Designer → File → Open → Record →
PERSONAL_DATA

Figure 21.6 The PERSONAL_DATA table

Licensed to James M White <jwhite@maine.edu>

460 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

21.2 MODIFYING A PANEL

We already know that in order to add the required field to the Personal Data panel,
we need to customize the PERSONAL_DTA2A_SBP subpanel. Let’s open it and per-
form the actual modification.

Let’s resize the subpanel a little bit and add a field to the panel by clicking on the
Insert menu item and selecting an appropriate panel field type from the Application
Designer tool bar. What type panel field are we going to add to our panel? As you can
see in figure 21.8, different types are available: Edit Box, Check Box, Drop Down
List, and so on.

Generally, the following guidelines are used for selecting a field type. (Please refer
to part 2 of this book to learn more about panel design.)

• Edit Box is used for text data entry.
• Drop Down List is usually used to allow data selection from a list of translate

value descriptions, or a prompt list.
• Long Edit Box is associated with long character fields from a Record definition.
• Check Box is used for data entry fields that can have one of two values: on or

off. Y/N fields are usually the best candidates for the check boxes.
• Radio Button represents one value for a field with multiple defined values.

TIP Use Edit Box as a general purpose panel field type for display fields.

Navigation: Go → PeopleTools → Application Designer → File → Open → Panel →
PERSONAL_DTA2A_SBP

Figure 21.7 Modifying PERSONAL_DTA2A_SBP. Step 1: Opening a panel

Licensed to James M White <jwhite@maine.edu>

MODIFYING A PANEL 461

In order to select the right option, we need to see the properties of the
HIGHLY_COMP_EMPL_C field. You can either open the HIGHLY_COMP_EMPL_C
field from the Application Designer menu or right mouse click on the field in the record as
shown in figure 21.9.

From figure 21.9 we can see that our field has some translate values. Also, we have
to keep in mind that users do not want to make this field a data entry field. Since they
will be using it for information purposes only, we can assume that the Edit Box will
work fine to represent this field in the panel.

Figure 21.8 Selecting an appropriate field type

Figure 21.9 Inspecting the field’s properties

Licensed to James M White <jwhite@maine.edu>

462 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

Getting back to the panel in figure 21.8, let’s select the Insert/Edit Box and
place the field on our panel.

After placing the selected field on the panel (by default, the system assigned
“Dummy Name” to the new field), we need to define panel field properties. Using a
right mouse click on the field, select Panel Field Properties.

Now we can specify the record, PERSONAL_DATA and the field, HIGHLY_
COMP_EMPL_C (figure 21.11).

On the second tab of the Panel Field Properties panel, the Label tab, we need to
select the field label. Keeping in mind that this panel may be used in different lan-
guages, it’s always better to select the RFT Short or Long rather than Text. Why?
If you specify Text in the label field, and the panel is using languages other than your
base language, the label will still appear in your base language. When you specify the
RFT Short or Long description, the label is taken from the corresponding related
language table (figure 21.12).

Figure 21.10 Assigning the newly added field its properties

Licensed to James M White <jwhite@maine.edu>

MODIFYING A PANEL 463

TIP In global development projects, always specify the Label type as RFT
Short or RFT Long

On the Use tab of this panel, we mark
this field as Display Only. This means
that the field is used for information only as
our users requested, since they do not plan
to update this field on the panel.

Figure 21.11 Specifying the record

and the field

Figure 21.12 Selecting a label for our field

Figure 21.13 Defining our field as

Display Only

Licensed to James M White <jwhite@maine.edu>

464 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

Clicking on the OK button results in adding the new field to the subpanel
(figure 21.14).

Save the modified panel and select File → Object Properties or ALT-ENTER to
document the changes.

Figure 21.14 Adding the Highly Compensated Employee field to the subpanel

Figure 21.15

Documenting our changes

on the Panel Properties

Licensed to James M White <jwhite@maine.edu>

TESTING THE MODIFICATIONS 465

Our comments will be useful during the upgrade so we save them by clicking on
the OK button. Now we can test the change.

21.3 TESTING THE MODIFICATIONS

Let’s first click on the button or select Layout → Test Mode to ensure that the
field really is accurately placed.

Navigation: GO → Administer Workforce → Administer Workforce (U.S) →
Use → Personal Data.

The panel looks good in test mode. Now, we can perform a real test.
Let’s select Update/Display and enter the same name, “Smith.” After selecting

an employee—for example, “John Smith”—our newly modified panel appears as
shown in figure 21.17.

Figure 21.16 Testing the subpanel

Licensed to James M White <jwhite@maine.edu>

466 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

As you can see, our new field is barely visible on the panel. It is blocked by another
field. What happened? That’s not what we expected, but that’s exactly what testing is
for! What could have possibly gone wrong? Remember that we added our new field
to a subpanel and viewed the subpanel in test mode. It’s obvious now that we overlaid
other parts of the panel. Let’s take a look at our panel again.

The panel in figure 21.18 consists of a number of subpanels. One of the subpan-
els, PERSONAL_D2USA_SBP, is placed over the PERSONAL_DTA2A_SBP subpanel.
Also, if you compare this figure with the panel on figure 21.4, you notice that the
PERSONAL_DTA2A_SBP subpanel occupies much more space now. Remember that
we resized this subpanel in order to fit the new field into it but we forgot about other
subpanels. This is exactly what caused our problem. Therefore, careful planning has
to be done in order to find the correct placement in the panel for our new field. In
our development, we were actually concentrating on finding the correct field and
record. The test shows that space planning is equally important. If you display the
panel (shown in figure 21.18) in test mode, you realize that the better choice is to place
our field in the right corner of this subpanel where it is not blocked by other subpanels.
Let’s open our subpanel again and move the field to the right by dragging it to the
desired position on the subpanel (figure 21.19).

Figure 21.17 Testing the modified panel

Licensed to James M White <jwhite@maine.edu>

TESTING THE MODIFICATIONS 467

Figure 21.18 Inspecting the PERSONAL_DATA2_US panel

Figure 21.19 The modified PERSONAL_DTA2A_SBP subpanel

Licensed to James M White <jwhite@maine.edu>

468 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

After the change to the panel is saved, let’s test it again (figure 21.20).

Our new field is in place, and it looks as if it has always been there. It will help
users to identify highly compensated employees as requested. We performed our mod-
ification just by adding an existing field to a subpanel. One other important point
must be made: Since we added a field to the subpanel, all panels using this subpanel
now display the new field. Therefore, let’s first find out which other panels include the
modified subpanel, then we can decide if our changes are still appropriate.

TIP Use the Find Object References utility to find all the objects that reference
a modified subpanel.

In order to do that, let’s open our subpanel in Application Designer and request
the Object References.

As shown in figure 21.21, two more panels use our subpanel. These two panels
will definitely have a new look after our modifications are performed. If our users do
not want to see a new field on the other panels, we can hide this field by using a simple
PeopleCode statement based on the panel name.

Figure 21.20 Testing the modified panel

Licensed to James M White <jwhite@maine.edu>

POSSIBLE IMPACTS ON FUTURE UPGRADES 469

21.4 POSSIBLE IMPACTS ON FUTURE UPGRADES

Since our customization was simple, we chose to modify the delivered panel. Another
alternative could be to copy the delivered panel under a different name and then
apply all customizations. In this case, we would have to modify a panel group to
replace the delivered panel with our newly customized one. There are pros and cons
in each approach. In subsequent chapters, we’ll demonstrate other approaches as well
and let our readers decide which method of customization they prefer.

The only modified object in our customization was a delivered panel, and we doc-
umented our change in the Panel Object Properties Comment box. Will this little
change really impact the new release upgrade? To answer this question, let’s consider
the following situations:

1 The Personal Profile panel in the new release has not been changed by use of
PeopleSoft.

2 Another field has been added by PeopleSoft to the same panel in the new release.

3 The same field (Highly Compensated Employee) has been added by PeopleSoft
to another panel in the same panel group.

Navigation: Edit → Find Object References

Figure 21.21 Finding all panels that use the PERSONAL_DTA2A_SBP subpanel

Licensed to James M White <jwhite@maine.edu>

470 CHAPTER 21 CUSTOMIZING DELIVERED PANELS

In case 1, the Upgrade Compare and Report process identifies the change. After
reviewing the modification, you can drop the panel delivered by the new PeopleSoft
release, thus preserving your modified panel in your production database.

NOTE Please bear in mind that when upgrading to a new application release, the
source database usually contains all PeopleSoft new release objects, while
the target database is a copy of your production database.

In case 2, the Upgrade Compare and Report process tells you that both objects
have actually been changed. Your task, therefore, becomes more complex, since you
have to review all the changes and merge your modifications with the new PeopleSoft-
delivered panel.

Case 3 is even more complex. Beside recognizing that PeopleSoft actually deliv-
ered the same or similar functionality, you have to decide which modification to leave
and which one to drop. In cases like this, we recommend adapting PeopleSoft’s way,
even though your users may already have become accustomed to the change you deliv-
ered and may find PeopleSoft’s change less convenient.

If PeopleSoft delivers the same or similar functionality in the new release,
try to use the PeopleSoft objects and drop the customization.

Good communication may be needed to explain that, by adapting PeopleSoft’s
solution, we bring our system closer to “Vanilla.” In cases like these, it is also impor-
tant to ensure that the upgrade team is familiar with all customizations made to the
application. Good documentation certainly helps. It may also be a good idea to involve
the people who made the customizations in the upgrade project.

Licensed to James M White <jwhite@maine.edu>

POSSIBLE IMPACTS ON FUTURE UPGRADES 471

KEY POINTS

1 Do not forget to document all changes.

2 When modifying a subpanel, keep in mind that this modification will affect
any panel to which the customized subpanel belongs.

3 In the global development environment use RFT Short or Long descrip-
tions when assigning a label to a panel field.

4 It is always important to test all modifications.

5 Even a simple addition to the delivered panel will impact future application
release upgrades.

Licensed to James M White <jwhite@maine.edu>

472

C H A P T E R 2 2

Adding new fields
and panels

22.1 What objects should be customized or
added? 473

22.2 Creating new custom fields 475
22.3 Creating a custom record 478
22.4 Creating a custom panel 480

22.5 Adding a new panel to the existing
panel group 485

22.6 Granting security access 488
22.7 Testing our changes 489
22.8 Possible impact on future

upgrades 492

In the previous chapter, we discussed how to add a field to a panel when the field
already exists in the PeopleSoft-delivered application and belongs to the record linked
to this panel. We also discussed possible implications on future upgrades.

What if the new field does not exist in your current system? When adding such
a field to a delivered panel group, you have to make an important decision about the
best way to perform your customizations. We have already discussed the advantages
of the “Add vs. Modify” approach. Let’s now consider practical examples and talk
about our customizations in details.

Let’s turn to exercise 2:

Add three custom fields to the employee’s Job Data and Job Data Hire
panel groups.

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED OR ADDED? 473

Let’s say we have three new fields: the Acquisition Date, the Union Seniority
Sequence, and the Badge ID. The fields will be populated by data entry via an effec-
tive-dated on-line panel.

Let’s assume, too, that the team involved in a Fit/Gap analysis has already recog-
nized the fact that the required fields were not delivered by PeopleSoft.

In order to perform this customization we first must identify objects that have to
be customized or created. We already know that our task will include creating three
custom fields. Our next step is to figure out where to place these fields and what alter-
natives we may have in implementing this task.

22.1 WHAT OBJECTS SHOULD BE
CUSTOMIZED OR ADDED?

From the user requirements, we know that the new fields should belong to the Job
Data panel group. Let’s open this panel group from the Application Designer and
inspect the records linked to the panels in this panel group.

Navigation: GO → PeopleTools → Application Designer → Open → Panel Group →
JOB_DATA

Figure 22.1 Inspecting the JOB_DATA panel group

Licensed to James M White <jwhite@maine.edu>

474 CHAPTER 22 ADDING NEW FIELDS AND PANELS

As you can see from figure 22.1, the JOB_DATA panel group consists of nine pan-
els. This panel group contains employee job history, employment, payroll, compensa-
tion, and other information. If you open these panels one by one, you see that the first
six panels in this panel group are effective-dated (they include EFFDT as a high-order
key field), which supports the maintenance of the employee’s job history. Since our new
fields should belong to effective-dated panels, we have the following alternatives:

• add the new fields to an existing effective-dated record and the corresponding
panel

• create a custom effective-dated record and add this record to one of the existing
effective-dated panels in the JOB_DATA panel group

• create a custom effective-dated record and a new panel, and add the new panel to
the JOB_DATA panel group

Let’s discuss each option:
The first option is probably best from the user’s point of view, but as we already

discussed in chapter 20, we should stay away from customizing major PeopleSoft-
delivered records.

The second option is as good as the first one from the user’s point of view if we
can find a panel that is not overly crowded and is logically suitable to hold the new
fields. There is, however, one important drawback. We know that our fields should
belong to an effective-dated panel. We also know that PeopleSoft does not allow mul-
tiple records (besides derived/work and related display) within the same scroll bar on
the panel. (See part 2 of this book for more details about designing panels with mul-
tiple scroll bars.) Since all effective-dated panels have scroll bars, the task becomes a
bit more complex. We can possibly add another scroll bar to one of the effective-dated
panels, but this involves extensive panel modifications.

Considering the impact on future upgrades, it is simpler and cleaner just to create
and maintain a custom panel that houses all current and future custom fields that
require effective date processing.

Therefore, we select the third option of creating a new effective-dated record and
a panel as our customization approach. The advantage is less customizations to deliv-
ered objects; the drawbacks are additional objects to maintain and one more panel
with which users may work.

Let’s find out what records are used in the JOB_DATA1 panel. Double-click on
the JOB_DATA1 panel from the screen in figure 22.1 and click on the button or
select Layout → Order.

Licensed to James M White <jwhite@maine.edu>

CREATING NEW CUSTOM FIELDS 475

Since the JOB record is an effective-dated record, it can be used to create our new
record definition. We don’t necessarily need to find a record to clone. It’s just some-
times easier and faster, especially when you know that your new record will have the
same key structure as the existing one. We can use a similar approach when cloning
effective-dated panels.

To summarize, we identified five new objects: three new custom fields, one cus-
tom effective dated record to house these fields, and a custom panel.

After creating a new panel, we need to modify all the related panel groups used
to access a new panel. Also, since the new panel is added to these panel groups, the
appropriate security access has to be granted to users of the new panel.

22.2 CREATING NEW CUSTOM FIELDS

Let’s create our new objects in the Application Designer. We start with the Acquisi-
tion Date field (figure 22.3).

After selecting Date as a field type for our new field, we are ready to enter other
field characteristics as shown in figure 22.4, then save the newly created field as
“MY_ACQUISITN_DT.”

When a new field is added, don’t forget to insert the field into a project by using
F7 key or Insert → Current Object into Project. You can also turn on the option to
automatically insert a new or modified object to your project as shown in figure 22.5.

Since we want to keep track of all the customizations, we leave this option turned on.

Figure 22.2 Identifying records used in the JOB_DATA1 panel

Licensed to James M White <jwhite@maine.edu>

476 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Also, since this is the first object in our project, let’s save our new project as
MY_CUSTOM_02 by selecting File → Save Project As (figure 22.6).

Navigation: Go → PeopleTools → Application Designer → New → Field

Figure 22.3 Creating a new Date-type field

Figure 22.4 Adding new field properties and saving the field as

MY_ACQUISITN_DT

Licensed to James M White <jwhite@maine.edu>

CREATING NEW CUSTOM FIELDS 477

When working with a single project, use the Automatic Insert option to en-
sure all customized objects are added to your project.

Do not use the Automatic Insert option if you are simultaneously working
on objects that should be placed into different projects. The Automatic In-
sert option will insert your object into the project currently open.

Navigation: Tools → Options

Figure 22.5

This option allows you to automatically insert

into the current project any object you save

Figure 22.6 Adding a new field to a project and saving the project as MY_CUSTOM_02

Licensed to James M White <jwhite@maine.edu>

478 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Our next task is to create the other two fields by
performing the same steps used to create the first
field. This time, we create the Union Seniority
Sequence field as Number, and the Badge ID as
Character. After creating the new objects, we place
them into our MY_CUSTOM_02 project to keep
track of all the customizations performed. The panel
on figure 22.7 shows our project after we complete
these steps.

We just created three new fields and added them
to a project. Was it absolutely necessary to create all
these new fields? The answer is “No.” We could have

found some PeopleSoft-delivered fields with the same data types and reused them for
our needs. For example, instead of creating the Acquisition Date field, we could have
used the FROM_DATE field, and, instead of creating a new Union Seniority Sequence
field, we could have reused the SEQ_NBR field.

Both techniques present advantages and disadvantages. If you create custom fields
and prefix their names with some specific letters, they can be easily identified as new
objects. Also, you can give them meaningful descriptions that can be used in the panels
where these fields are placed. This is especially important when dealing with multi-
lingual environments. On the other hand, it’s a good idea, if you can, to simply reuse
the delivered fields with their properties, since it decreases the number of customized
objects, thus saving upgrade efforts. In our particular case, since we wanted to use dis-
tinguished labels on the panels, and because this panel will be used with other lan-
guages, we purposely created three new custom fields.

22.3 CREATING A CUSTOM RECORD

Creating a custom record is a simple task. Since we’ve already done all the ground-
work and decided to use the JOB record as a candidate for cloning, let’s just open the
JOB record and save it as MY_JOB_INFO.

Navigation: GO → PeopleTools → Application Designer → Open → Record

Type JOB and press ENTER. Select the Job record and save it immediately as
MY_JOB_INFO. After the record is saved, let’s leave only the key fields in the record
and delete all the fields we are not planning to use. Now is the time to add the three
new custom fields to the MY_JOB_INFO Record definition and save it again. It will
also be automatically added to the MY_CUSTOM_02 project.

TIP Fields can be deleted from a record definition by highlighting the field and
choosing Edit → Delete or pressing the delete key.

The new record definition is created (figure 22.8).

Figure 22.7 All the new fields

are in the project

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM RECORD 479

As we discussed in part 2, after a record definition is created, the next step is to build
a corresponding table in the database. Select Build → Current Object from the Applica-
tion Designer Menu. Specify Create Tables and Execute SQL now as shown in figure 22.9.

Figure 22.8 Creating a new record definition by cloning the Job record and add-

ing custom fields

Figure 22.9 Creating a database level table

Licensed to James M White <jwhite@maine.edu>

480 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Since we are creating a brand-new table, it is safe to use the Create Tables and
Execute SQL now options.

WARNING The Create Tables option will result in the loss of data in the table if this
table already existed.

Since we just created this table, we should not worry about the data. Therefore,
after clicking on the Build button, our new table MY_JOB_INFO is created. Please
note that you may not have the authority to execute an SQL directly. In this case, you
can use the option of building a script file, and your database administrator will exe-
cute it for you.

22.4 CREATING A CUSTOM PANEL

We’ve already decided to create a custom panel named MY_JOB. Using our preferred
technique of cloning PeopleSoft-delivered objects, let’s find an appropriate panel to
clone. It sometimes may take you more time in searching for an appropriate object to
clone than to create an object from scratch. Each particular case, creating from
scratch or cloning, has its pros and cons. When adding a new panel to a panel group,
there is an advantage to cloning an existing panel. First of all, you already know all
panels in the panel group. Secondly, your new panel must have the same Level 0
record as the other panels in the panel group to be able to use the same search record
specified for all panels in the panel group. Since we’ve decided to make our new panel
effective-dated, our record should also have the same Level 1 record as other effective-
dated records in the panel group.

Therefore, in our particular case, we’ll clone one of the panels from the
JOB_DATA panel group. Let’s open, for example, an effective-dated panel named
JOB_DATA_JOBCD_US and save it as MY_JOB panel.

WARNING You must never open a PeopleSoft object, make changes to it, and then save
under a new name. You must open it, save it under a new name, make
changes, then save it again. Doing this any other way is just far too dangre-
our. By making changes first and then saving the panel, you may acciden-
tally overwrite the delivered panel used for cloning.

We leave all Level 0 fields plus all Level 1 fields in the panel. In our particular case,
the EMPLID and EMPL_RCD# are Level 0 fields, while the EFFDT and EFFSEQ are
Level 1 fields. All other fields should be deleted.

Let’s add our three new fields—the Acquisition Date, the Union Seniority
Sequence, and the Badge ID—to the panel (figure 22.10).

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 481

Once we have all the required fields in
our new panel, let’s save the panel. After
clicking on the button, or selecting File
→ Save, the Panel Processor displays the
error message shown in figure 22.11.

Don’t panic! Let’s examine the panel
layout and fix the problem.

After a panel is created or modified, it is always a good habit to verify the

Order panel by clicking on the button or by selecting Layout → Order
from the Application Designer Menu.

The Order panel shows all the fields and records as well as the levels to which
these fields belong. It also displays the tab order (figure 22.12).

Now it’s clear what the Panel Processor did not like about our panel. The JOB
and the MY_JOB_INFO records are both located under the same scroll bar. How are
we going to correct this? We know that our new fields belong to the MY_JOB_INFO
record. This record also has EFFDT and EFFSEQ as its key fields. Should we just
change the record behind the EFFDT and EFFSEQ fields from the JOB record to
MY_JOB_INFO record?

Don’t rush to a solution. In fact, this is a common problem for new PeopleSoft
developers. Let’s discuss this situation. Suppose we do this change, and now all the

Figure 22.10 Adding custom fields to the new MY_JOB panel

Figure 22.11 Trying to save the newly

created custom panel

Licensed to James M White <jwhite@maine.edu>

482 CHAPTER 22 ADDING NEW FIELDS AND PANELS

records in the scroll Level 1 belong to MY_JOB_INFO. The Panel Processor sees no
problems and allows you to save this panel. But when you add this panel to the
JOB_DATA panel group and start testing, you immediately spot that this panel does
not work as it should. It acts as a stand-alone panel, while our users wanted it to be a
part of the Job history. Take a look at the panels in the JOB_DATA panel group. All
effective-dated panels have the same dates. Why? Because all Level 1 information
comes from the same JOB record. If we make our Level 1 record different from the
JOB record, our panel will maintain its own dates, one that would have nothing to do
with the effective date of the JOB record.

Therefore, the correct solution is to add one more scroll bar and make our new
fields belong to the Scroll Level 2. Let’s do it. Select Insert → Scroll Bar from the Appli-
cation Designer menu and place it next to our new fields as shown in figure 22.13.

After the new scroll bar is inserted, we need to set its Occurs level to 2. Let’s click
on the new scroll bar and, with a right mouse click, select Panel Field Properties. Spec-
ify the label of the new scroll bar as Scroll bar MY_JOB (figure 22.14).

 The next step is to switch to the Use tab of this panel and specify the MY_JOB
scroll bar properties (figure 22.15).

Since we created the scroll bar for the sole purpose of maintaining another record
under a different level, we don’t really need to show this scroll bar to our users. There-
fore, we’ll make it invisible. Also, it is a good idea to select the No Row Insert and No
Row Delete options. While this functionality is not needed for our panel, if not turned
off, it may still be used by mistake. After saving the Panel Field Properties information,
we have to make sure that all our new fields belong to this scroll bar level.

Figure 22.12 The Order Panel for our newly created MY_JOB panel

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 483

TIP Placing a scroll bar right above the group of fields makes all the fields that
follow the scroll bar belong to the same scroll level.

Figure 22.13 Adding a Level 2 scroll bar to a panel

Figure 22.14 Specifying a label for a

new scroll bar

Figure 22.15 Specifying the Occurs Level 2

for our new scroll bar

Licensed to James M White <jwhite@maine.edu>

484 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Figure 22.16 shows that fields number 8, 9, and 10 as well as the scroll bar itself,
now belong to Level 2.

 If you look at figure 22.16, you’ll notice that the Badge ID field is located above
the Union Seniority Sequence field, while on the panel the order of these fields is
opposite. To make the order of tabulation the same as the field order on the panel,
highlight the Badge ID field and click on the Select button. The field disappears from
the screen. Don’t be alarmed. Just highlight the Union Seniority Sequence field and
click on the Move button. Our Badge ID field will be moved as shown in figure 22.17.

Figure 22.16 The scroll bar My_Job is located right above all the custom fields

Figure 22.17 Changing the field order in the Order Panel

Licensed to James M White <jwhite@maine.edu>

ADDING A NEW PANEL TO THE EXISTING PANEL GROUP 485

After all is done, let’s save our new panel; it will be added to the
MY_CUSTOM_02 project.

Now it is time to test the panel. Just click on the button or select Layout →
Test Mode, and you can see how the panel looks. You can also perform a preliminary
tab order test by entering values and using the tab key to switch between the fields
(figure 22.18).

In order to perform a real test of the panel, we would need to finish all other
related modifications.

22.5 ADDING A NEW PANEL TO
THE EXISTING PANEL GROUP

Based on the original request, the new panel should be accessed from both the
JOB_DATA panel group and the JOB_DATA_HIRE panel group.

First, let’s open the JOB_DATA panel group.
We add our new panel at the end of all effective-dated panels, right above

EMPLOYMENT_DTA1. In order to add our panel, highlight the
EMPLOYMENT_DTA1 panel, and select Insert → Panel Into Group from the Appli-
cation Designer menu. Type MY_JOB panel name, highlight the panel, click on Insert,
and then click on Close. Our new panel is inserted into the JOB_DATA panel group
(figure 22.20).

Figure 22.18 Using Test Mode to test the new panel

Licensed to James M White <jwhite@maine.edu>

486 CHAPTER 22 ADDING NEW FIELDS AND PANELS

After the panel is inserted, we save the modified panel group, and it is inserted
into our project.

Navigation: Go → Application Designer → Open → Panel Group → JOB_DATA

Figure 22.19 The JOB_DATA panel group

Figure 22.20 Inserting the MY_JOB panel into the JOB_DATA panel group

Licensed to James M White <jwhite@maine.edu>

ADDING A NEW PANEL TO THE EXISTING PANEL GROUP 487

Our next step is to add the panel to the JOB_DATA_HIRE panel group. We can
demonstrate another method of adding a panel to a panel group by dragging the panel
from the project workspace. Let’s open the JOB_DATA_HIRE panel group, select the
MY_JOB panel from the project workspace, and drag it to the panel group
(figure 22.21).

TIP The drag-and-drop method inserts your panel (from the left side on your
screen) right before the highlighted panel (on the right side of the screen).
If no panels are highlighted, the panel is added to the end.

Since we have not specified the exact place in the JOB_DATA_HIRE panel group
where we wanted the MY_JOB panel to be inserted, the system simply placed our panel
at the end as number 13 (figure 22.21). You can change the order of panels in the
panel group by dragging the panel to the place you need it to be.

When all is done, let’s save our modified panel group. Our project will look as
shown in figure 22.22.

Figure 22.21 Using the drag-and-drop method to insert a panel to a panel group

Licensed to James M White <jwhite@maine.edu>

488 CHAPTER 22 ADDING NEW FIELDS AND PANELS

22.6 GRANTING SECURITY ACCESS

Since we changed the existing panel group by adding a new panel to it, we have to
grant security access to all users who would need to work with this new panel. First,
we grant security access to the ALLPANLS operator class that will be used to test our
customizations.

Select Menu Items, and double-click on the ADMINISTER_WORKFORCE_(GBL)
menu (figure 22.23).

Figure 22.22 Our project contains two modified panel groups

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 489

Highlight the MY_JOB panel group under the bar name USE and item name
HIRE. Repeat the same process with the JOB DATA item name, press OK and then,
save the modified security. Now security access has been granted to all users who need
to use this panel.

22.7 TESTING OUR CHANGES

We need to make certain that all our modifications work correctly. Remember, we
created a new panel and a new record. We also added a new panel to the existing
panel group. Our goal is not only to verify that the new functionality is in place, but
also to ensure that it works perfectly with the delivered objects.

Let’s start by testing the Job Data panel group.

Figure 22.23 Selecting ADMINISTER_WORKFORCE_(GBL) menu item

Navigation: Go → PeopleTools → Security Administration → Open → ALLPANLS

Licensed to James M White <jwhite@maine.edu>

490 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Let’s select an employee—for example, “Smith, Lily”—and fill in our new panel
as shown in figure 22.25.

Navigation: Go → Administer Workforce → Administer Workforce (GBL) → Use → Job Data
→ My Job → Update/Display All

Figure 22.24 Testing the Job Data panel group

Figure 22.25 Entering information into the new panel

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 491

Pay attention to the Effective Date and Effective Sequence fields. These fields have
exactly the same data as that in the JOB record. If we insert another JOB record with
another effective date, the data in our panel should also change. Let’s test this. Figure 22.26
shows that when a new JOB record is inserted, the effective date on MY_JOB panel is also
changed while the rest of the data are carried over from the previous record.

Since we know that we created a new custom record MY_JOB_INFO to save infor-
mation on the panel, let’s verify that the information is saved correctly and that it is
also effective-dated. In order to do this, we just execute a simple Select statement
(figure 22.27).

Figure 22.26 Inserting a JOB row leads to the insertion of another row in the

MY_JOB panel as well

Figure 22.27 Verifying that the panel information was saved correctly in the

underlying MY_JOB_INFO table

Licensed to James M White <jwhite@maine.edu>

492 CHAPTER 22 ADDING NEW FIELDS AND PANELS

Use your SQL tools to verify that the underlying table is properly updated
by any online panel operations.

In order to verify all possible situations, a complete test plan would have to be cre-
ated and executed. For example, we would need to test our customizations in all avail-
able modes: Update, Update/Display, and Corrections. The new fields’
boundaries would have to be verified as well.

To test the Job Data Hire panel group, we would follow the same testing
sequence that we used for the Job Data panel group.

22.8 POSSIBLE IMPACT ON FUTURE UPGRADES

As our readers may have already noticed, we tried to minimize the impact on future
upgrades during all stages of our development. We used distinctive names for all of
our objects, documented our changes, and created a project to keep track of all cus-
tomizations. We also avoided the temptation to customize the delivered JOB record.
However, some of the changes to the delivered system were not avoidable. For exam-
ple, we modified the delivered Panel Groups: JOB_DATA and JOB_DATA_HIRE.
Therefore, with the new release, we will either have to re-apply our changes if People-
Soft delivers any new functionality to these panel groups, or to accept our customized
version if PeopleSoft makes no changes to them. Also, as we already emphasized in
our previous discussion, there is always a possibility that PeopleSoft may deliver simi-
lar or even the same functionality. In this case, PeopleSoft’s new features should take
precedence over ours.

Licensed to James M White <jwhite@maine.edu>

POSSIBLE IMPACT ON FUTURE UPGRADES 493

KEY POINTS

1 When creating a custom record, you can either re-use the existing fields or
create custom ones.

2 You can insert an object into a project by using the F7 key or Insert → Current
Object into Project. You can also turn on the option in the Application
Designer to automatically insert a new or modified object to your project.

3 The Application Processor will not allow you to save a panel with more
than one data record in a scroll. Exceptions are fields from Derived records
and related display fields.

4 When modifying panels, always examine the Order Panel to ensure that all
the fields are located in the correct places and belong to all the proper
scroll bars.

5 All panels in the panel group should have the same Level 0 records.

6 When adding an effective-dated panel to a panel group where all panels
have the same effective date, make certain that the effective date field
belongs to the same record in all the panels.

7 While testing panel modifications, it is essential to verify (with the help of
your SQL tools) that the underlying table is properly updated by any
online operations.

Licensed to James M White <jwhite@maine.edu>

494

C H A P T E R 2 3

Adding new functionality
to PeopleSoft-delivered
applications
23.1 What objects should be customized or

added? 495
23.2 Creating a custom record by cloning an

existing one 495
23.3 Creating a custom panel 498
23.4 Creating a custom panel group 513

23.5 Modifying a menu 515
23.6 Adding a PeopleCode script 518
23.7 Granting security access 523
23.8 Testing our changes 523
23.9 Possible impact on future

upgrades 525

In this chapter, we will show you how you can add new functionality to an existing
application by cloning PeopleSoft-delivered objects. Some knowledge of the
PeopleSoft Benefits Administration module will help our readers understand the
business reason for the modification under discussion. For those readers not familiar
with Benefits Administration, this exercise may be useful from a purely technical
development perspective.

Again, let’s turn to an example, exercise #3:

Allow users to delete the Benefits Administration Event from an online panel
based on the user’s selection. Only events that are not finalized should be
allowed for deletion.

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM RECORD 495

Our task here is to allow users to delete certain rows from the database. Only
super-users with special security access will be allowed to perform this function.

Why would we need to develop a process that allows the deletions of the Benefit
Administration events? Let’s examine the background of this problem.

Benefits Administration is a PeopleSoft application that helps administer
employee benefits in an automated fashion. Benefit tables are populated with eligible
benefits for employees through a batch process, and employees are then allowed to
make their choice. The Benefits Eligibility process makes use of related employee
information from the PeopleSoft Human Resources application. In this process, a user
can correct or delete information that was incorrectly entered into an HR application.
Such actions can result in incorrect benefit eligibility information that was prepared
based on the original HR information. PeopleSoft Benefits Administration process dis-
connects when the HR information is deleted, or does not reprocess the event correctly
when key HR information is changed. Therefore, if we allow our Benefit super-users
to delete an incorrect event and then reprocess the event, the benefit eligibility infor-
mation will be corrected.

23.1 WHAT OBJECTS SHOULD BE CUSTOMIZED
OR ADDED?

Since this functionality is not currently available within the Benefits Administration
module, we will create a custom panel to allow our users to perform the changes
online. A custom record should also be created and linked to the new panel. When a
user selects a particular event for deletion, SQL delete commands will be executed.
We’ll place these commands into appropriate record field events, thus creating a cus-
tom PeopleCode program.

23.2 CREATING A CUSTOM RECORD
BY CLONING AN EXISTING ONE

CREATING A CUSTOM RECORD

As usual, it is useful to find an appropriate record from which to clone. Since we are
developing this project for Benefits Administration, let’s take a look at the main Ben-
efits Administration table, BAS_PARTIC (figure 23.1).

This table contains the information about employee’s benefit events. Since our
task is to show users all available events for a particular employee and allow them to
select from a list of events, we create a view from this table.

Licensed to James M White <jwhite@maine.edu>

496 CHAPTER 23 ADDING NEW FUNCTIONALITY

Let’s first save this record as MY_BAS_DEL_VW and then delete all the fields we
don’t need to use. Our next step is to change the record’s property to SQL View. The
SQL View Select statement looks as shown in figure 23.2.

Figure 23.1 Selecting the BAS_PARTIC record as a source for cloning

Figure 23.2

Creating a custom view definition

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM RECORD 497

Before saving our new record definition, let’s compare all the fields we specified
in the view definition to the fields in our record definition. Please remember that the
field order in the Select statement shown in figure 23.2 should exactly match the
order of fields in our new record definition. Let’s also not forget to put a useful descrip-
tion for our new view definition in the General tab of Record Properties.

It is important to define the key fields for the view. Here we defined SCHED_ID,
EMPLID, BENEFIT_RCD#, and EVENT_ID as key fields.

 Let’s save our record definition. After the record definition is created, we need
to build the actual view in the database. Let’s build it by clicking on the tool bar
button or selecting Build → Current Object from the Application Designer Menu
(figure 23.4).

Figure 23.3 Defining the key fields

Figure 23.4

Creating a database level View

Licensed to James M White <jwhite@maine.edu>

498 CHAPTER 23 ADDING NEW FUNCTIONALITY

Select the Create Views checkbox from the Build Options group box. Also click
on the Execute SQL now radio button from the Build Execute Options group box.
Then, click on the Build button to execute the SQL and create the view. The view is
created, and the information about the Build process is displayed on the Application
Designer output window, as shown in figure 23.5.

TIP You can create an SQL View at any point in time without any fear of data loss.

As you can see from figure 23.5, our first object created for exercise 3 is added
to a project automatically because we specified an automatic insert to a project in the
Tools → Options. We also saved our new project as MY_BAS_DELETE.

Now that the view is created, we can construct a custom panel.

23.3 CREATING A CUSTOM PANEL
CREATING A CUSTOM PANEL

Let’s look at the PeopleSoft-delivered Benefits Administration application and find a
panel that may be used for cloning. Bear in mind that our new panel must be an
employee-level panel and should contain the information about various employees’
benefit events.

Figure 23.5 The information about the Build process is displayed

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 499

TIP As a basis for cloning, choose an application panel that resembles the func-
tionality required for the customizations.

Let’s open the Event Status Update panel to see if this panel could be used as a
basis for cloning.

Navigation: Go → Compensate Employees → Administer Automated Benefits
→ Use → Event Status Update.

Select any employee ID—for example, 8845—and press the ENTER key. The sys-
tem will display the employee’s Event Status Update panel. BAS_PARTIC_STS panel
is used as indicated by .

Let’s open the BAS_PARTIC_STS panel used in this screen.

1

Figure 23.6 The Event Status Update panel
1

Licensed to James M White <jwhite@maine.edu>

500 CHAPTER 23 ADDING NEW FUNCTIONALITY

As you can see, the panel in figure 23.7 can be easily used for this task. Let’s first
save the panel as MY_BAS_DEL_EVNT and then customize it. You have to be really
careful when deleting all fields that are not going to be used and replacing the records
behind the fields with our custom MY_BAS_DEL_VW record. Sometimes, cloning a
panel may become so cumbersome that it may be easier just to create your own panel
from scratch. No matter what method you use to create your custom panel—cloning
or creating from scratch—your new panel will look like the one shown in figure 23.8.

Figure 23.7 The BAS_PARTIC_STS panel

Figure 23.8 Creating a custom panel by cloning the BAS_PARTIC_STS delivered panel

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 501

Let’s verify that all fields in our panel are in the right order and belong to the cor-
rect records. Click on the button or select Layout → Order and examine the field
order in our new panel (figure 23.9).

Pay attention to all the levels used in this
panel (shown in the second column) and all
corresponding records. Our panel consists of
two levels. Level 0 houses the EMPLID,
NAME, BENEFIT_RCD#, as well as text fields
used as headers for the Level 1 columns. Mul-
tiple records on Level 0 are allowed since we
don’t have a scroll bar at this level.

Level 1 requires more attention. We can
see two records that belong to this level,
MY_BAS_DEL_VW and BAS_EVT_CLASS. Is
this a mistake? Take a look at the field column
in figure 23.9. The field that belongs to
BAS_EVT_CLASS is the DESCRSHORT field.
Based on the Display Control and Related Dis-
play rule discussed in part 2 of this book, you
can include a field from another record under
the same scroll bar if the field is specified as a
Related Display field. This is, most probably,

the case here. Let’s verify this by selecting the Event Class description field on the
panel and keying CTRL+F or using the right mouse button on the field and selecting

Figure 23.9 The Order panel for MY_BAS_DEL_EVNT

Figure 23.10 Making sure that the

DESCRIPTION is a Related Display field

1

Licensed to James M White <jwhite@maine.edu>

502 CHAPTER 23 ADDING NEW FUNCTIONALITY

Panel Field Properties (figure 23.10). The DESCRSHORT field is a Related Display
field with the Event Class as its Display Control field ().

As we expected, the DESCRSHORT field is specified as a Related Display field
and has a reference to the EVENT_CLASS field as a Display Control field.

Let’s get back to the Order panel in figure 23.9. We also need to verify that all
fields listed in this panel are in the correct order. The number in the first column of
the Order panel indicates the tab order. Notice that field Event Status is not in the
right place. If you use the TAB key, it will position a cursor on the Event Status field
right after the Event Date field is tabbed out. According to our panel design, this field
should be the last field in a row for the panel. This problem is very simple to fix. Just
highlight the field you need to move—in our case, it’s field 13—and press the Select
button as shown in figure 23.11.

Then highlight the field to which you want to move the selected field—in this
example, it’s field 17—and click on Move. Now the Event Status field is in the right
place, located below the Process Status field.

1

Figure 23.11

Selecting a field to

be moved to another

place on the panel

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 503

Let’s take another look at our Order panel. Is everything correct? Looks fine at
first glance. Now, let’s save our panel changes again (figure 23.13).

Now we can use Test Mode by clicking on the tool bar button or selecting
Layout → Test Mode from the menu.

Figure 23.12 Repositioning the Event Status field

Figure 23.13 The MY_BAS_DEL_EVNT panel is added to our project

Licensed to James M White <jwhite@maine.edu>

504 CHAPTER 23 ADDING NEW FUNCTIONALITY

Notice that there are two fields under
the Event Status column on the panel: the
Event Status Display Control field and the
Event Status Description (figure 23.14). We
obviously forgot to make our Event Status
field invisible. Let’s perform this change.
First, we have to exit the test mode by click-
ing on the tool bar button again. Then,
right-click on the Event Status field and
select the Panel Field Properties. Mark the
Event Status Display Control field invisible
(figure 23.15). Don’t forget, however, to
click on the Show Label option; otherwise, it
will become invisible as well.

After pressing the OK button, let’s test
our panel again (figure 23.16).

The Event Status field looks fine now,
but how are our users going to delete events?
We display all the information about events
for users to decide what events should be

deleted. Now we need to give them the ability to do so. This is a good time to use a
Derived/Work record field as a placeholder for additional functionality.

Figure 23.14 Looking at our new panel in test mode

Figure 23.15 Making the Event Status

Display Control field invisible

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 505

23.3.1 Creating custom fields for a Derived/Work record

Let’s create a custom field MY_EVENT_DELETE as a Yes/No field to be used in the
panel for every event selected for deletion.

Figure 23.16 The MY_BAS_DEL_EVNT panel in test mode

Navigation: Go → Application Designer → Select New → Field

Figure 23.17 Creating a custom field for a Derived/Work record

Licensed to James M White <jwhite@maine.edu>

506 CHAPTER 23 ADDING NEW FUNCTIONALITY

Let’s save the field as MY_EVENT_DELETE. It will be automatically added to our
project.

Soon we’ll plug special functionality into this field and discuss it in detail, but now,
we need to create one more field, MY_DELETE_PROCESS. Why another field? The
MY_EVENT_DELETE field will be displayed for each event on the panel. Some events
will be marked for deletion, others won’t. Users will be able to scroll down the panel
and review all the events. When necessary, they will uncheck some events chosen for
deletion. After all events on the panel are reviewed, users will need a way to indicate
that the deletion process can occur. This is why we need another field.

We repeat the steps described above and create another one character field as a
placeholder for our Delete script.

We are now ready to create a custom Derived/Work record to hold our newly cre-
ated fields.

23.3.2 Creating a custom Derived/Work record

As we discussed in part 2, Derived/Work records are often used to display temporary
values on a panel. You can also use them to store temporary values from user input.
Since the Application Processor will retrieve only the fields from the Derived/Work

Navigation: Go → Application Designer → Select New → Field

Figure 23.18 Creating the MY_DELETE_PROCESS field

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 507

record that are explicitly referenced by the particular panel into a record buffer, you
can keep all your work fields for multiple projects in one custom record. Fields in
such records are often used to store and trigger PeopleCode programs. Let’s create a
Derived/Work record MY_WORK.

Insert our two custom fields MY_EVENT_DELETE and MY_DELETE_PROCESS to
the record as shown in figure 23.19.

After the fields are inserted into the record, make certain that the Edit type for
MY_EVENT_DELETE field is specified as a Yes/No table edit. Let’s save the new
record as MY_WORK. Now we need to define the record properties. We have to spec-
ify the type record as Derived/Work record (figure 23.20).

Figure 23.19 Creating a custom Derived/Work record

Navigation: Go → Application Designer → New → Record

Licensed to James M White <jwhite@maine.edu>

508 CHAPTER 23 ADDING NEW FUNCTIONALITY

After filling in the record description in the General
tab, we save our new record, and it is automatically
added to our project (figure 23.21).

Since the Derived/Work records are usually used as
placeholders for different PeopleCode events, there is no
need to create a database level table.

23.3.3 Adding Derived/Work fields to our panel

Our next step is to add the newly created derived fields to our panel. We start with
the MY_DELETE_EVENT field and place it on the panel as shown in figure 23.22.

 Let’s also add the MY_DELETE_PROCESS field to our panel. This field is used
to initiate the deletion process. This time, we use a push button field type as shown
in figure 23.23.

As discussed in part 2 of this book, command push buttons are associated with
a Record.Field. When a user presses a push button, the corresponding FieldChange
PeopleCode event is triggered.

Figure 23.20

Specifying the proper record type

for our custom work record

Figure 23.21 The MY_WORK

record is created as a

Derived/Work record

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 509

We place this field at the bottom of the panel as a stand-alone field, so users can
click on it when they decide to execute the Delete script. If you look at the panel
in figure 23.24, you’ll notice that the newly added button looks a little awkward: it
has multiplied into four copies.

Figure 23.22 Adding Derived/Work field to a panel

Figure 23.23 Adding a push button field to the panel

Licensed to James M White <jwhite@maine.edu>

510 CHAPTER 23 ADDING NEW FUNCTIONALITY

The reason why we have the four push buttons instead of one is that this field now
belongs to the scroll bar area with four occurrences. Any field that belongs to this scroll
bar area will be shown in as many occurrences, as defined in the scroll bar properties.
Before linking the push button field to our Derived/Work record, let’s open the panel
order and move the field out of the scroll bar area.

TIP When creating a push button for an entire panel, be certain it is placed out-
side of the scroll bar with multiple occurrences.

Let’s select the highlighted field and move it to the Level 0 area of the panel
(figure 23.26.

Figure 23.24 The new push button field looks awkward

Figure 23.25

At this moment the new push

button field belongs to the

scroll bar level 1 area

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL 511

After clicking on the OK button, our panel looks as shown in figure 23.27.

Now we need to set up the push button field properties. This is a special field.
It allows you to execute a command or process or call a secondary panel. We already
discussed the usage of push buttons in part 2 of this book. Since we will be using this
field in order to execute our PeopleCode Delete script, the type of push button must
be specified as Command. When the user presses the push button, the PeopleSoft
Application Processor automatically triggers the PeopleCode script associated with the
FieldChange event for the MY_DELETE_PROCESS field (figure 23.28). After all
the panel’s setup is done, we can work on creating our PeopleCode event scripts.

Figure 23.26

Moving the push button field

to Level 0

Figure 23.27 Now the push button has been moved out of the scroll bar area

Licensed to James M White <jwhite@maine.edu>

512 CHAPTER 23 ADDING NEW FUNCTIONALITY

In this panel, we also link our Derived/Work record MY_WORK and the
MY_DELETE_PROCESS field with the push button. Let’s switch to the second panel
in this panel group and specify the label for our new field (figure 23.29).

Note that we used Text as the label type for our push button and specified it as Delete.

TIP PeopleSoft recommends using short names for push buttons. The long de-
scription of the field itself will be shown as a push button tools tip.

 After clicking on the OK button, our panel looks as shown in figure 23.30.

Figure 23.28 Specifying the push

button type as Command

Figure 23.29 Specifying a label for our

push button

Figure 23.30 Push button Delete is added to the panel

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL GROUP 513

It looks as though we now have all the fields we need. We can test the panel once
again in the test mode, to be certain that all fields are aligned, but in order to com-
prehensively test our new panel, it should be placed into a panel group and menu.

23.4 CREATING A CUSTOM PANEL GROUP
CREATING A CUSTOM PANEL GROUP

Let’s select File → New → Panel Group from the Application Designer and add our
panel to the panel group (Insert → Panel) (figure 23.31).

After the panel is added, don’t forget to click on the Close button. You get a panel
group with the default Item Name and Item Label. These values may be changed.
Let’s set the Item Label to Event Delete as shown in figure 23.32.

Figure 23.31

Adding the MY_BAS_DEL_EVNT

panel to a panel group

Licensed to James M White <jwhite@maine.edu>

514 CHAPTER 23 ADDING NEW FUNCTIONALITY

Our next step is to set the panel’s
properties. Click on the tool bar but-
ton and fill in the Panel Group Descrip-
tion and Comments fields in the General
tab of the Panel Group Properties panel
(figure 23.33). Switch to the Use tab and
select the proper search record. Since our
header information on the panel is the
employee’s information, it makes sense to
select the EMPLMT_SRCH_GBL view as
our search record.

Now we can save the panel group as
MY_BAS_DEL_EVNT (figure 23.34).

Figure 23.32 Specifying the Item label in the new panel

Figure 23.33 Specifying panel group

properties

Licensed to James M White <jwhite@maine.edu>

MODIFYING A MENU 515

After our new panel group is saved, the MY_BAS_DELETE
project looks like that shown in figure 23.35.

23.5 MODIFYING A MENU
MODIFYING A MENU

Since our new panel is a part of Benefits Administration, we attach the new custom
panel group to the Administer Automated Benefits menu.

Figure 23.34 Saving the new panel group as MY_BAS_DEL_EVNT

Figure 23.35 The new

panel group is added to

our project

Licensed to James M White <jwhite@maine.edu>

516 CHAPTER 23 ADDING NEW FUNCTIONALITY

Let’s open Menu → Administer Automated Benefits. Click on the Process menu
bar and select an empty rectangle (figure 23.36).

Double-click on the empty rectangle and specify the new menu item properties
(figure 23.37).

Figure 23.36 Selecting a menu to customize

Figure 23.37

Specifying menu item properties

Licensed to James M White <jwhite@maine.edu>

MODIFYING A MENU 517

Click on the Select button to attach our custom panel to the new menu item.

After clicking on the Select button, the new menu item is inserted into the menu
as shown in figure 23.39.

Figure 23.38 Selecting the proper panel group for a new menu item

Figure 23.39 The Event Delete menu item is added to the Administer Automatic

Benefits menu

Licensed to James M White <jwhite@maine.edu>

518 CHAPTER 23 ADDING NEW FUNCTIONALITY

When the menu is saved, it is automatically added to our project.

WARNING You can only add an entire menu to your project and not an individual
menu item.

When the upgrade project gets executed, let’s say, to migrate your modifications
to production, the entire Administer Automated Benefits menu in the production
database will be replaced with the menu from your development environment. If your
development environment is not in synch with production, or concurrent modifica-
tions are being done to the menu, this exercise may be dangerous because your entire
menu will overlay the production version. Of course, if you execute the Compare and
Report process before migration, such an exercise would identify the differences.

23.6 ADDING A PEOPLECODE SCRIPT
ADDING A PEOPLECODE SCRIPT

Our customizations are almost done, and you may be wondering how we are actually
going to delete the selected Benefits Administration events. Remember that we just
created a Derived/Work record and added the two fields from this record to our cus-
tom panel. Now is the time to write a PeopleCode script that will perform the dele-
tion of the marked records.

Let’s open the MY_WORK record by double-clicking on the record in the project
and view the PeopleCode events by clicking the tool bar button, or selecting View
→ View PeopleCode from the Application Designer Menu (figure 23.40).

Figure 23.40 The PeopleCode events of the MY_WORK record

Licensed to James M White <jwhite@maine.edu>

ADDING A PEOPLECODE SCRIPT 519

We have to accomplish two tasks here. The first is to allow a preliminary selection
of events for the potential deletion of all records associated with each selected event.
The second task is the actual deletion of the events marked by our users.

Let’s start with the first task. Recall that only nonfinalized events can be deleted.
In order to distinguish between finalized and non finalized events, we need to check
the BAS_PROCESS_STATUS field of the MY_BAS_DEL_VW record. We’ll place our
code into the RowInit event of the MY_EVENT_DELETE field. The PeopleCode
program shown in figure 23.41 should be sufficient to perform the task.

As you can see from figure 23.41, this simple code is saved and added to our
project. It checks if the BAS_PROCESS_STATUS is equal to ‘FE’ (Finalized-
Enrolled) and based on the result of the comparison, it either grays out (disables)
or makes the Event Delete field available to users.

Our second task is a bit more complex. When users select an event for deletion,
we have to delete all records associated with this event (e.g., all rows added to the data-
base when the event was created). Therefore, detailed knowledge of the Benefits
Administration module is necessary. Assuming that we, as developers, are familiar with
this product, our next PeopleCode program will look like this:

For &ROW = ActiveRowCount(MY_BAS_DEL_VW.EMPLID) To 1 Step - 1
 &DELETE = FetchValue(MY_EVENT_DELETE, &ROW);
 &SCHED_ID = FetchValue(MY_BAS_DEL_VW.SCHED_ID, &ROW);

Figure 23.41 Adding a PeopleCode to the RowInit event

Licensed to James M White <jwhite@maine.edu>

520 CHAPTER 23 ADDING NEW FUNCTIONALITY

 &EMPLID = FetchValue(MY_BAS_DEL_VW.EMPLID, &ROW);
 &BENEFIT_RCD# = FetchValue(MY_BAS_DEL_VW.BENEFIT_RCD#, &ROW);
 &EVENT_ID = FetchValue(MY_BAS_DEL_VW.EVENT_ID, &ROW);
 If &DELETE = "Y" Then
 DeleteRow(RECORD.MY_BAS_DEL_VW, &ROW);
 SQLExec("delete from ps_bas_partic where sched_id = :1 and emplid =
:2 and benefit_rcd# = :3 and event_id = :4", &SCHED_ID, &EMPLID,
&BENEFIT_RCD#, &EVENT_ID);

 SQLExec("delete from ps_bas_partic_plan where sched_id = :1 and emplid
= :2 and benefit_rcd# = :3 and
event_id = :4", &SCHED_ID, &EMPLID, &BENEFIT_RCD#, &EVENT_ID);
 SQLExec("delete from ps_bas_partic_optn where sched_id = :1 and emplid
= :2 and benefit_rcd# = :3 and event_id = :4", &SCHED_ID, &EMPLID,
&BENEFIT_RCD#, &EVENT_ID);
 SQLExec("delete from ps_bas_partic_cost where sched_id = :1 and emplid
= :2 and benefit_rcd# = :3 and event_id = :4", &SCHED_ID, &EMPLID,
&BENEFIT_RCD#, &EVENT_ID);
 SQLExec("delete from ps_bas_partic_dpnd where sched_id = :1 and emplid
= :2 and benefit_rcd# = :3 and event_id = :4", &SCHED_ID, &EMPLID,
&BENEFIT_RCD#, &EVENT_ID);
 SQLExec("delete from ps_bas_partic_invt where sched_id = :1 and emplid
= :2 and benefit_rcd# = :3 and event_id = :4", &SCHED_ID, &EMPLID,
&BENEFIT_RCD#, &EVENT_ID);
 End-If;
End-For;

Let’s examine our PeopleCode. Our goal here is to delete records from the following
BenAdmin tables:

• PS_BAS_PARTIC
• PS_BAS_PARTIC_PLAN
• PS_BAS_PARTIC_OPTN
• PS_BAS_PARTIC_COST
• PS_BAS_PARTIC_DPND
• PS_BAS_PARTIC_INVT

Since we need to delete only records selected by our user, the first part of the code
selects the MY_EVENT_DELETE field from every row (in the For loop) and checks
if it is marked by users for deletion. It also fetches key fields such as SCHED_ID,
EMPLID, BENEFIT_RCD#, and EVENT_ID for each record and uses these fields as
bind variables in the database Delete statements.

Please note that we are performing the deletions by using the SQLExec com-
mands because there are a multitude of tables that contain information for each
Benefit event.

Now we need to make a decision on where to place this PeopleCode program.
In other words, what PeopleCode event should the program belong to? The first

Licensed to James M White <jwhite@maine.edu>

ADDING A PEOPLECODE SCRIPT 521

thought would be to place it in the FieldChange event of the
MY_DELETE_PROCESS record. After all, we created the push button field in the
panel to do just that. We also know that push button commands should have their
processes in the FieldChange event, because this event is triggered when the button
is pushed. But if you recall our PeopleCode discussions in part 3 of this book, since
our PeopleCode contains the SQLExec statements, they could only be issued in the
SavePreChg, WorkFlow, or SavePostChg events. In order to resolve this conflict,
let’s use a trick here. As soon as the push button is activated, it will trigger the
PeopleCode from the FieldChange event (figure 23.42).

In the PeopleCode shown in figure 23.42, we first provide our users with a facility
to cancel the Delete request by prompting them to accept or cancel their request. It’s
always a good idea to give your users a second chance to decide if they really want to
delete the records. If they decide to go on, we execute the PeopleCode DoSaveNow()
function. This function, in turn, triggers the execution of all Save events. Therefore,
if we place our PeopleCode program described in the previous page into the
SavePostChg event, it will be executed immediately after the user clicks on the OK
button of the prompt box.

Let’s select the SavePostChg event (figure 23.43).

Figure 23.42 The FieldChange event PeopleCode script executed when the Delete

push button is clicked on.

Licensed to James M White <jwhite@maine.edu>

522 CHAPTER 23 ADDING NEW FUNCTIONALITY

Our next step is to copy the PeopleCode we created earlier and paste it into the
SavePostChg event. We also add some comments as a standard header
(figure 23.44).

After saving the PeopleCode script and adding it to our project, we just need to
grant security access to our users and ourselves before testing.

Figure 23.43 Selecting the SavePostChg event

Figure 23.44 Adding a PeopleCode program to delete all selected events.

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 523

23.7 GRANTING SECURITY ACCESS
GRANTING SECURITY ACCESS

Navigation: Go → PeopleTools → Security Administrator → Open → ALLPANLS
→Menu Items

Select the ADMINISTER_AUTOMATIC_BENEFITS menu.

Highlight the two lines that belong to the MY_BAS_DEL_EVNT menu item,
press OK, and save the security changes for operator class ALLPANLS. Repeat the same
steps for your BenAdmin user’s access.

Now is the time for a real test.

23.8 TESTING OUR CHANGES
TESTING OUR CHANGES

Navigation: Go → Compensate Employees → Administer Automated Benefits →
Use → Event Delete

Let’s select the same employee ID, 8845, as we did at the beginning of our chapter.
Our new Event Delete panel appears showing all BenAdmin events associated

with the selected employee. When scrolling through the records, we can see that for
all Finalized/Enrolled events (Process Status= Enrolled) our Delete Event
checkboxes are correctly grayed out, not allowing users to delete these events. Three
events remain available for deletion: VN97, VN98, and VNBEM. Click on the Delete
Event checkbox for these three open events, then click on the Delete push button as
shown in figure 23.46.

Figure 23.45 Granting security access to MY_BAS_DEL_EVT menu item

Licensed to James M White <jwhite@maine.edu>

524 CHAPTER 23 ADDING NEW FUNCTIONALITY

So far, the PeopleCode that we placed in our events worked just fine. We’ve got a
prompt that gave us an opportunity to cancel the Delete process if necessary. Let’s say
we want to go ahead and click on the OK button. The results of our Delete script exe-
cution from the SavePostChg PeopleCode event will be as displayed in figure 23.47.

We see only two events now. These two events were not targeted for deletion. It
looks like all our changes are working. Since our modification involved a database
update, it is necessary to verify if the records have been actually deleted from the tables.
Using database tools such as SQLPlus for Oracle or SQL Talk in SQL Server or any
other tool that is available in your environment, you can simply select the information
from the tables specified in our Delete PeopleCode script and make certain that the
records are not there.

Figure 23.46 Deleting three open events

Licensed to James M White <jwhite@maine.edu>

POSSIBLE IMPACT ON FUTURE UPGRADES 525

23.9 POSSIBLE IMPACT ON FUTURE UPGRADES
POSSIBLE IMPACT ON FUTURE UPGRADES

In this chapter we illustrated a classical example of enhancing user functionality by
using the “Add” as opposed to the “Modify” approach. During our development
process we were trying to minimize the impact on future upgrades. We developed our
own custom records, panel, PeopleCode programs, panel group, and menu item. As
in the previous chapter, we used distinctive names for all of our objects, documented
our changes, and created a project to keep track of all customizations. The only mod-
ified PeopleSoft-delivered object was the Administer Automated Benefits menu to
which we added our newly created menu item, linking it to our custom panel group.

Still, as we have already discussed, there is always a possibility that PeopleSoft
delivers the similar or same functionality. In this case, you have to evaluate the
PeopleSoft changes. If PeopleSoft’s new features are in fact similar to ours, they should
take precedence over our own.

Figure 23.47 All three selected events have been deleted from the screen and from the

database

Licensed to James M White <jwhite@maine.edu>

526 CHAPTER 23 ADDING NEW FUNCTIONALITY

KEY POINTS

1 You can greatly improve user productivity by extending PeopleSoft-deliv-
ered functionality

2 When creating your panel by cloning a delivered panel, make certain that
all fields in your new panel belong to your records. Always check the Order
panel carefully.

3 The Derived/Work records are often used to display temporary values on a
panel. The fields in such records are ideal placeholders to store and trigger
PeopleCode programs.

4 Command push buttons are associated with a record.field. When a user
presses on a push button, the corresponding Field Change PeopleCode
event is triggered.

5 When your panel has a functionality to delete data from database tables, it
is a good idea to give your users an option to confirm or cancel the deletion.

Licensed to James M White <jwhite@maine.edu>

527

C H A P T E R 2 4

Customizing security
search records, PeopleCode,
and menus
24.1 What objects should be customized or

added? 528
24.2 Creating a custom security

record 537
24.3 Creating a custom panel group 541
24.4 Modifying a menu 544
24.5 Granting security access 546

24.6 Testing our changes 547
24.7 Developing a PeopleCode

program 553
24.8 Testing PeopleCode

modifications 560
24.9 Possible impact on future

upgrades 563

In the previous chapter, we discussed the customization of PeopleSoft-delivered
objects and creation of new objects such as fields, records, panels, panel groups, and
some PeopleCode scripts. In the next example, we will demonstrate how to change
the behavior of PeopleSoft’s record selection mechanism by simply modifying the
delivered search record. Please keep in mind that this exercise requires a good under-
standing of PeopleSoft’s department security and security search records.

Let’s turn to exercise 4:

Allow users to access records of employees transferred to another
department.

Licensed to James M White <jwhite@maine.edu>

528 CHAPTER 24 CUSTOMIZING COMPONENTS

Many PeopleSoft HRMS developers have often heard their users in HR depart-
ments complain that they can not access the records of their former employees who
had been transferred to different departments. In fact, often a business reason exists
for such requests. Of course, security must be in place to prevent users from having
access to unauthorized information. Consequently, an HR manager can have access to
the records of only those employees who belong to the department to which the HR
manager is presently assigned. In this exercise, we need to find a way to allow HR man-
agers access to the records of their former employees assigned to different departments.
First, let’s identify the objects that need to be customized or created.

24.1 WHAT OBJECTS SHOULD BE CUSTOMIZED
OR ADDED?

Let’s refresh our knowledge on what exactly prevents users from seeing their former
employee’s records.

As discussed in part 2 of this book, some panels in PeopleSoft are accessed with
the help of special search views. These views are designed to restrict the user’s access
to unauthorized data. In HRMS, for example, employee information is protected based
on the Department Security delivered by PeopleSoft.

When we select a particular employee’s record by entering full or partial infor-
mation in the search box, the PeopleSoft Application Processor builds a Select state-
ment according to the information entered by the user, and based on the search record
specified for the particular Panel Group. Our goal, therefore, is to look at the security
search record and figure out how to modify it.

In order to understand how PeopleSoft’s Application Processor works, and what
exactly happens when a user enters the particular selection criteria, let’s use the
PeopleSoft Trace utility.

First we need to check if the trace filename is specified in the Configuration Man-
ager panel (figure 24.1).

After the trace is activated, the system will write the trace file to the specified
directory. In our case the directory for the trace output file is specified by the envi-
ronment variable %TEMP%. The default filename for the trace file is DBG1.tmp. You
can verify the settings for your Windows Temp directory in the Process Scheduler tab
of the Configuration Manager.

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED OR ADDED? 529

Our next step is to activate the trace (figure 24.2).

Navigation: Edit → Preferences → Configuration

Figure 24.1

Verifying the

Trace filename

Navigation: Go → PeopleTools → Utilities

Figure 24.2 Selecting the Trace SQL utility

Licensed to James M White <jwhite@maine.edu>

530 CHAPTER 24 CUSTOMIZING COMPONENTS

From the Utilities Menu, select Use → Trace SQL.

On the panel (in figure 24.3), we can select any combination of traces we need. For
our purposes, we select only the first one since we only need to see the SQL statement
that Application Processor constructs based on the parameters in our request. Make sure
you save the selection. This panel is a bit misleading. When you first open it, the panel
already has the Trace SQL statement checked on. This is the panel default option. The
trace will not be activated until you actually save the selection. Please note that after you
activate the trace, all your following steps will be recorded in the trace file.

TIP In order to make the trace file reasonably small, activate the trace right at
the point where you need it and stop the trace as soon as your testing is
over. It’s always easier to work with smaller files.

After saving the trace options, we minimize the Utilities panel and go through a
couple of steps that will provide the information we are looking for.

We type “Smith” as our search criteria name and press OK (figure 24.4).
At this particular moment, we already have all the requested records selected. We

should stop the trace, then examine our trace log file. In order to stop the trace, max-
imize the Utilities panel, unclick the trace selections, then save the panel (figure 24.5).

Figure 24.3 The Trace SQL Utility panel

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED OR ADDED? 531

Figure 24.4 Selecting Smith with a trace activated behind the scene

Navigation: Go → Administer_Workforce_(U.S.) → Use → Job Data →
Update/Display All

Figure 24.5 Deactivating the Trace utility

Licensed to James M White <jwhite@maine.edu>

532 CHAPTER 24 CUSTOMIZING COMPONENTS

TIP Do not forget to deactivate the Trace utility as soon as the test is done.

Now we can take a look at our trace file.

Since we want to see how the system selects the records with the last name starting
with “Smith,” let’s find the corresponding SQL statement in our file. It should be
either the last one or close to the end, since we stopped our trace as soon as the selec-
tion was done.

If we cut the statement from the trace file, paste into Notepad, and reformat it
for readability purposes, the PeopleSoft’s Select statement looks like the following:

SELECT DISTINCT EMPLID, EMPL_RCD#, NAME, LAST_NAME_SRCH, NID_COUNTRY,
NID_DESCRSHORT, NATIONAL_ID
FROM PS_EMPLMT_SRCH_US
WHERE OPRCLASS='ALLPANLS'
AND NAME LIKE 'Smith%'
ORDER BY NAME, EMPLID, EMPL_RCD#

Figure 24.6 A portion of the Trace file

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED OR ADDED? 533

As you can see, the Select statement built to get records from the database looks
pretty simple. The records are selected from the PS_EMPLMT_SRCH_US table,
which is a search record specified for the Job Data panel group. This tells us that this
record is responsible for selecting the requested information. The selection is limited
to the search criteria (“Smith”) and the operator class (ALLPANLS). Since
PS_EMPLMT_SRCH_US is a security search view, our Select statement only
returns the records that the ALLPANLS operator class is allowed to see. Note the
DISTINCT keyword in the Select statement. This way the Select returns distinct
rows and builds a list box for the operator’s further selection. If the operator has an
appropriate access to the record, this record is displayed in the list box.

Do we always need to activate the trace in order to figure out what search record
is used? No, we demonstrated this as a convenient way to learn what is actually going
on behind the scene. The next time you need to deal with search records, you will
remember how it works, and the only thing you need to verify then is the security
search record used for a particular panel group.

Let’s now make certain that the PS_EMPLMT_SRCH_US record is, in fact, the
search record for the JOB_DATA panel group. Selections from the
PS_EMPMT_SRCH_US record is indicated by .1

Navigation: GO → PeopleTools → Application Designer → Open → Pane Group
→ JOB_DATA

Figure 24.7 Examining the JOB_DATA panel group

1

Licensed to James M White <jwhite@maine.edu>

534 CHAPTER 24 CUSTOMIZING COMPONENTS

In order to find out what search
record is attached to this panel group,

click on the button or select File →
Object Properties.

The screen in figure 24.8 appears.
The search record that is used for the

JOB_DATA panel group is the
EMPLMT_SRCH_US record. In our next
step we will open and examine this search
record.

Navigation: GO → PeopleTools →
Application Designer → Open →
Record → EMPLMT_SRCH_US.

After opening the record, let’s take a
look at its properties. Click on the
button, then select the Type tab.

Let’s copy and paste the SQL view definition, so we can see it better:

Figure 24.8 Looking for the Search record

Figure 24.9 The Type tab of the EMPLMT_SRCH_US record properties

Licensed to James M White <jwhite@maine.edu>

WHAT OBJECTS SHOULD BE CUSTOMIZED OR ADDED? 535

SQL View Select statement for the EMPLMT_SRCH_US record

SELECT A.EMPLID, B.EMPL_RCD#, SEC.OPRID, SEC.ACCESS_CD, A.NAME,
A.LAST_NAME_SRCH, ND.COUNTRY, ND.NATIONAL_ID_TYPE, NDT.DESCRSHORT,
ND.NATIONAL_ID
FROM
PS_PERSONAL_DATA A,
PS_JOB B,
PS_PERS_NID ND,
PS_NID_TYPE_TBL NDT,
PS_SCRTY_TBL_DEPT SEC
WHERE
 A.EMPLID = B.EMPLID
AND A.EMPLID = ND.EMPLID
AND ND.COUNTRY = NDT.COUNTRY
AND ND.NATIONAL_ID_TYPE = NDT.NATIONAL_ID_TYPE
AND (B.EFFDT >= %CURRENTDATEIN
 OR
 (B.EFFDT =
 (SELECT MAX(B2.EFFDT)
 FROM PS_JOB B2
 WHERE B.EMPLID = B2.EMPLID
 AND B.EMPL_RCD# = B2.EMPL_RCD#

AND B2.EFFDT <= %CURRENTDATEIN)
 AND B.EFFSEQ =
 (SELECT MAX(B3.EFFSEQ)
 FROM PS_JOB B3
 WHERE B.EMPLID = B3.EMPLID
 AND B.EMPL_RCD# = B3.EMPL_RCD#
 AND B.EFFDT = B3.EFFDT)
)
)
AND SEC.ACCESS_CD = 'Y'
AND EXISTS
 (SELECT 'X'
 FROM PSTREENODE SEC3
 WHERE SEC3.SETID = SEC.SETID
 AND SEC3.SETID = B.SETID_DEPT
 AND SEC3.TREE_NAME = 'DEPT_SECURITY'
 AND SEC3.EFFDT = SEC.TREE_EFFDT
 AND SEC3.TREE_NODE = B.DEPTID
 AND SEC3.TREE_NODE_NUM BETWEEN
 SEC.TREE_NODE_NUM AND SEC.TREE_NODE_NUM_END
 AND NOT EXISTS
 (SELECT 'X'
 FROM PS_SCRTY_TBL_DEPT SEC2
 WHERE SEC.OPRID = SEC2.OPRID
 AND SEC.SETID = SEC2.SETID
 AND SEC.TREE_NODE_NUM <> SEC2.TREE_NODE_NUM

Listing 24.1

Licensed to James M White <jwhite@maine.edu>

536 CHAPTER 24 CUSTOMIZING COMPONENTS

 AND SEC3.TREE_NODE_NUM BETWEEN
 SEC2.TREE_NODE_NUM AND SEC2.TREE_NODE_NUM_END
 AND SEC2.TREE_NODE_NUM BETWEEN
 SEC.TREE_NODE_NUM AND SEC.TREE_NODE_NUM_END
)
)

As you may have noticed in listing 24.1, this view definition is fairly complex. Our
goal is not to completely redesign this view, but to understand how it can be custom-
ized to allow our users access to the required information. This view selects the
employee records in departments that a particular operator class is allowed to access.
Take a closer look at the view. It selects the latest (EFFDT is in descending order)
record from the PS_JOB table, based on the department found in this record and the
operator class. What if, instead of selecting the top PS_JOB record, we allow the selec-
tion of any record from the department in which the employee used to work in the
past or is currently employed? This will allow our users to access employee’s records as
required. We will perform the actual modifications in the next subchapters. Here, we
just have to figure out what objects to modify. Now that we found what object is
responsible for the security access, the question is: “Is it safe just to go ahead and
change the security view?” And the answer is “Absolutely NOT.” This view is used not
only in a multitude of panels, but also as a query security record. Changing this view
may result in an incorrect panel access as well as inaccurate reporting. Let’s find all the
objects that use this view.

TIP Use the Find Object References PeopleSoft utility to identify all the on-line
objects that might be affected by your customization.

After the record is displayed, click on Edit → Find Object References
(figure 24.10).

At the end of the search for object references, PeopleSoft displays the count of
objects found. There are 123 objects currently using the EMPLMT_SRCH_US record.
Therefore, if you change the EMPLMT_SRCH_US record, all 123 objects will be
affected in one way or another.

A better and safer way to perform our customization would be to create a new cus-
tom view based on this record and modify it to satisfy the user’s requirements.

What about the panel and the panel group? We have to create a custom panel
group with the new security search view attached. In addition, a new menu item must
be added to the existing menu. Is that all? Let’s take a look at our requirements again.
Our users would like to have access to the records of their former employees, but they
should not see the salary sensitive information for departments to which they are not
supposed to have access. How do we do this? PeopleCode program can help us hide
salary-related fields.

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM SECURITY RECORD 537

To summarize, we have identified the following objects that must be customized
or created:

• a custom security search view
• a panel group with this new view attached
• a menu item
• a PeopleCode script

24.2 CREATING A CUSTOM SECURITY RECORD

Our task is pretty simple. We already learned that our new record should be cloned
from the PeopleSoft-delivered EMPLMT_SRCH_US record. Let’s open this record
and save it as MY_EMPLMT_XFER (figure 24.11).

Figure 24.10 Displaying all objects that use the EMPLMT_SRCH_US record

Navigation: GO → Application Designer → Open → Record → EMPLMT_SRCH_US

Licensed to James M White <jwhite@maine.edu>

538 CHAPTER 24 CUSTOMIZING COMPONENTS

When saving the record, we get a warning message asking if the PeopleCode should
be copied along with the record (figure 24.12). Since we are planning to modify the
existing SQL view definition, let’s answer “Yes,” and copy all the PeopleCode events.

Since we just created and saved our new object, it is added to a project. Let’s save
the project as MY_JOB_XFER (figure 24.13).

Figure 24.11 Creating the MY_EMPLMT_XFER search view by cloning the

EMPLMT_SRCH_US record

Figure 24.12

Saving PeopleCode programs along

with the record definition

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM SECURITY RECORD 539

So far, we’ve created the record definition. Our next task is to modify the actual
SQL view definition. Let’s press the Alt → Enter and customize our search record.

As discussed earlier in this chapter, this view is responsible for allowing users
access to particular information. The highlighted portion of the view represents the
SQL logic that selects the current PS_JOB record. This is exactly a portion of the SQL
that we were planning to replace. After deleting the highlighted portion of the
Select statement, our new view definition appears as shown in figure 24.15.

Figure 24.13 Adding the MY_EMPLMT_XFER record to a project

Figure 24.14

An SQL View definition for the

EMPLMT_SRCH_US record

Licensed to James M White <jwhite@maine.edu>

540 CHAPTER 24 CUSTOMIZING COMPONENTS

After pressing the OK button to accept our changes, let’s switch to the first tab
of the panel group and document our modifications (figure 24.16).

Figure 24.15

The SQL view after deleting

the EFFDT logic

Figure 24.16

Documenting our changes in the General

tab of the Record Properties

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL GROUP 541

 Our next step is to create a database level view.

Select Create Views and Execute SQL now options and click on the Build button
(figure 24.17).

Our view is ready. We did not get syntax errors which means that the view is
valid. Will it work as expected? We’ll find this out soon. First, we need to create a new
panel group and a new menu item.

24.3 CREATING A CUSTOM PANEL GROUP

As you may have already guessed, we are going to clone an existing panel group in
order to create our own. Let’s find the name of the panel group used in the
Administer_Workforce_US menu (figure 24.18).

Navigation: Build → Current Object

Figure 24.17

Building the database level view

Licensed to James M White <jwhite@maine.edu>

542 CHAPTER 24 CUSTOMIZING COMPONENTS

We open this menu and click on the Use menu bar.

If we double-click on the Job Data menu item, we see the panel group name and
the search record used for this panel group in the Menu Item Properties panel
(figure 24.19).

Figure 24.18 Finding the name of a panel group

Figure 24.19

The JOB_DATA panel group is used to access

the Job Data menu item

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM PANEL GROUP 543

Let’s open the JOB_DATA panel group and save it as MY_JOB_DATA_XFER (fig-
ure 24.20).

Since we just created another custom object, it is added to our project. The
MY_JOB_XFER project now contains two of our custom objects (figure 24.21).

Even though we added the new panel group to a project, we haven’t finished cus-
tomizing our panel group yet. We just wanted to save our work. Now we’ll proceed
with the rest of our modifications. Our next step is to modify the panel group

Figure 24.20 Saving the MY_JOB_DATA_XFER panel group

Figure 24.21 A new panel group is added to our project

Licensed to James M White <jwhite@maine.edu>

544 CHAPTER 24 CUSTOMIZING COMPONENTS

properties. We type some useful description in the General tab, then switch to the Use
tab of the Panel Group Properties. Let’s specify the search record as
MY_EMPLMT_XFER (figure 24.22).

Click on the OK button and save our changes. By executing this step, we actually
linked the newly created custom search record to the panel group.

We are now ready to modify the menu.

24.4 MODIFYING A MENU

Since our users want the new Job Data Transfer panel group to be accessed from the
same menu as the Job Data, we open the ADMINISTER_WORKFORCE_(US) menu
(figure 24.23).

Figure 24.22

Specifying the search record for our

custom panel group

Licensed to James M White <jwhite@maine.edu>

MODIFYING A MENU 545

We double-click on the empty rectangle and specify our own menu item name,
a label, and a panel group. This menu should be linked to the MY_JOB_DATA_XFER
panel group (figure 24.24).

Figure 24.23 Modifying the delivered menu

Figure 24.24

Creating a custom menu item

Licensed to James M White <jwhite@maine.edu>

546 CHAPTER 24 CUSTOMIZING COMPONENTS

Type in the menu item name and label that will be dis-
played for users. Select the panel group MY_
JOB_DATA_XFER for this menu and specify the
MY_EMPLMT_XFER as a search record. Let’s move the
new menu item next to the delivered Job Data menu item
by dragging and dropping the object. After completing the
menu changes, we save it. Our project is shown in
figure 24.25.

24.5 GRANTING SECURITY ACCESS

After selecting the Administer Workforce (U.S.) menu, the security panel looks
as shown in figure 24.27

Figure 24.25 Adding the

Administer Workforce US

menu to the project.

Navigation: Go → PeopleTools → Security Administrator → Open → ALLPANLS
→ Menu Items

Figure 24.26 Selecting the Administer Workforce (U.S.) menu

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 547

.

Highlight every line that belongs to the MY_JOB_TRANSFER Menu Item and
then click the OK button.

24.6 TESTING OUR CHANGES

Before we start testing, let’s state the expected results. Our goal was to allow end users
access to their transferred employee’s records. In other words, if an employee were
transferred to another department, and if we have no access to the employee’s new
department records, we should still be able to see the transferred employee records
using our newly created objects. At the same time, if we try to access the same records
via the regular PeopleSoft-delivered Job Data panel group, the employee records will
not be available.

At first, let’s examine the department security access for the ALLPANLS operator
class, since this is the class we use for our testing purposes (figure 24.28).

After selecting the ALLPANLS operator class and clicking on the OK button, we
get a list of departments with their respective access codes (figure 24.29).

Figure 24.27 Granting user’s security to the Job Transfer menu item

Licensed to James M White <jwhite@maine.edu>

548 CHAPTER 24 CUSTOMIZING COMPONENTS

Navigation: Go → Define Business Rules → Administer HR System → Use →
Maintain Data Security

Figure 24.28 Selecting the ALLPANLS operator class

Figure 24.29 Department security for the ALLPANLS operator class

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 549

For our test purposes, let’s modify the ALLPANLS operator class and deny access
to one of the departments—for example, department 10200, Human Resources—as
shown in figure 24.30.

Our next step is to transfer an employee to department 10200, Human
Resources.

Figure 24.30 Changing the access code for the Human Resources Department to

No Access

Licensed to James M White <jwhite@maine.edu>

550 CHAPTER 24 CUSTOMIZING COMPONENTS

After selecting “Smith, Douglas,” the first employee in the list, we transfer this
employee to department 10200 by inserting a new row (figure 24.32).

Navigation: GO → Administer Workforce(U.S.) → Use → Job Data → Work Location →
Update/Display All

Figure 24.31

Selecting an employee

to be transferred to another

department

Figure 24.32 Transferring Smith Douglas to department 10200

Licensed to James M White <jwhite@maine.edu>

TESTING OUR CHANGES 551

After saving the record, we can try to access it again. Let’s enter “Smith” again as
a partial key in the Job Data search box.

As you can see from our selection list, the record of “Smith, Douglas” is not
found. Of course, we know the reason. This employee has been transferred to a depart-
ment to which our operator class does not have security access.

Now, let’s see how our modifications work. We select the same employee, but this
time from our new menu item.

Figure 24.33

Selecting the records

of all employees with

last names starting

with “Smith…”

Navigation: GO → Administer Workforce(U.S.) → Use → Job Data Transfer →
Work Location → Update/Display All

Figure 24.34

Selecting all Smith’s

records from the Job

Data Transfer menu

Licensed to James M White <jwhite@maine.edu>

552 CHAPTER 24 CUSTOMIZING COMPONENTS

The record of “Smith, Douglas” is in the list. This means that our new security
search record, which is solely responsible for selecting items in the list, is working. Let’s
select this employee and verify his records (figure 24.35).

Let’s recall that our users should have access to the records of their former
employees, but they should not see the compensation information for the departments
to which they don’t have access. Switch to the compensation tab to see if this require-
ment is met (figure 24.36).

We allowed our user to access the records of his/her former employee, but at the
same time we compromised the security itself. According to the security that we set
up earlier, our user should not have access to the Department 10200 and, therefore,
should not see the sensitive information for this department. To resolve the problem,
we can write a PeopleCode program to either hide the entire records for the depart-
ment to which the user does not have access or hide all sensitive fields in these records.

We have to go back to the drawing board (which often happens in the real life
development), talk to our users again, present them with some options, and decide on
the strategy. Let’s suppose that our users decided to go with the second option—i.e.,
to allow access to all the records, but hide the sensitive salary information in the
departments to which users do not have access.

Figure 24.35 “Smith, Douglas” record selected from the new menu item

Licensed to James M White <jwhite@maine.edu>

DEVELOPING A PEOPLECODE PROGRAM 553

24.7 DEVELOPING A PEOPLECODE PROGRAM

Our goal is to create a PeopleCode program that enables us to hide salary information
in the JOB records to which users do not have access. How do we know which user
has access to a particular department? Our knowledge about the Department security
that we gained during our trace activity at the beginning of this chapter will help us
to do this. When an end user enters the search key (full or partial) for the employee
record, the Application Processor retrieves all matching records into the buffer based
on the selection criteria and our redesigned search record. Then, before the records
are displayed on the screen, all PeopleCode programs from the FieldDefault,
RowInit, and RowSelect events are fired for every record behind the panels in the
panel group. If we want to display only the records to which our user has access and
discard the others, the RowSelect event with a DiscardRow command will help us
make the Application Processor skip the current row of data and continue processing
other rows. Since our task is to hide certain sensitive fields, we use another
PeopleCode event, the RowInit event. The RowInit programs are responsible for
setting up the initial display of data.

Now that we’ve decided in what event to place our code, we need to think of how
to best achieve this. Our program should analyze the operator class that accesses the
panel group, then, for each selected employee record, get the department code, and
verify if the operator class has access to this department. In order to do so, we need

Figure 24.36 The Compensation Tab for Douglas Smith’s record contains all the

employee’s salary-related information

Licensed to James M White <jwhite@maine.edu>

554 CHAPTER 24 CUSTOMIZING COMPONENTS

to create a PeopleCode program with SQLExec statements similar to the SQL in the
search record. When dealing with SQL statements in PeopleCode, it is always a good
idea to create your SQL statements outside of PeopleCode and test them using your
database manipulation tools. Take a look at the security view SQL at the beginning
of this chapter. Let’s just copy a portion of the SQL that deals with department secu-
rity. This time we will look at the lower portion of this view:

AND SEC.ACCESS_CD = 'Y'
AND EXISTS
 (SELECT 'X'
 FROM PSTREENODE SEC3
 WHERE SEC3.SETID = SEC.SETID
 AND SEC3.SETID = B.SETID_DEPT
 AND SEC3.TREE_NAME = 'DEPT_SECURITY'
 AND SEC3.EFFDT = SEC.TREE_EFFDT
 AND SEC3.TREE_NODE = B.DEPTID
 AND SEC3.TREE_NODE_NUM BETWEEN
 SEC.TREE_NODE_NUM AND SEC.TREE_NODE_NUM_END
 AND NOT EXISTS
 (SELECT 'X'
 FROM PS_SCRTY_TBL_DEPT SEC2
 WHERE SEC.OPRID = SEC2.OPRID
 AND SEC.SETID = SEC2.SETID
 AND SEC.TREE_NODE_NUM <> SEC2.TREE_NODE_NUM
 AND SEC3.TREE_NODE_NUM BETWEEN
 SEC2.TREE_NODE_NUM AND SEC2.TREE_NODE_NUM_END
 AND SEC2.TREE_NODE_NUM BETWEEN
 SEC.TREE_NODE_NUM AND SEC.TREE_NODE_NUM_END
)
)

Note, that the portion of SQL enclosed in parenthesis uses columns from the PS_JOB
table (with the table name alias B) such as SETID_DEPT and DEPTID and from the
SCRTY_TBL_DEPT (with the table name alias SEC) such as SETID and
TREE_EFFDT. For testing purposes, we can plug in specific values relevant to our test
employee (“Smith, Douglas”) into this SQL code. Let’s put our SQL together and exe-
cute it (figure 24.37).

As you can see, we plugged in the following values: the OPRID='ALLPANLS',
SETID='USA', TREE_NODE='10200'. Using these values, our SQL did not return
any rows (figure 24.38). This is exactly what we expected, since we turned off access
to this department earlier in our test. Just to make sure that our SQL is working cor-
rectly, let’s plug in another department—this time the one to which the ALLPANLS
operator class has access—and run it again.

Our test SQL returned one row. We now know that our SQL is working correctly.
The next step is to decide where we should place our RowInit PeopleCode

event. We also need to know the names of the fields we need to hide. First, let’s find
the panel name where the salary-related information for the employee must be hidden.

Licensed to James M White <jwhite@maine.edu>

DEVELOPING A PEOPLECODE PROGRAM 555

If you look back at figure 24.36, you can see that the Compensation tab panel name
is JOB_DATA3.

Figure 24.37 Executing the SQL statements outside PeopleSoft for testing

purposes

Figure 24.38 Testing SQL with department 11100

Licensed to James M White <jwhite@maine.edu>

556 CHAPTER 24 CUSTOMIZING COMPONENTS

Now we can open the JOB_DATA3 panel and determine the names of all the
fields we are planning to hide. After the panel is opened, let’s examine the Order panel
(figure 24.39).

As you can see from figure 24.39, all salary-related fields belong to the JOB
record. These fields need to be hidden in our customized panel. Let’s place the
PeopleCode script that hides the salary-related fields to the JOB.EMPLID RowInit
event. In order to minimize the necessary customizations to PeopleSoft-delivered
PeopleCode, let’s create a function outside the JOB record.

PeopleSoft, by convention, usually places its functions in the FieldFormula
event of the derived FUNCLIB records. These records (FUNCLIB_HR,
FUNCLIB_BEN, FUNCLIB_PAY, and so forth.) are used as placeholders for the exter-
nal functions called from different record field events. Generally, a function may
belong to any record event. (Please see part 3 of this book for more details about func-
tion libraries.) We’ll create our own derived record here to hold our first function, as
well as any others that may follow.

24.7.1 Creating a derived Funclib record and PeopleCode

Let’s create a record named MY_FUNCLIB and add one field to it. Let’s re-use the
existing EMPLID field. Remember, the purpose of this record is just to hold
PeopleCode functions.

Figure 24.39 Examining the Order Panel for the JOB_DATA3 Panel

Licensed to James M White <jwhite@maine.edu>

DEVELOPING A PEOPLECODE PROGRAM 557

Before the record is saved, do not forget to change its properties, add some useful
comments, and define this record as a Derived/Work record. We don’t need to use
the Build option, since this record is not going to be created at the database level.

Now we can start by creating a function named MY_CHECK_SECURITY. This
function will control the user’s access to departments for each JOB record in the
buffer. We place this function in our newly created MY_FUNCLIB derived record,
EMPLID FieldFormula event (figure 24.41).

Since our PeopleCode function has grown quite big, let’s display it separately in
order to understand how it works:

Function my_check_security(&SETID_DEPT, &DEPTID);
 &OPERATOR = %OperatorClass;
 SQLExec("SELECT 'X' FROM PS_SCRTY_TBL_DEPT SEC WHERE SEC.OPRID=:1 AND
SEC.ACCESS_CD='Y' AND EXISTS (SELECT 'X' FROM PSTREENODE SEC3 WHERE
SEC3.SETID = SEC.SETID AND SEC3.SETID = :2 AND
SEC3.TREE_NAME='DEPT_SECURITY' AND SEC3.EFFDT= SEC.TREE_EFFDT AND
SEC3.TREE_NODE=:3 AND SEC3.TREE_NODE_NUM BETWEEN SEC.TREE_NODE_NUM AND
SEC.TREE_NODE_NUM_END AND NOT EXISTS (SELECT 'X' FROM PS_SCRTY_TBL_DEPT
SEC2 WHERE SEC.OPRID = SEC2.OPRID AND SEC.SETID = SEC2.SETID AND
SEC.TREE_NODE_NUM <> SEC2.TREE_NODE_NUM AND SEC3.TREE_NODE_NUM BETWEEN
SEC2.TREE_NODE_NUM AND SEC2.TREE_NODE_NUM_END AND SEC2.TREE_NODE_NUM
BETWEEN SEC.TREE_NODE_NUM AND SEC.TREE_NODE_NUM_END))", &OPERATOR,
&SETID_DEPT, &DEPTID, &SELECTED);
 If None(&SELECTED) Then

Figure 24.40 Creating a derived record for our custom function library

Licensed to James M White <jwhite@maine.edu>

