
Dottie
Text Box
Module Two

For electronic browsing and ordering of this and other Manning books,
visit http://www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2001 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s
policy to have the books we publish printed on acid-free paper, and we exert our
best efforts to that end.

.

Manning Publications Co. Copyeditor: Adrianne Harun
32 Lafayette Place Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VH – 03 02 01 00

Licensed to James M White <jwhite@maine.edu>

P A R T

Using SQR in
PeopleSoft applications

Structured Query Report Writer (SQR) is a programming language currently owned and sup-
ported by BRIO Technology. SQR, one of many third-party tools that comes packaged with
PeopleSoft, combines the power of SQL, the sophistication of procedural logic, and the freedom
of multiple-platform development. PeopleSoft has used SQR extensively for many of their batch,
reporting, and upgrade applications. Because PeopleSoft was deliberately designed to perform
against a variety of operating systems and databases, it is no surprise the makers of PeopleSoft
chose SQR for many of their programming requirements. SQR is a powerful and flexible lan-
guage that can run on multiple platforms and supports almost all relational databases. Operating
systems include Windows, DOS, Unix, and MVS. Some examples of supported databases are
Oracle, DB2, SQLBase, and Informix.

Contrary to what its name may suggest, SQR is much more than a reporting tool. Using SQR
we can write sophisticated and robust applications that perform data manipulation, file handling,
data extraction, data loading, and, of course, reporting. SQR in PeopleSoft and Other Applications
(Landres, Galina and Vlad Landres. Greenwich, CT: Manning Publications, 1999.) is a compre-
hensive guide that covers all aspects of SQR development. The authors summed up SQR quite suc-
cinctly in their introductory section when they proclaimed: “(SQR) is a serious tool for serious
people.” Once you have used SQR for even a short period of time, you will no doubt agree with
them. The chapters ahead pick up where Galina and Vlad Landres left off in their book. More
emphasis is placed here on integrating SQR with PeopleSoft components such as Process

5

Licensed to James M White <jwhite@maine.edu>

570 CHAPTER 25 RUNNING SQR PROGRAMS

Scheduler, Process Monitor, and Run Controls. We further enhance our Problem
Tracking application by creating custom SQR reports that are executed via Process
Scheduler. The reader can explore the full SQR development cycle, which includes cre-
ating the Run Control record, panel, and panelgroup; adding the panel to a menu;
assigning operator security to the new menu item; and creating the process definition
for the SQR program. In addition, we cover topics such as implementing security in
SQR and scheduling recurring jobs. We end the section with an overview of new SQR
and Process Scheduler features in release 8.0.

Licensed to James M White <jwhite@maine.edu>

571

C H A P T E R 2 5

Running SQR programs
in PeopleSoft applications

25.1 How SQR programs run under
PeopleSoft 572

25.2 Selecting a report from a menu 573
25.3 Using the Run Control 574
25.4 The Process Scheduler Request

dialog 576

25.5 Viewing the status of your report via
the Process Monitor 578

25.6 Viewing the report output 582
25.7 Editing Run Control records 583

PeopleSoft applications offer a wide range of query and reporting tools which enable
users to access the necessary information for both day-to-day and long-term business
decisions. For each product (HRMS, Payroll, Financials, and so forth), PeopleSoft
delivers a set of standard canned reports as a part of its basic package. At the same
time, PeopleSoft offers a number of tools designed to help developers customize exist-
ing reports as well as create new ones.

PeopleSoft has selected Structured Query Report Writer (SQR) as one of its main
reporting and processing tools because SQR provides a flexible and robust report-writing
environment. SQR works beautifully when your report needs complex procedural logic
or tricky database manipulation; when you need to run your report on multiple plat-
forms; when your report structure is complex with multiple breaks; or when you need
to combine data base retrieval with special row processing.

Licensed to James M White <jwhite@maine.edu>

572 CHAPTER 25 RUNNING SQR PROGRAMS

SQR programs are not distributed in the form of platform-dependent executables.
They can be easily moved between platforms, either at source level or as pre-compiled
pseudo-code modules. All SQR commands, directives, and operators are platform-
transparent and require no changes when the programs are moved across platforms.
At the same time, programmers are free to invoke any operating system’s specific com-
mands or utilities if they feel the benefits of platform independence are outweighed
by other considerations such as performance, ease of maintenance, or the need to inte-
grate their programs into certain specific environments.

25.1 HOW SQR PROGRAMS
RUN UNDER PEOPLESOFT

Let’s start by discussing the way PeopleSoft interacts with SQR programs at a con-
ceptual level without going into many details.

In most cases, PeopleSoft users initiate their requests for reports via PeopleSoft
online panels. These panels can be delivered by PeopleSoft or developed by application
programmers.

When online panel information is filled in, PeopleSoft generates process request
parameters. These parameters usually include the operator ID, Run Control ID, run
location, output destination, file/printer name, plus application-specific parameters,
for example, Company ID, From Date, To Date, and so on.

After the process request parameters have been read from an online panel,
PeopleSoft passes them to the Process Scheduler.

The Process Scheduler is a tool that enables users of the PeopleSoft system to
manage PeopleSoft batch processes. Any program that runs under the PeopleSoft
Process Scheduler is called a process. It can be a reporting program, a file generation
program, an interface to another system, a database update program, and such. You
can run processes on your workstation or on the server. You can also combine several
processes into job streams and schedule them for a subsequent execution. (We will dis-
cuss this later in chapter 30.)

The Process Scheduler generates the SQR command line with flags and argu-
ments required to run the requested SQR program, invokes SQR, and passes the flags
and arguments to SQR. When the input from the online panel is saved, the system
updates a number of tables that are used by SQR to communicate with the Process
Scheduler and the Process Monitor via the special PeopleSoft API.

The requested SQR program is executed. It may generate reports, update the data-
base, create flat files, or print its reports directly on the specified printer. Users are kept
informed about the program status with the help of the PeopleSoft Process Monitor.
The Process Monitor receives the program feedback via the PeopleSoft API parameters
and displays the program status on the Process Monitor panel.

Licensed to James M White <jwhite@maine.edu>

SELECTING A REPORT FROM A MENU 573

25.2 SELECTING A REPORT FROM A MENU

PeopleSoft-delivered reports are usually displayed under the Report or Process menu
bar item. In most cases, programs that generate output for printing or displaying are
listed under Report, while programs that manipulate the database records or generate
flat files are listed under Process. Many programs do several jobs: print reports,
update the databases, and generate files.

To run a report, select it from the appropriate menu: the Report menu or the
Process menu. First, you have to know, of course, which report you need to execute.
Let’s take a look at all available reports within the Administer Workforce U.S. menu.

To begin, let’s open for example, the Administer Workforce U.S. menu panel,
click on the Report menu bar, and select the Years of Service report to run
(figure 25.1).

The system asks you to choose between the Add and Update/Display options.
The Add or Update action does not indicate adding or updating a report; it means
adding or updating a special Run Control ID associated with each process request.

Figure 25.1 Selecting a report to run under the Process Scheduler

Licensed to James M White <jwhite@maine.edu>

574 CHAPTER 25 RUNNING SQR PROGRAMS

25.3 USING THE RUN CONTROL

When we run a process via the Process Scheduler, we need to supply it with a number
of parameters such as Run Location, Output Destination, File/Printer name, and so on.
This information is stored in the PeopleTools Run Control record PSPRCSRUNCNTL.

In addition, each process maintains its own application Run Control record to
store the process-specific input run-time parameters, for example, As-Of-Date, Com-
pany Code, or State. The Run Control ID along with the Operator ID are the key
fields in both application Run Control records and PeopleTools Run Control records.

Let’s get back to our previous panel (figure 25.1). In this panel, the system asks
you to create a new PeopleTools Run Control record or select an existing one. If an
existing record fits your process execution requirements, you can select the Update/
Display option, find the proper record, and reuse it. Otherwise, you need to select
the Add action and add a new Run Control ID for a new record. We create a new Run
Control by selecting the Add action (figure 25.2).

We enter MY_RUN01 on the system’s prompt. After pressing the ENTER key or
OK button, the system displays the next screen called the Run Control panel.

What you see in figure 25.3 is the Run Control panel for the Years of Service
report. The Operator ID value is your PeopleSoft logon value. The Run Control ID
is the value you entered in the previous panel.

Please note that this panel includes a process-specific portion called “Report
Request Parameters,” which may look different for each report. This part of the panel
contains all input parameters necessary to run the report. In our case, there are two
parameters: As Of Date and Years of Service. Let’s enter 01/01/2000 as the
value for the first parameter and 10 for the second one. The upper portion of the panel
is a standard subpanel usually included in most Run Control panels. It contains the
Operator ID, the Run Control ID, and the Language. A similar subpanel without the
Language is also available.

As soon as this panel is saved, an application Run Control record is created. This
record, identified by the Run Control ID and the Operator ID, stores the report input
parameters. It will allow you to reuse these parameters in the next report runs. The
next time you need to run this report, you simply select the proper Run Control ID
(in our case, it is MY_RUN01), and the system automatically retrieves the settings.
(Note that some HRMS applications may delete their application Run Control records
upon successful execution).

Figure 25.2

Adding a new Run Control

record

Licensed to James M White <jwhite@maine.edu>

USING THE RUN CONTROL 575

In order to run the report, click on the Traffic Light button or select File,
Run. You will go to the next panel, which displays the Process Scheduler Request dia-
log panel, where you can specify when and where to run the report (figure 25.4).

Figure 25.3 The Run Control panel for the Years of Service report

Figure 25.4

The Process Sched-

uler Request dialog

panel

Licensed to James M White <jwhite@maine.edu>

576 CHAPTER 25 RUNNING SQR PROGRAMS

After you select all the settings on the Process Scheduler Request dialog panel, the
PeopleTools Run Control record (PSPRCSRUNCNTL) is updated. This gives the
PeopleSoft Process Scheduler the necessary information to run and monitor the proc-
ess request.

25.4 THE PROCESS SCHEDULER REQUEST DIALOG

The Process Scheduler Request dialog panel (shown in figure 25.4) is used to specify
where you want to run your report, the destination of your report’s output, and the
time of the actual run. Let’s take a closer look at these parameters.

The Run Location group box allows you to choose between running your report
on Client or Server. If you select Server, you have to select the server name from
the list of available servers. If you want to schedule your process to run at a later time,
you must select Server because your process scheduling can only be done on a server,
and not on your client machine.

TIP Always select a server name when Run Location is Server.

The Output Destination of your report may be File or Printer. The Window
output is available only for Crystal Report programs, not for SQR programs. If you
want to direct your output to a file, you need to enter the filename and a complete
path for the file in the Printer/File text box. If you enter an existing file name, the sys-
tem will overlay the old file.

If you need to print a hard copy of the report, select Printer and specify which
printer port to use in the Printer/File text box.

The Run Recurrence and Run Date/Time parameters are only available if you
select Server as the run location. The Run Recurrence parameter allows you to define
your process as a recurring process that may be executed on a periodic basis.

Run Date/Time defaults to the current date and time. If you plan to schedule
only one report run, select the Once option in the Run Recurrence selection and enter
the desired run date and time in the Date and Time boxes. If you select a Run Recur-
rence value other than the default value Once, and specify the proper run recurrence
definition, it will override any Run Date/Time you may have previously set.

Let’s see how you arrange to run your process at a specific time. Remember, you
can use this option only by specifying the run location as Server. If, for example, you
want to run your report every Sunday, weekly at 7 AM, you have to create a new Run
Recurrence definition (if one has not been set up already): click on the New button
and name it WEEKLY AT 7 AM (figure 25.5).

Licensed to James M White <jwhite@maine.edu>

THE PROCESS SCHEDULER REQUEST DIALOG 577

 When you press the OK button, the Recurrence Definition panel appears
(figure 25.6). This panel allows you to define the starting date and time, the run fre-
quency, and all other necessary scheduling information.

It is important to keep in mind that all the report-run schedule information is
entered for a specific Run Control record, identified by a combination of the Run
Control ID and operator ID. You should not use this Run Control ID to run or sched-
ule other processes. Technically, the system will allow you to do this, but all your pre-
vious settings will then be overlaid with the new settings.

TIP Use meaningful Run Control IDs.

For example, the Years of Service report may be scheduled to run every Sunday
using a Run Control ID named Sunday_Run. If, in addition to this run schedule, you
want to run the report at the end of the month, another Run Control ID must be used;
otherwise, the every Sunday run schedule will be overlaid.

Figure 25.5

creating a new Run Recurrence

definition

Figure 25.6

The Recurrence Definition

panel

Licensed to James M White <jwhite@maine.edu>

578 CHAPTER 25 RUNNING SQR PROGRAMS

Now that you know how to schedule report runs, let’s go back to figure 25.4 and
review the run parameters on the Process Scheduler Request Dialog panel for the Years
of Service report. We select the Run Location as Client and the Output Destination
as File. We need to make sure that the output file goes to the proper directory. Since
we run the report on the client machine and cannot schedule it to run at a specified
time, the run time defaults to the current time. The only thing you need to do is to
press OK. Another PeopleSoft tool, called Process Monitor, can help you monitor
your process. (Remember, every report run under the Process Scheduler is a process!)

25.5 VIEWING THE STATUS OF YOUR REPORT
VIA THE PROCESS MONITOR

The Process Monitor not only allows you to check the status of your process, but also
permits you to see the report run parameters, delete the report from input or output
queue, and perform other tasks (figure 25.7).

After selecting the Process Monitor, the system displays the Process Monitor
panel (figure 25.8).

Navigation: Go → PeopleTools → Process Monitor

Figure 25.7 Invoking the Process Monitor

Licensed to James M White <jwhite@maine.edu>

VIEWING THE STATUS OF YOUR REPORT VIA THE PROCESS MONITOR 579

The Process Monitor panel in figure 25.8 displays the information about all
processes by the operator ID. You can easily modify the view by narrowing the selec-
tion down to a specific operator ID, server, process class, and run status. The last col-
umn in this panel (named “Status”) shows the status of your process. The status could
be one of the following: Success, Initiated, Hold, Queued, Processing,
Canceled, Error.

Let’s double-click on your process. The system displays the Process Request
Detail panel group, which consists of two panels: Process Detail and Request Param-
eters (figure 25.10).

Figure 25.8

The Process Monitor

panel with Process

Status = Process

Figure 25.9

The Process Monitor

panel with Process

Status = Success

Licensed to James M White <jwhite@maine.edu>

580 CHAPTER 25 RUNNING SQR PROGRAMS

 The Process Detail panel shows the process information including the process
description, type, and run status, the ID of the operator who initiated the process; the
operating system under which the process is run; the database type; and the server
name if the process is run on a server. You can check to see how long your report took
to run by looking at the beginning and ending date/time stamps. Knowing these
details can be useful in troubleshooting. Sometimes, if the process you started just sits
in the input queue with its status equal to Initiated or Queued, and you wonder what’s
going on, the first thing to do is check the Process Detail panel to see whether the proc-
ess was initiated on the client or the server. If the process was initiated on a server, was
the correct server name entered? You can check to see if the appropriate Server Agent
is up and running by selecting View, Servers or by clicking on in the main Process
Monitor panel. If you need more information, go to the second Process Request Detail
sub panel and examine the request parameters (figure 25.11).

This panel displays all parameters passed to your process, as well as the command
line used during the execution. You can also use the Copy to Clipboard push button
if you need to save and review your process request parameters.

TIP If you forget the destination of your output report file, you can always
check it in the Request Parameters panel. The output destination will be
shown in the Parameter list following the –f flag.

Figure 25.10

The Process Detail

panel

Licensed to James M White <jwhite@maine.edu>

VIEWING THE STATUS OF YOUR REPORT VIA THE PROCESS MONITOR 581

25.5.1 Controlling your processes via the Process Monitor

The Process Monitor panel gives you complete control over your process. You can
cancel, delete, or put the process on hold. Depending on the current status of your
process, the system will allow you to select a valid action. For example, if the process
has finished, you can delete it from the Process Monitor panel. If the process was just
initiated, you can cancel the process, and then delete the process status record from
the panel (figure 25.12).

Figure 25.11

The Request

Parameters panel

Figure 25.12 Deleting the process status record from the Process

Monitor panel

Licensed to James M White <jwhite@maine.edu>

582 CHAPTER 25 RUNNING SQR PROGRAMS

25.6 VIEWING THE REPORT OUTPUT

When you run your report on the client, you can display your report output from the
Process Monitor panel. Click on your process, then select Action, and Display SQR
Output (figure 25.13).

You can see the output of your program displayed on Windows Notepad (or
WordPad if the output is too large). Note that, if the output is in the .lis format, you
see the special print control characters on the first line of your report, (figure 25.14).
When you print the report on a printer, the report comes out without the special char-
acters in the format specified by your program.

Figure 25.13

Displaying SQR output

Licensed to James M White <jwhite@maine.edu>

EDITING RUN CONTROL RECORDS 583

If you run your report on the server, you cannot see the report output from the
Process Monitor panel. You can use FTP or another available tool to copy your report
output from the server to the client. Another option is to print your report directly
from the server to your network printer.

25.7 EDITING RUN CONTROL RECORDS

You already know that any process execution is controlled by two types of records: the
PeopleTools Run Control record and the application Run Control record. Both records
have the same key identifier, a combination of the Run Control ID and the operator ID.

The PeopleTools Run Control record stores the generic report control informa-
tion: where to run the report and where to direct the report output. Additional
information related to the process run request specifics, is stored in the Process
Request system table.

In order to see the PeopleTools Run Control record, select Edit/Preference/Run
Control from the Administer Workforce (U.S.) panel (figure 25.15).

Figure 25.14 SQR output displayed via the Process Monitor panel

Licensed to James M White <jwhite@maine.edu>

584 CHAPTER 25 RUNNING SQR PROGRAMS

The system displays the Edit Run Controls
dialog window shown in figure 25.16.

You can see all the Run Control record IDs
that you are allowed to access based on your secu-
rity, including the one you just created: MY_
RUN01. Select this ID and press the OK button to
see the record details. The system brings the Edit
Run Control panel shown in figure 25.17.

As you can see, the predefined settings for
this Run Control ID are displayed on the panel.
The panel shows the run location as Client and
the output directed to File.

Figure 25.15 Selecting the Run Control Edit panel

Figure 25.16 Edit Run Controls

dialog

Licensed to James M White <jwhite@maine.edu>

EDITING RUN CONTROL RECORDS 585

Press the CANCEL button and return to the
previous window (figure 25.16). As you can see
from the dialog panel, you have the ability to create
new Run Control records, edit existing records, or
even delete records you no longer need. Keep in
mind that, if you delete a Run Control record, only
the PeopleTools Run Control record will be
deleted. All Application Run Control records with
the same key values remain in the system. These
records can be deleted via a database management
tool outside of PeopleSoft. Depending on your
database, you can use products like SQL*Plus for
Oracle, SQL Programmer for Sybase, QMF for DB2,
or similar ones.

Let’s see what would happen if you changed
some of the Run Control parameters. On the Edit
Run Controls dialog (figure 25.16), select MY_
RUN01 again and press the EDIT button.

The system brings back the Edit Run Control
panel with all the previously specified settings. Now
change the Run Output setting from File to
Printer and press the OK button to save the
changes (figure 25.18).

Now that we have figured out how to see and
change the PeopleTools Run Control records, let’s
see if you can do the same with the application Run
Control records.

The application Run Control record contains
all application-specific report input parameters. In

order to see this record on the Administer Workforce (U.S.) window (figure 25.19),
select Report/Years Of Service and, this time, select the Update/Display option.

Figure 25.17 The Edit Run

Control panel

Figure 25.18 Changing the Run

Control settings

Licensed to James M White <jwhite@maine.edu>

586 CHAPTER 25 RUNNING SQR PROGRAMS

After you press the OK button, the system displays the list of all available Run
Control IDs (figure 25.20).

Select MY_RUN01, and the system displays the application Run Control panel
with all process-specific parameter values (figure 25.21).

Figure 25.19 Displaying an existing application Run Control record

Figure 25.20

Run Control ID dialog

Licensed to James M White <jwhite@maine.edu>

EDITING RUN CONTROL RECORDS 587

Now you can see all previous parameter values and change some of these values
if needed. In our case, there are two parameters, As Of Date and Years Of Service. Let’s
change the As Of Date parameter value from 01/30/1997 to 01/01/2000. Click
on the Traffic Light button to run the report. The system displays the next window,
the Process Scheduler Request dialog shown in figure 25.22.

As you can see in figure 25.22, the Output Destination on this panel has been
changed from File to Printer. If you run the report now, the system will use both
the changed PeopleTools Run Control parameters and the changed application Run
Control parameters.

Figure 25.21 The application Run Control panel with process-specific parameters

Licensed to James M White <jwhite@maine.edu>

588 CHAPTER 25 RUNNING SQR PROGRAMS

Figure 25.22 The Process Scheduler Request dialog with updated settings

KEY POINTS

1 PeopleSoft-delivered reports are usually executed from on-line panels and
run with the help of the PeopleSoft Process Scheduler.

2 The Process Scheduler works with processes and job streams.

3 You can either run processes on your workstation or remotely on a server.

4 The Process Scheduler controls process executions with the help of the Run
Control records: PeopleTools Run Control and the application Run Con-
trol. The Run Control ID along with the operator ID are the key fields in
these records.

5 You can schedule a process execution at a specific date/time only if the
process runs on a server.

Licensed to James M White <jwhite@maine.edu>

EDITING RUN CONTROL RECORDS 589

6 The Process Monitor allows you to control your processes: you can view the
process status or cancel, delete, or put processes on hold, depending on the
status of your process.

7 You can view your report output if it were executed on the client via the
Process Monitor panel.

8 The output destination of your report may go to File or Printer. Window
output is available only for Crystal reports, not for SQR Reports.

KEY POINTS (CONTINUED)

Licensed to James M White <jwhite@maine.edu>

590

C H A P T E R 2 6

Creating a custom
SQR program

26.1 Designing your SQR program 591
26.2 Executing your SQR program 597
26.3 Examining the SQR program output files 597

During the course of this book, we have been developing the Problem Tracking appli-
cation. Our application would not be complete if we did not create reports for our
users. Many reports are usually expected from Problem Tracking systems. Users may
need to have a list of all open and not assigned incidents or all closed incidents listed
by a particular date, by the project ID, by user, or by the person responsible to fix a
problem. In this chapter, we will create a simple SQR program that will be able to
support some of these functions.

We’ll start with exercise 1:

The report will list all reported incidents sorted by Problem Status and Incident
Date. As a first step, we will create an SQR program that will not be attached to any

Create a Problem Tracking status report.

Licensed to James M White <jwhite@maine.edu>

DESIGNING YOUR SQR PROGRAM 591

PeopleSoft menu and, therefore, will not be available for execution from the
PeopleSoft Process Scheduler. In the following chapters, you will learn how to make
this program run under PeopleSoft.

26.1 DESIGNING YOUR SQR PROGRAM

Let’s take a look at the tables that we created in our Prob-
lem Tracking application and find the ones that can be
used to produce our report.

As you can see from figure 26.1, the MY_PROJECT
project contains all the Problem Tracking Application
objects, including all the custom tables we created. Let’s
double-click on the MY_PROBLEM_TRKG record and
examine all its fields (figure 26.2).

When designing SQR programs, understanding your data model and building the
right selection logic is a crucial part of any development process. As you can see from
figure 26.2, the MY_PROBLEM_TRKG table can be used in our report since it con-
tains all information about the incidents entered into the system via our custom online

Navigation: Go → PeopleTools → Application Designer → Open → MY_PROJECT

Figure 26.1 The

MY_PROJECT Project

Figure 26.2 The MY_PROBLEM_TRKG record definition

Licensed to James M White <jwhite@maine.edu>

592 CHAPTER 26 CREATING A CUSTOM SQR PROGRAM

application. In addition, our report probably needs information such as an application
and a project description, a user name, and so forth. We can select this information
from other tables created for this Application.

Let’s create our SQR program:

MYPROB01.sqr

!Problem Status Report

#define problem_status_len 10
#define project_descr_len 30
#define date_len 10
#define priority_len 8
#define user_name_len 20
#define responsible_name 20
#define col_sep 2

!**************
Begin-Setup
!**************
Load-Lookup Name=Projects

Rows = 500
 Table = PS_MY_PROJECT_TBL
 Key = MY_PROJECT_ID
 Return_Value=Descr

Load-Lookup Name=Users
Rows = 1000

 Table = PS_MY_USER_TBL
 Key = MY_USER_ID
 Return_Value=Name

End-Setup

!****************
Begin-Heading 7
!****************
print 'Problem Status Report' (1,1) Center

page-number (0,100) 'Page No. '
print 'Run Date ' (+1,100)
Print 'Problem Status: ' (+1,1)
Print $Stat ()
print '=' (+1, 1, 125) fill
print 'Project Description ' (+1, 1, {project_descr_len})
print 'Incident ' (,+{col_sep}, {date_len})
print 'Priority ' (,+{col_sep}, {priority_len})
print 'User Name ' (,+{col_sep}, {user_name_len})
print 'Responsible ' (,+{col_sep}, {responsible_name})

Listing 26.1

Licensed to James M White <jwhite@maine.edu>

DESIGNING YOUR SQR PROGRAM 593

print 'Close ' (,+{col_sep}, {date_len})
print ' ' (+1, 1, {project_descr_len})
print ' Date ' (,+{col_sep}, {date_len})
print ' ' (,+{col_sep}, {priority_len})
print ' ' (,+{col_sep}, {user_name_len})
print 'To Resolve ' (,+{col_sep}, {responsible_name})
print 'Date ' (,+{col_sep}, {date_len})
print '=' (+1, 1, 125) fill

End-Heading

!**************
Begin-Program
!**************
Do Init-Report
Do Main
End-Program

!***************************
Begin-Procedure Init-Report
!***************************
 Do Ask-Input-Parameters
 Do Build-Where
 Do Load-Xlats

End-Procedure

!***********************************
Begin-Procedure Ask-Input-Parameters
!***********************************
!Get User's Input

 Input $AsOfDate Type=Date 'Please enter As Of Date'

 Let #Input=1
 While #Input = 1
 Input $Problem_Status Type=Char 'Please Enter Problem Status
(1=Initiated, 2=Assigned, 3=Progress, 4=Testing, 5=Resolved,6=Void) or
press Enter for All' Status=#Input_Status
 If $Problem_Status = ''
 Let #Input = 0
 Else
 If $Problem_Status > '0' and $Problem_Status < '7'
 show 'Problem Status Entered = ' $Problem_Status
 Let #Input = 0
 Else
 Show 'Invalid Input, Re-Entry Required'
 End-If
 End-If
 End-While

End-Procedure

Licensed to James M White <jwhite@maine.edu>

594 CHAPTER 26 CREATING A CUSTOM SQR PROGRAM

!***************************
Begin-Procedure Build-Where
!***************************
!Build Where Clause based on user's Input
 If $Problem_Status = ''
 Let $Where_status = ''
 Else
 Let $Status=Rtrim($Problem_Status,' ')
 Let $Where_status = 'And A.My_Problem_Status = '|| ''''||$Status||''''
 Show $Where_status
 End-If

End-Procedure

!*************************
Begin-Procedure Load-Xlats
!*************************
 Let $Where_Xlat1 = 'FIELDNAME=''MY_PRIORITY'''

||' and X.EFFDT = (Select max(Effdt) from XLATTABLE '
||'Where Fieldname=X.Fieldname And FieldValue=X.FieldValue'
||' And Effdt <= Sysdate and Language_Cd = 'ENG') '

 Load-Lookup Name=Priority
Rows = 10

 Table = 'XLATTABLE X'
 Key = FIELDVALUE
 Return_Value=XLATSHORTNAME
 Where=$Where_Xlat1

 Let $Where_Xlat2 = 'FIELDNAME=''MY_PROBLEM_STATUS'''
||' and S.EFFDT = (Select max(Effdt) from XLATTABLE '
||'Where Fieldname=S.Fieldname And FieldValue=S.FieldValue'
||' And Effdt <= Sysdate)'

 Load-Lookup Name=Status
Rows = 20

 Table = 'XLATTABLE S'
 Key = FIELDVALUE
 Return_Value=XLATSHORTNAME
 Where=$Where_Xlat2
End-Procedure

!*******************
Begin-Procedure Main
!*******************
Begin-Select

A.My_Problem_Status () on-break Print=Never After=Page-Break
Save=$Status_Cur
A.My_Project_ID
A.Incident_DT
A.Priority
A.My_User_ID

Licensed to James M White <jwhite@maine.edu>

DESIGNING YOUR SQR PROGRAM 595

A.My_Problem_Tracker
A.Close_Dt
 Do Print-Line
From PS_MY_PROBLEM_TRKG A
Where A.Incident_Dt <= $AsOfDate
[$Where_status]
order by A.My_Problem_Status
End-Select
End-Procedure

!**************************
Begin-Procedure Print-Line
!**************************
 Lookup Projects &A.My_Project_ID $Descr
 Print $Descr (+1, 1, {project_descr_len}
)
 Print &A.Incident_DT (,+{col_sep}, {date_len}
)
 Lookup Priority &A.Priority $Priority_Descr
 Print $Priority_Descr (,+{col_sep}, {priority_len}
)
 Lookup Users &A.My_User_ID $User_Name
 Print $User_Name (,+{col_sep}, {user_name_len}
)
 Lookup Users &A.My_Problem_Tracker $Problem_Tracker_Name
 Print $Problem_Tracker_Name (,+{col_sep}, {responsible_name}
)
 Print &A.Close_Dt (,+{col_sep}, {date_len}
)

End-Procedure

!**************************
Begin-Procedure Page-Break
!**************************
Lookup Status $Status_Cur $Stat
new-page
End-Procedure

!******************************

As you can see from listing 26.1, our SQR program consists of the following sections:
Setup, Heading, Program, and several Procedure sections.

In the Setup section we loaded two tables, PS_MY_PROJECT_TBL and
PS_MY_USER_TBL, into the program memory with the help of the SQR
Load-Lookup command. This technique is used to speed up the data lookups per-
formed for every selected row in the Print-Line procedure.

In the Heading section we print our report header information.
In the Program section we call the Init-Report and Main procedures.

Licensed to James M White <jwhite@maine.edu>

596 CHAPTER 26 CREATING A CUSTOM SQR PROGRAM

The purpose of the Init-Report procedure in our program is to prepare for
our main reporting logic. We call the Ask-Input-Parameters procedure and,
based on the results received from the user’s input, call the Build-Where procedure
to dynamically construct the WHERE clause for our main Select.

Ask-Input-Parameters interacts with users to obtain the input parameters:
As Of Date and Problem Status. It also verifies a user’s input and prompts again
if the input is incorrect. Note that, when entering the problem status, users have an
option to simply press Enter when they want to select records with all problem statuses.

Take a look at the Build-Where procedure. We are building a dynamic WHERE
clause here. First, we check to see if our users entered any Problem Status or if they
left this value blank (Null) to select all problems. If the value in the input variable is
Null, we initialize the $Where_status string with Null. Otherwise, we build the
WHERE clause by concatenating the column name with the status enclosed in quotes.
Note that we use four quotes here. This is because we have two outside quotes to indi-
cate the beginning and the end of a string as well as a double quote (instead of one)
to tell SQR that this is a special character. You will see later that using this technique
of building the dynamic parts of SQL helps us to create an efficient program.

The Load_Xlats procedure is designed to load lookup tables with value
descriptions for the MY_PRIORITY and MY_PROBLEM_STATUS fields, thus saving
on costly database operations. Why didn’t we place this Load-Lookup into the Setup
section along with the others? Because the Let statement is not allowed in the Setup
section. Of course, other methods do exist for reading from the Translate table. Peo-
pleSoft, for example, delivered a special include file READXLAT.sqc, which can also
be used for this purpose.

The Select statement in the Main procedure selects the requested information.
Its WHERE clause consists of two parts. The first one restricts the selection to the
records with an Incident Date that is less then or equal to the input prompt date. The
second part of the WHERE clause is stored in the string variable $Where_status that
we built earlier in the Build_Where procedure. With this little trick, we can always
select the required rows based on user’s input. Another, simpler option would be to
exclude Status variable from the WHERE clause and instead use the SQR procedural
logic (If-Then) to check the selected rows one by one and compare the values in the
column MY_PROBLEM_STATUS with the input variable. Our technique is clearly
more efficient because we do not select unnecessary rows only to drop them later.

The Print-Line procedure is called from the Main Select. It is executed for
each selected row. We perform several Lookup commands to get some field values
from the Lookup arrays that we loaded into memory earlier. We then print the values.
Here we use substitution variables (defined at the beginning of the program) which
specify the print positions. If you need to change the layout of your report, you just
have to modify these variables once where they were defined.

Licensed to James M White <jwhite@maine.edu>

EXAMINING THE SQR PROGRAM OUTPUT FILES 597

26.2 EXECUTING YOUR SQR PROGRAM

An SQR program can be invoked in different
ways. You can start your program from the SQR
dialog box in the Windows environment. You
can also execute SQR programs from the oper-
ating system command line or call them from
other programs. As an alternative, SQR pro-
grams can be run in batch mode under VAX/
VMS, MVS, UNIX, MS-DOS, Windows, or OS/
2 using DCL (VAX/VMS), JCL (MVS), shell
scripts (UNIX), or batch files (MS-DOS,
WINDOWS, OS/2).

At this point we execute our program from the SQRW dialog box. Let’s fill in the
SQRW dialog box as shown in figure 26.3 and submit our program.

After pressing the OK button, our program is submitted for execution. We are
then prompted for our program’s input parameters (figure 26.4):

As you can see, we entered 08/03/99 as our As Of Date parameter value and
pressed Enter to select records with all statuses. When all entries are accepted, our pro-
gram runs to the end.

26.3 EXAMINING THE SQR
PROGRAM OUTPUT FILES

Our program created two output files: the report file myprob01.lis and the log file
myprob01.log. Let’s take a look at the log file first. As you may already know, the log
file contains information that is displayed by the Display or Show commands from
our program. In addition, it may have some system information, such as the number
of records loaded for the lookup table, Input command prompt, and so on. Our log
file is shown in figure 26.5.

As you can see in figure 26.5, the information in this log file is printed by the SQR
engine. The information about load lookup tables is useful, especially in the testing
stage since it shows you how many rows were loaded. You can easily spot a problem
using this information.

Figure 26.3 Submitting the SQR

program via the SQRW dialog box

Figure 26.4 Prompt for input parameters

Licensed to James M White <jwhite@maine.edu>

598 CHAPTER 26 CREATING A CUSTOM SQR PROGRAM

Let’s now take a look at our report output.
The .lis file is intended to be printed and usu-
ally has formatting lines with information
about the report layout, fonts, and such. You
can still display the output file, but in order to
test your report output, you need to print it. If
you want to work with your report online, you
should create an .spf file by using the –KEEP or
–ZIV command line flags when submitting
your program for execution. If we execute our
report with the –KEEP flag, we would be able
to see both: the .lis file and the .spf file output.

Figure 26.7 shows the output MYPROB01.lis file.

Figure 26.5 Myprob01.sqr log file

Figure 26.6 Creating an SPF file output

along with a .lis file

Figure 26.7 LIS file output

Licensed to James M White <jwhite@maine.edu>

EXAMINING THE SQR PROGRAM OUTPUT FILES 599

In order to see the SPF file, just double-click on C:\Windows\temp\myprob01.spf,
and the SPF Viewer displays the file in a convenient online format (figure 26.8).

Figure 26.8 Using SQR Viewer to view SPF file output

KEY POINTS

1 In order to design an SQR program, you should be familiar with your
database.

2 Dynamic SQL techniques help create more efficient programs.

3 An SQR program can be invoked from the SQR Dialog Box in the Win-
dows environment or from the operating system command line. You can
also call an SQR program from other programs or batch scripts.

4 If you would like to view your report online, you can create an .SPF file by
using the –KEEP or –ZIV command line flags when submitting your pro-
gram for execution.

Licensed to James M White <jwhite@maine.edu>

600

C H A P T E R 2 7

Attaching SQR to the
Process Scheduler

27.1 Selecting a Run Control record 600
27.2 Creating a Run Control panel 605
27.3 Creating a panel group 610
27.4 Selecting a menu for your report 613
27.5 Granting security access 615

27.6 Testing your changes 617
27.7 Creating a process definition for the

problem status report 621
27.8 Specifying the program directory 628
27.9 Testing your process definition 629

27.1 SELECTING A RUN CONTROL RECORD
SELECTING A RUN CONTROL RECORD

PeopleSoft, which delivers a number of standard reports, records, panels, and menus,
has always recommended that the best way to add new functionality is to clone
already developed similar application objects. We will be using this commonly
accepted approach in attaching custom reports to PeopleSoft.

In PeopleSoft, the Application Run Control records are used to save the input
parameters for processes. PeopleSoft developed a number of Application Run Control
records that can be used if these records have the necessary fields for your program.
For example, the Years of Service report uses the As Of Date and Years of
Service as input parameters. Let’s take a closer look at this report and find out what

Licensed to James M White <jwhite@maine.edu>

SELECTING A RUN CONTROL RECORD 601

Run Control record is used in the report. First, we need to find the name of the panel
to which this report is attached.

We select View → Panel Name from the Administer Workforce (U.S.) menu,
which allows us to see the panel name used for this report.

As you can see from figure 27.1, the panel name is RUNCTL_PER003.

TIP You can select most of the delivered Run Control panels by typing
‘RUNCTL_’ in the Application Designer. They are a good source from
which to clone.

Open this panel in the Application Designer to ascertain what record is used as
its Run Control record.

When the panel is opened, select Layout → Order from the Application Designer
menu (figure 27.2).

Navigation: GO → Administer Workforce → Administer Workforce (U.S.) → Report →
Years of Service

Figure 27.1 The Run Control panel for Years of Service report

Licensed to James M White <jwhite@maine.edu>

602 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

This report uses an application Run Control record named RUN_CNTL_HR.
The structure of this record is shown in figure 27.3.

Figure 27.2 The RUN_CNTL_HR record is used as report’s Run Control record

Navigation: Go → PeopleTools → Application Designer → Open → Panel →
RUNCTL_PER003

Figure 27.3 The RUN_CNTL_HR Run Control record

Licensed to James M White <jwhite@maine.edu>

SELECTING A RUN CONTROL RECORD 603

As you can see from the figure 27.3, this record contains not just the fields neces-
sary for our report. It is also used as a placeholder for most HRMS report input param-
eters. This does not mean, of course, that all record fields have to be used in every single
report. If you know that your report input parameters are among the fields in this
record, you can safely use the record as your report application Run Control record.

Let’s see if we can use the RUN_CNTL_HR record for our Problem Tracking Sta-
tus report program. Our program accepts two parameters: As Of Date and
Problem Status. The first one, As Of Date, is present in the RUN_CNTL_HR
record. The second parameter is our custom field, therefore, we won’t find it in the
delivered record. We can possibly use any other character type field as a placeholder
for our Problem Status field, but if we want to do specific field edits to verify the
proper entries, we would be better off creating our own custom Run Control record.
Later on, we may want to add other fields to this record and use the record for other
custom reports.

The safest way to create our own custom Run Control record is, of course, to
clone an existing one. Since the RUN_CNTL_HR record is too big, and, if cloned, will
require some effort in deleting all unused fields, let’s rather use another record as a
template, the PRCSRUNCNTL. This is a PeopleSoft-delivered record used for reports
with no application-specific input parameters (figure 27.4).

The fields OPRID and RUN_CNTL_ID are the PRCSRUNCNTL record key
fields. The LANGUAGE_CD and LANGUAGE_OPTION fields are used in global
development projects. The default value of the LANGUAGE_CD field depends on
your operator ID. The LANGUAGE_OPTION tells the system if you are allowed to
change the LANGUAGE_CD field.

After saving this record as MY_RUN_CNTL, deleting the LANGUAGE_CD and
LANGUAGE_OPTION fields, and adding the fields that we need as our report input
parameters, the record will look like that in figure 27.5.

Figure 27.4

The PRCSRUNCNTL record is used for

reports with no application specific

input parameters

Licensed to James M White <jwhite@maine.edu>

604 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Since we’ve created our own record, we should not forget to add a description to
identify the customizations.

After saving the record again, let’s execute the Build option to create the database
level table (figure 27.7).

Figure 27.5

Creating a custom Run

Control record:

MY_RUN_CNTL

Figure 27.6

Entering record properties

Licensed to James M White <jwhite@maine.edu>

CREATING A RUN CONTROL PANEL 605

As soon as the record is saved, it is automatically added to our project.

Now we can save the project and go to the next step of creating a Run Control
panel.

27.2 CREATING A RUN CONTROL PANEL
CREATING A RUN CONTROL PANEL

PeopleSoft delivers many Run Control panels along with its applications. Therefore,
if your report is using the same parameters as one of the PeopleSoft-delivered reports,

Figure 27.7

Building our custom Run Control record

Figure 27.8 MY_RUN_CNTL Run Control record is added to a project

Licensed to James M White <jwhite@maine.edu>

606 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

it makes perfect sense to re-use the delivered panel. Since our report uses custom
fields as input parameters, we create a new Run Control panel for it.

As we discussed in parts 2 and 4 of this book, each panel should have at least one
record linked to it. In our particular case, we already know what record we are sup-
posed to link to the Run Control panel since we just created it: it’s our
MY_RUN_CNTL record, which will hold all input parameters for our report.

Just as we did for the record creation, let’s clone the Run Control panel that does
not accept any parameters, then add our two fields to it. The panel name is
PRCSRUNCNTL.

Let’s check the panel structure in the Application Designer.

Navigation: Go → PeopleTools → Application Designer → File → Open.

Enter Panel as an object type, and PRCSRUNCNTL as a panel name. Press
ENTER. You will see the panel that appears in figure 27.9.

 The panel contains a subpanel named PRCSRUNCNTL_LC_SBP. All the
PRCSRUNCNTL panel fields are located inside of this subpanel. If you select Layout,
Test Mode, or click on the Test Mode button , you can see all the panel fields (fig-
ure 27.10).

Figure 27.9 The standard Run Control panel with no input parameters

Licensed to James M White <jwhite@maine.edu>

CREATING A RUN CONTROL PANEL 607

Of the three fields in the panel, operator ID and the Run Control ID are the key
fields automatically populated from the operator ID and the Run Control ID you
entered. The third field, Language, is optional. If the operator does not select any Lan-
guage from a prompt, it defaults to the operator’s default language.

Since we are using this panel as a basis for cloning, we first save it as
MY_RUN_CNTL_PRB01 panel and then modify it (figure 27.11).

After pressing the OK button, we add our custom fields to the panel under con-
struction. This time we use our project to speed up the development. Double-click on
the MY_RUN_CNTL record from the project workspace window. You can see all the
fields in our record. Click on the As Of Date field and drag it to the panel space. Drop
the field on the panel where you want the field to be placed. Repeat the same proce-
dure for the MY_PROBLEM_STATUS field. Figure 27.12 shows our new panel.

Figure 27.10 The PRCSRUNCNTL panel in test mode

Licensed to James M White <jwhite@maine.edu>

608 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Since we modified our panel, let’s not forget to save it.
Let’s check the panel’s layout. Select Layout → Order (figure 27.13).

Figure 27.11 Cloning the PRCSRUNCNTL panel

Figure 27.12 Dragging fields from the project to the panel

Licensed to James M White <jwhite@maine.edu>

CREATING A RUN CONTROL PANEL 609

Our simple Run Control panel has only Level 0 fields. The standard subpanel is
linked to the PRCSRUNCNTL record that has the same keys as our MY_RUN_CNTL
record. Our two fields are in the correct order and belong to our custom record. The
last thing we need to do is to update the Panel’s properties.

Our panel design is complete. In order to place it in a menu, we need to create
a panel group.

Figure 27.13

Verifying the panel’s

layout

Figure 27.14

Specifying panel’s properties

Licensed to James M White <jwhite@maine.edu>

610 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

27.3 CREATING A PANEL GROUP
CREATING A PANEL GROUP

After a panel is selected or created, it must be
added to a panel group before you can attach it to
a menu. A panel group is actually a link between
the panel and the menu. Multiple panels may
exist within a single panel group.

Let’s create a new panel group by selecting
File, New (in the Application Designer menu),
and double-clicking on Panel Group in the New
dialog (figure 27.15).

The Application Designer Panel Group screen appears (figure 27.16).

We now need to add our panel (MY_RUN_CNTL_PROB01) to the panel group.
To do this, you can either click on the Insert Panel button on the toolbar, or select
Insert, Panel into Group, or use the drag-and-drop technique from the project window.

Figure 27.15 Creating a new

Panel Group

Figure 27.16 The Panel Group panel

Licensed to James M White <jwhite@maine.edu>

CREATING A PANEL GROUP 611

Each panel in a group has a set of properties. The MY_RUN_CNTL_PRB01 panel
has been added to the panel group with its properties set to their default values. Let’s
change these values to make them more meaningful.

The Item Name is used for informational purposes only, but it must be unique
within the panel group. We’ll specify our own name as Problem_Tracking.

The next property column is Hidden. You only check this value On if you need
the panel to be hidden from the user’s view. We’ll leave the value of this column Off.
You can have several panels in a panel group with the Hidden value set to Off and
one or more panels with the value set to On. This technique is used when you need
to bring to the buffer certain fields from some panels, but you don’t want to display
these panels to users.

The Item Label column is your panel name as it will appear on the menu. It will
also be displayed at the bottom of the panel and as the default Folder tab label. Right
now, it is named RUN CNTL PRB01, which is not very meaningful. Let’s call it
Problem Status Report.

The Folder Tab Label is used to identify the Folder tab when the Panel Group
is selected. Let’s name it Problem Status for our task.

After we enter all the values, our panel group definition looks like that shown in
figure 27.18.

Figure 27.17 Dragging a panel from a project workspace to a panel group

Licensed to James M White <jwhite@maine.edu>

612 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Now, let’s try to save our panel group.
After clicking on the OK button, an error
message pops up (figure 27.20).

The Panel Group designer reminds us
that we cannot save our panel group yet. We
have not completed the design. We need to
set the properties for the entire panel group,
including search records, update and data
entry actions, and detail panel information.

As we discussed in part 4, in order to
allow our users access to the panels, the Search
record has to be attached to the panel group.
The search record that you select should con-
tain all the keys that your user needs in order
to retrieve rows displayed on the panel. Based
on the actions that the user selects (Add,

Update/Display), the Application Processor creates a prompt dialog box, which
contains all the key fields in the search record. In our case, since we are defining a
search record for a Run Control panel, the key fields are the operator ID and the Run
Control ID. When the user selects an action to run a report, he/she is usually presented
with two options: Add and Update/Display. When the Update/Display
option is selected, the report is run under an existing Run Control ID. If the Add
option is selected, a new Run Control ID is created to be used with the report. And,
since the dialog box for operator should contain only the Run Control ID, you can

Figure 27.18 Setting panel group properties

Figure 27.19 Saving a panel group

Figure 27.20 Panel group error window

Licensed to James M White <jwhite@maine.edu>

SELECTING A MENU FOR YOUR REPORT 613

always specify the standard PRCSRUNCNTL record as a search record for your report’s
panel group, no matter what application-specific parameters are defined for your
report. This greatly simplifies the task of creating a panel group for reports.

PeopleSoft-delivered reports use the same search record: PRCSRUNCNTL.
Let’s get back now to figure 27.20. After clicking on the OK button, the Panel

Group Properties window appears. Let’s fill in the Use tab as well as the General tab
with the panel group description.

After all information is entered in the two tabs of Panel
Group Properties, we can save our panel group. Select File,
Save, and enter the new panel group name as MY_PROB01.
Our panel group is automatically added to the project
(figure 27.22).

27.4 SELECTING A MENU FOR YOUR REPORT
SELECTING A MENU FOR YOUR REPORT

The next decision you must make concerns the menu under which you will run your
report. During the course of developing our Problem Tracking application, we

Figure 27.21

The Panel Group Properties

Figure 27.22 Saving

the MY_PROB01 panel

group automatically

adds it to our project

Licensed to James M White <jwhite@maine.edu>

614 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

already created a separate menu item named Problem Tracking. Let’s open this menu
item and add another item, Reports, to the menu bar. In order to do so, just click on
the empty rectangle (figure 27.23), and specify the new Bar Item properties.

Next we add a new menu item named Status Report to the Problem Tracking
menu under the Report menu bar.

To create a new menu item, double-click on the empty rectangle on the menu.
The Menu Item Properties dialog appears (figure 27.24).

On the panel shown in figure 27.24, click on Select and add our MY_PROB01
panel group to the Status Report menu item.

After the new menu item is created, you have to decide who will be able to access
it. Only users who belong to the proper operator class should be granted access to the
new menu item.

Figure 27.23 Adding a new bar item to the menu

Licensed to James M White <jwhite@maine.edu>

GRANTING SECURITY ACCESS 615

27.5 GRANTING SECURITY ACCESS
GRANTING SECURITY ACCESS

Since we created a new menu item, we have to allow certain users to access it.
First, you need to grant access to the ALLPANLS operator class, which will be used

in testing your application. Select File, Open and enter ALLPANLS as shown on the
screen in figure 27.25.

Press OK and click on the Menu Items icon to display the list of all available
menus for this operator class (figure 27.26).

Figure 27.24 Adding a new menu item to the Report menu bar

Licensed to James M White <jwhite@maine.edu>

616 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

We placed our new menu item under the Problem Tracking menu. In order to
see all menu items under this menu, let’s double-click on Problem Tracking. The sys-
tem returns a list of all available menu items under the Problem Tracking menu
(figure 27.27).

Figure 27.25

Opening the security

panel for ALLPANLS

operator class

Navigation: Go → PeopleTools → Security Administrator.

Figure 27.26

Menu Items to which

ALLPANLS has access

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR CHANGES 617

The newly created menu bar Report and the item Status Report are not high-
lighted and, therefore, not available to any operator from the ALLPANLS operator class.

Let’s highlight all three lines that belong to the Status Report item by clicking
on each line. Press OK to make our new menu item available for the ALLPANLS oper-
ator class.

27.6 TESTING YOUR CHANGES
TESTING YOUR CHANGES

So far in this chapter we created the following new objects:

• Run Control record, MY_RUN_CNTL
• Run Control panel, MY_RUN_CNTL_PRB01
• panel group, MY_PRB01
• menu bar, Report
• menu item, Status Report

Remember, our goal was to allow users to execute our SQR report from the online
panels via PeopleSoft Process Scheduler. Is this all we need to do? If you recall all the
steps we went through in this chapter, you’ll note that our SQR report was never linked
to any of our new objects. We prepared a Run Control record to hold the input param-
eters; we created a panel to accept these parameters online; and we even created a menu
from which to display the panel. The last step is to create a process definition in order
to attach our SQR to the panel group. We will discuss all the steps of creating a process
definition in the following subchapter. Before we do this, we can test all the objects
we developed without executing our SQR. It is important to make certain that our
online components work properly.

Figure 27.28 shows the new menu item.
Our new menu bar and menu item look as we planned. Let’s select the Add action

and make sure that our new panel group and panel are working as well. After entering
a new Run Control ID, MY_STATUS_01, the system displays the panel shown in
figure 27.29.

Figure 27.27

Selecting the Problem Tracking

menu from all menus available to the

ALLPANLS class

Licensed to James M White <jwhite@maine.edu>

618 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Figure 27.28 The newly added menu bar Report and menu item Status Report

Navigation: GO → Problem Tracking → Report → Status Report

Figure 27.29 Invoking the Status Report panel

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR CHANGES 619

If you click on the As Of Date field, the date selection calendar should pop up,
since this field was defined as a date. Let’s test this field first.

As you can see, we can select any date from the pop-up panel. Let’s click on the
24th of July. After the As Of Date is entered, move on to test our next field, the Prob-
lem Status (figure 27.31).

The Problem Status field prompts us to select from any of the values in the edit
box. Let’s select Initiated and save our selections. Where will the values be kept?
The system saves all the panel’s values in the record attached to this panel. In our case,
that record is the MY_RUN_CNTL record that we created for this purpose. You can
use your database-specific native SQL tools to select data from this table in order to
be sure that our panel is working properly.

Figure 27.30 Selecting the date in As Of Date field from the pop-up calendar

Licensed to James M White <jwhite@maine.edu>

620 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Figure 27.32 shows the selected row from our Run Control table
PS_MY_RUN_CNTL. (Remember, you have to add the prefix ‘PS’ to the tables when
accessing them via your database native SQL tools.) All the fields we entered are prop-
erly saved. It is a good idea to always verify your Run Control tables when creating
new panels to make sure they are populated correctly.

And now we are ready to create a process definition for our SQR report.

Figure 27.31 Selecting the Problem Status value for our report

Figure 27.32 Selecting the Run Control information

Licensed to James M White <jwhite@maine.edu>

THE PROBLEM STATUS REPORT 621

27.7 CREATING A PROCESS DEFINITION
FOR THE PROBLEM STATUS REPORT

THE PROBLEM STATUS REPORT

Every process run under the PeopleSoft Process Scheduler needs a process definition
to specify the process attributes and link the process to the appropriate panel group.
We will go through all the steps of creating a process definition for our Problem Sta-
tus report.

The system displays the Process Definition dialog box (figure 27.33).

As you can see from the dialog box, we have to select the appropriate process
type for our process. Please note that the valid type for our process is SQR Report,
not SQR Process.

NOTE If you select SQR Process instead of SQR Report for the Process Type, the
Process Scheduler will not pass the operator ID and Run Control ID to
your program, and the program will not work correctly, unless you specify
operator ID and Run Control ID as additional parameters.

Figure 27.33 Assigning a type to your process

Navigation: Go → PeopleTools → Process Scheduler → Use → Process Definitions →
Process Definitions → Add

Licensed to James M White <jwhite@maine.edu>

622 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

The process name must be the same as your program name: MYPROB01. Please
note that no SQR extension is needed (figure 27.34).

After you press OK, the system displays the Process Scheduler Process Definitions
panel group (figure 27.35). This panel group consists of the following three panels:

• the Process Definitions panel
• the Process Definitions Options panel
• the Panel Transfers panel.

The Process Definitions panel tab is the only one you have to fill in; the other
two tabs in this panel group are optional.

Figure 27.34

No extension is needed when

entering the program name

Figure 27.35 The Process Definitions panel

Licensed to James M White <jwhite@maine.edu>

THE PROBLEM STATUS REPORT 623

27.7.1 The Process Definitions panel

In the Process Definitions panel, you have to enter information about your process.
Let’s look at all the fields on the panel shown in figure 27.35.

• The Description will be displayed along with your process name on the Process
Request panel, so make it meaningful.

• The Process Class must be a valid process class from the selection list. In our case,
it is SQR Report.

• The Server Name (Optional) is specified if you plan to always run your process
on a particular server. Otherwise, leave it blank. If, for example, you have both
the Unix Server and the NT Server available to run your process, and you do not
specify the server name on this panel, users will be able to select the server of
their choice on the Process Request panel. If a user leaves the server name blank
on the Process Request panel, the system will automatically find the first avail-
able server that can process the request for this process class.

TIP The server name can be specified only if the run location is Server.

• The Priority can be set to Low, Medium, or High. If several processes are queued
on a particular server, the system will be using this selection to decide which
process should be initiated first. This parameter is applicable for processes that
run on a server only.

• The Run Location (Optional) can be Server, Client, or Both. If either
Server or Client is selected, it specifies the run location for your process
request. If set to Both, the process is initiated on the Run Location set in the
Process Scheduler Request panel. Note that this selection takes precedence over
the Process Scheduler Request specification. This means that, if you select
Server here, the process will be scheduled to run on the server only, regardless
of what the user specifies in the Process Scheduler Request dialog box.

• The Recurrence Name (Optional) can be selected only for processes that run on a
server. The recurrence definitions are created in the Process Request dialog. All
previously created recurrence definitions are shown in the drop-down list for the
Recurrence Name field. Note, if you specify the Recurrence Name here, this does
not mean that the process will automatically start and run according to the spec-
ified recurrence definition.

TIP In order to schedule your process for recurrent execution it has to be started
manually from the Process Request Dialog Panel for the first time.

(Please see more about using run recurrences for your process in chapter 30.)

• The Long Description (Optional) is used for your process description.

Licensed to James M White <jwhite@maine.edu>

624 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

• An API Aware process is a process that updates the Process Request table
(PSPRCSRQST) with the process run status (Error, Success, and such), com-
pletion code, message set, and message number. This allows the system to per-
form a Commit or a Rollback, depending on the run status. Based on the
process execution results, the system displays a standard or custom message on
the Process Monitor’s Process Request Detail panel. Not every program is API
Aware. You have to add certain logic to your SQR program to make it API Aware.

WARNING Turning the API Aware flag On does not automatically make the process
API Aware.

We’ll discuss the process of making an SQR program API Aware in detail in the
next chapter, but please note that, if your program is not API Aware, the flag must be
turned Off.

As you can see, we turned this flag off for MYPROB01 process definition, since
we did not place any special code to make our program API Aware—yet. (We’ll do this
in the next chapter.)

• If Log Client Request is on, the system logs the request on the Process Request
table every time the process is run on the client. This is useful as an audit trail.
Note that, for all server run requests, logging is always performed. By default, it
is turned On for all API Aware processes.

• The SQR Runtime is checked when you want the system to append the .sqt
extension to the process name (used for precompiled SQR programs). It will use
the SQT working directory. For our Problem Status program, this option should
be turned off.

• The Panel Group is used to specify the panel group from which you want to run
your process.

In our case, the panel group is MY_PROB01 because we created this panel group
to run the Status Report. Note that, in order to link your process to a panel group,
this panel group must be created prior to creating the process definition.

TIP Make sure you enter the correct panel group name. PeopleSoft does not
edit this field. If you misspell it, users will not be able to run your process.

To avoid the problem, click on the panel group and press CNTL + F4. The
system will display a list of all available panel groups.

Optionally, you can specify more than one panel group for your process by insert-
ing additional rows in the Panel Groups box. In this case, the process will appear on
all selected panel groups.

Licensed to James M White <jwhite@maine.edu>

THE PROBLEM STATUS REPORT 625

• The Process Security Groups define operator classes or operators that have permis-
sion to submit this process. At least one process security group must be specified.
You can allow multiple process security groups to run your process. You have to
specify the process security groups that belong to your user’s operator class. If
you specify a security group here, but do not give permissions to some operators
to use this group, the process will not be visible to those operators.
Let’s make certain that the HRALL process security group belongs to the ALL-
PANLS class. Switch to the Security Administrator panel, click on the Process
Groups icon within the panel, and check if the operators who belong to the ALL-
PANLS class are allowed to use the HRALL process group. HRALL must be
among other process security groups under the ALLPANLS class (figure 27.36).

Figure 27.36 The authorized Process Groups for the ALLPANLS operator class

Licensed to James M White <jwhite@maine.edu>

626 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

27.7.2 Process Definition Options panel

The second panel of the Process Scheduler panel group, the Process Definition
Options panel, (figure 27.37) is optional.

This panel is used to modify the process parameter list, command line, working
directory, and SQR flags and parameters. It is also used to change the Output Desti-
nation parameters.

The drop-down lists for each parameter allow you to preface, append, or override
each parameter for your process. Suppose you want to invoke the SPF Viewer after
generating your program.spf file. All you need to do is append the –ZIV flag to your
SQR Flags parameter in your Process Definition Options panel (figure 27.38).

To illustrate another useful example (figure 27.38), we appended two parameters to the
standard parameter list: MY_DERIVED.MY_USER_ID and MY_USER_TABLE.NAME.
This is a simple and efficient technique that allows you to pass the parameters directly from
your panel to the SQR program. The parameters are coded in the form of
Record.Field. Please note that the SQR program must issue two additional input com-
mands in this case to accept these two parameters.

Figure 27.37 The Process Definitions Options panel for our process definition

Licensed to James M White <jwhite@maine.edu>

THE PROBLEM STATUS REPORT 627

TIP When appending additional SQR parameters via the Process Definitions
Options panel, your SQR program should contain the Input commands to
accept these additional parameters.

TIP For SQR programs, Output Dest Source must be set to User Specified.

For our process we won’t be using any of the panel fields.

27.7.3 Panel Transfers panel

The Panel Transfers panel is a part of PeopleSoft Workflow. Also optional, it allows
you to transfer to the specified panel from the Process Monitor after your process is
successfully completed. You can specify directions of transfer and menu actions in
this panel.

Figure 27.38 An example of the Process Definitions Options panel with

additional parameters

Licensed to James M White <jwhite@maine.edu>

628 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

For our sample program, we will leave this panel unchanged.

27.8 SPECIFYING THE PROGRAM DIRECTORY
SPECIFYING THE PROGRAM DIRECTORY

Your last task is to place your program into the right directory so that the Process
Scheduler will be able to find it. How do we know where the Process Scheduler
expects to find the program? Let’s take a look at the PeopleSoft System Configura-
tion Manager.

Figure 27.39 The Panel Transfers panel

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR PROCESS DEFINITION 629

You have to ensure that your SQR program is in the path specified by either
PSSQR1, PSSQR2, PSSQR3, or PSSQR4 search path variables. Let’s copy the
MYPROB01.sqr program into c:\hrms75su\user\sqr.

27.9 TESTING YOUR PROCESS DEFINITION
TESTING YOUR PROCESS DEFINITION

Now, we are ready to run our SQR program.
Select the Status Report from the Problem Tracking Menu. The system displays

a Run Control prompt as shown in figure 27.41.
Note that this time we select the Update/Display option since we already cre-

ated our Run Control record and therefore can reuse it. Let’s select the
MY_STATUS_01 Run Control ID.

The system displays the Run Control panel shown in figure 27.42.

Navigation: Edit → Preferences → Configuration → Process Scheduler

Figure 27.40 The PeopleSoft System Configuration panel

Licensed to James M White <jwhite@maine.edu>

630 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

As you can see from figure 27.42, all the parameters in this panel are already set
up. This is because the information is retrieved from our Run Control record that is
attached to this panel. We are ready to execute our program for the first time from the
online panel. Click on the Traffic Light, and you will be presented with the process
request panel (figure 27.43).

Figure 27.41

Run Control prompt

Navigation: Go → Problem Tracking → Report → Status Report → Update/Display

Figure 27.42 The Problem Status Report Run Control panel

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR PROCESS DEFINITION 631

On the lower portion of the Process Scheduler Request panel, you can see that
MYPROB01 is displayed as a program name. This means that the process definition
that we created earlier correctly attached our SQR program to the panel group.

Let’s click OK and start testing our pro-
gram. The program should run to the end
without any problems.

Our program displays the first input
prompt (figure 27.44).

After entering a valid date, we see
another prompt (figure 27.44) for the prob-
lem status value.

Once we enter the problem status value,
the program runs to the end. You may be ask-
ing yourself a question: “Why do we need to
enter the same input information in both the
Run Control panel and the prompt boxes?”
The reason for this strange behavior is that
our program does not know that it runs under
the Process Scheduler. If the program is called
for execution from the Process Scheduler, it

should accept the input parameters from the online Run Control panels; otherwise,
it should prompt the user to enter the input parameters via the Input command. In
our next chapter, we will discuss this in detail, and will modify our SQR program to
work correctly no matter under what environment it runs.

Figure 27.43

The Process Request

panel for the Problem

Status report

Figure 27.44 SQR Prompts for the As Of

Date value

Figure 27.45 SQR Prompts for the

Problem Status value

Licensed to James M White <jwhite@maine.edu>

632 CHAPTER 27 ATTACHING SQR TO THE PROCESS SCHEDULER

Let’s verify the process execution status on the Process Monitor panel
(figure 27.46).

The status of the MYPROB01 process on the Process Monitor panel shows
Success. This sounds good, but it does not mean that your project is finished. Even
if our program fails, the Process Monitor has no idea of the program execution status.
Remember that we just took an SQR program developed with no PeopleSoft interface
code and plugged it into the PeopleSoft Process Scheduler. This allowed us to initiate
and run the program from the PeopleSoft panel. The Status Report output has been
created, but the Process Monitor’s process status has not been updated. Therefore,
PeopleSoft has no idea about the return code of the process. In the next chapter, you
will learn how to solve the problem by making your program API Aware.

Figure 27.46 The Process Monitor panel

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR PROCESS DEFINITION 633

KEY POINTS

1 Any Run Control record must have the operator ID and the Run Control
ID as its key fields.

2 A Run Control record may contain additional fields not used in your program.

3 A Run Control panel should be made specific to your application and
should contain (or display) only the necessary fields.

4 A process definition must be created to link to the panel(s) from which it
will be run.

5 You can add your SQR Program to an existing menu item or create a new one.

6 The appropriate security access must be granted to all operator classes that
will be allowed to see the new menu item.

7 In order to inform the Process Monitor about the status of your program,
you have to modify the program to make it API Aware.

Licensed to James M White <jwhite@maine.edu>

634

C H A P T E R 2 8

Communicating with
the Process Scheduler

28.1 Using PeopleSoft-delivered SQC
files 635

28.2 Exercise 2: Make your SQR program
API Aware 636

28.3 Creating a new process definition for
an API Aware program 640

28.4 Exercise 3: Accept the As Of Date and
problem status parameters from an on-
line panel 643

28.5 Testing your changes 652

In most cases, SQR programs that run under PeopleSoft need certain changes. While
any SQR program can be executed under the Process Scheduler, only programs that
include special code are capable of communicating their status back to the Process
Scheduler. In order to allow the Process Monitor to reflect your program status, you
have to make your program API Aware.

Licensed to James M White <jwhite@maine.edu>

USING PEOPLESOFT-DELIVERED SQC FILES 635

28.1 USING PEOPLESOFT-DELIVERED SQC FILES
USING PEOPLESOFT-DELIVERED SQC FILES

PeopleSoft provides a number of routines that handle the communication between
SQR programs and the Process Scheduler. In order to make your SQR program API
Aware, you have to add the PeopleSoft-delivered program files (SQC files) that con-
tain these routines to your program. At a minimum, you need to include the
STDAPI.sqc and SETENV.sqc files to your program. The STDAPI.sqc, in turn, uses
the nested #Include operators that refer to other important API files (figure 28.1).
Let’s look at two of these files: PRCSDEF.sqc and PRCSAPI.sqc.

These 2 procedures are called from every API Aware SQR Program.

The PRCSDEF.sqc file includes the Define-Prcs-Vars procedure. This
procedure initializes all the fields used in API. The PRCSAPI.sqc file includes two
important procedures: Get-Run-Control-Parms and Update-Prcs-Run-
Status. The first procedure, Get-Run-Control-Parms, retrieves the input
parameters (Process Instance, Operator ID, and Run Control ID) and
updates the run status of the process request to Processing. The PRCSAPI.sqc,
Update-Prcs-Run-Status procedure, is designed to update the Process Request
table (PSPRCSRQST) upon program completion.

When you run your program from the Process Scheduler, the control parameters
that identify your process (the process instance, the operator ID, and the Run Control
ID) are passed as a part of the command line. The application-specific input param-
eters are not passed to the program—these parameters are saved in the Run Control

STDAPI.SQC

 STDAPI-INIT
 STDAPI-TERM

STDVAR.SQC

PRCSDEF.SQC

 DEFINE-PRCS-VARS

PRCSAPI.SQC
 GET-RUN-CONTROL-PARMS
 UPDATE-PRCS-RUN--STATUS
 UPDATE-PROCESS-STATUS
 GET-JOB-INSTANCE
 CHECK-MESSAGE-PARMS
 PARSE-MESSAGE-PARMS

EOJ.SQC
 SUCCESSFUL-EOJ

PRCSLANG.SQC

 GET-LANGUAGE-CODE
 GET-OPERATOR-LANGUAGE
 GET-PSOPTION-LANGUAGE
 GET-CURRENT-LANGUAGE

SQLERR.SQC

 SQL-ERROR

CURDTTIM.SQC

 GET-CURRENT-DATETIME

TRANCTRL.SQC

 BEGIN-TRANSACTION
 COMMIT-TRANSACTION
 ERRCOMMIT
 ROLLBACK-TRANSACTION

DEFINE-STANDARD-VARS

Figure 28.1 The Process Scheduler API SQC files and procedures

1

1

Licensed to James M White <jwhite@maine.edu>

636 CHAPTER 28 THE PROCESS SCHEDULER

table. When you run the same program from the SQR dialog box or from the com-
mand line, the Get-Run-Control-Parms API procedure does not detect any input
values from the Process Scheduler and instead identifies the process as being run from
outside the Process Scheduler.

Figure 28.1 lists PeopleSoft-delivered API SQC files and procedures and also
shows the location of each API procedure and SQC file.

28.2 EXERCISE 2: MAKE YOUR SQR PROGRAM
API AWARE EXERCISE 2: MAKE YOUR SQR PROGRAM API AWARE

Making an SQR program API Aware involves adding program code to update the
Process Request table (PSPRCSRQST) with the program run status (Error,
Success, and so on), completion code, error message set, and error message number.

28.2.1 Incorporating SQC files into your program

Let’s add the SQC files we just discussed to our Status Report. (The updated program
will be called MYPROB02.sqr). To save space, we will show only the modified parts of
the program.

!MYPROB02.SQR
!Problem Status Report

#include 'setenv.sqc'

!…
!**************
Begin-Program
!**************
do Init-DateTime
do Init-Number
Do Init-Report
Do Main
Do Stdapi-Term

End-Program

!***************************
Begin-Procedure Init-Report
!***************************
 Do Stdapi-Init
 Do Ask-Input-Parameters
 Do Build-Where
 Do Load-Xlats
End-Procedure
!…
!******************************
#include 'stdapi.sqc' !Routines to Update Run Status
#Include 'datetime.sqc' !Routines for date and time formatting
#Include 'number.sqc' !Routines to format numbers
#include 'askaod.sqc' !Ask As Of Date input

The Stdapi-Term procedure
in Stdapi.sqc calls the
Successful-Eoj procedure
from EOJ.sqc which updates
the run status to
'Successful'

The Stdapi-Init procedure
in Stdapi.sqc call Define-
Prcs-Vars and Get-Run-
Control-Parms to initialize
API variables, gets control
parameters and updates the
run status to 'Processing'

STDAPI.SQC
includes all
necessary
API code

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: MAKE YOUR SQR PROGRAM API AWARE 637

At the program start, the Stdapi-Init procedure is invoked. This procedure is a part of
the PeopleSoft-delivered SQC file STDAPI.sqc. Stdapi-Init invokes two more proce-
dures in turn. The first one, Define-Prcs-Vars, is located in PRCSAPI.sqc. Its job
is to initialize all API variables. The second procedure, Get-Run-Control-Parms,
determines whether the program is called from the Process Scheduler and, if so, pro-
motes the run status from Initiated to Processing.

Let’s see how the Get-Run-Control-Parms procedure knows that the pro-
gram is invoked from the Process Scheduler. Take a look at the procedure source code
shown in the following example:

!The Get-Run-Control-Parms procedure
Begin-Procedure Get-Run-Control-Parms
 Input $prcs_process_instance

'Please press ENTER (Do not input a value)'
 if not isnull($prcs_process_instance)
 let #prcs_process_instance = to_number($prcs_process_instance)
 input $prcs_oprid 'Please press ENTER (Do not input a value)'
 let $prcs_oprid = upper($prcs_oprid)
 input $prcs_run_cntl_id 'Please press ENTER (Do not input a value)'
 else
 let #prcs_process_instance = 0
 end-if
 if #prcs_process_instance > 0
 let #prcs_run_status = #prcs_run_status_processing
 do Update-Prcs-Run-Status
 let #prcs_run_status = #prcs_run_status_successful
 end-if
end-procedure

As you can see, the procedure code begins with the Input command. If the program is
invoked from the regular SQR dialog window (which usually happens during the pro-
gram’s testing) or from the SQR command line, the operator receives the prompt
'Please press ENTER (Do not input a value)'. After the operator presses
the ENTER key, the $prcs_process_instance variable remains set to NULL, and
the procedure logic can easily detect this.

If the program is invoked from the Process Scheduler, the $prcs_process_
instance variable receives its value from the parameter list passed from the Process
Scheduler. The parameter list, besides the Process Instance value, also includes the oper-
ator ID, and the process run ID. Figure 28.2 shows the Process Request Detail panel for
the Status Report. For this particular program run, the Process Instance is equal to 4,
the Operator ID is PS, and the Process Run ID is MY_STATUS_01.

The first Input command
is used to check where the
program was called from

Licensed to James M White <jwhite@maine.edu>

638 CHAPTER 28 THE PROCESS SCHEDULER

The three Run Control parameters passed to an SQR program from the Process
Scheduler.

Let’s return to myprob02.sqr. At the end of the main section, the program calls
the Stdapi-Term procedure, which is a part of STDAPI.sqc. The purpose of this pro-
cedure is to update the PSPRSCRQST table with process run status, the message
parameters, and the return code. The chart in figure 28.3 will help you to figure out

Figure 28.2 Run Control parameters passed to an SQR program

1

1

Your SQR Program

SUCCESSFUL-EOJ
(in EOJ.SQC)

UPDATE-PRCS-RUN-STATUS

(in PRCSAPI.SQC)

UPDATE-PROCESS-STATUS
 Updates PSPRCSRQST Table to
 Set:
 - Run Status =#prcs_run_status
 - Return Code
 - Message Parameters

COMMIT-TRANSACTION
(in TRANCTRL.SQC)

 STDAPI-TERM
(in STDAPI.SQC)

Figure 28.3

The STDAPI-TERM procedure logic

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: MAKE YOUR SQR PROGRAM API AWARE 639

how the Stdapi-Term procedure communicates the program status to the Process
Scheduler.

As you can see, the run status in the PSPRCSRQST table is updated based on the
#prcs_run_status variable value. This variable determines the run status, which
you see on the Process Monitor panel.

28.2.2 Communicating errors back to the Process Scheduler

It is important to remember that, in case of an error, the value of the #prcs_run_
status variable must be updated by the application program. In a normal run,
PeopleSoft promotes the process run status in the following order: Queued,
Initiated, Processing, Success.

Please note that #prcs_run_status is a numeric variable. It cannot be
assigned the above text values directly. The PRCSDEF.sqc file includes a number of
predefined numeric status variables that can be used to assign the right status value to
the #prcs_run_status variable.

As soon as your program is scheduled to run, the Process Scheduler sets the run
status on the Process Monitor to Queued. Next, if all parameters in the process def-
inition are resolved and the system resources are available to run the process, the
Process Scheduler changes the status to Initiated. If your program fails to get
through the compilation stage, the status on the Process Monitor panel remains Ini-
tiated if your program runs on Client. If it runs on the Server, the status will be
changed to Error by the SQR invocation script.

The Stdapi-Init procedure (which must be called in the beginning of every
API Aware program) changes the status to Processing and updates the
PSPRCSRQST table. At this moment, you can see the status set to Processing on
the Process Monitor panel. The Stdapi-Init procedure then sets the
#prcs_run_status variable to Success (#prcs_run_status_successful)
in the program memory only, but holds back from updating the PSPRCSRQST table
until either the Stdapi-Term or SQL-Error procedure is called. Therefore, you
will still see the Processing status on the Process Monitor panel.

If your SQR program runs to the end, then calls the Stdapi-Term procedure
as shown in figure 28.3, this procedure updates the process status to Success. In case
of an error, it is your program’s responsibility to call a PeopleSoft-delivered error-
handling routine SQL-Error or code a similar logic in your program. Otherwise, the
status on the Process Monitor either remains set to Processing if your program
aborted during execution or, worse yet, is set to Success if the program ran to the
end and called Stdapi-Term regardless of the error situation.

If your program uses a PeopleSoft-delivered error handling routine (part of which
is shown in the following example), you do not have to worry about updating the API
variables in an error situation. If, however, your program uses its own error-processing
logic, the program must include a code to set all API variables to the proper values and

Licensed to James M White <jwhite@maine.edu>

640 CHAPTER 28 THE PROCESS SCHEDULER

update the Process Request table PSPRCSRQST. Following is an example of the
PeopleSoft-delivered SQL error-handling procedure:

!A part of the SQL Error
!procedure in SQLERR.SQC
if #prcs_process_instance > 0

let #prcs_message_set_nbr = #prcs_msg_set_nbr
let #prcs_message_nbr = #prcs_msg_nbr_sql_error
let #prcs_run_status = #prcs_run_status_error
let #prcs_rc = #sql-status
let $prcs_message_parm1 = $sql-error
let #prcs_continuejob = 0
do Rollback-Transaction
if $prcs_in_update_prcs_run_stat <> 'Y'

do Update-Prcs-Run-Status
do Commit-Transaction

end-if
end-if
#ifndef VMS

let #return-Status = 1
#end-if
stop

As you can see, the error-processing logic in an API Aware program should include
updating a set of API variables and calling the Update-Prcs-Run-Status procedure that
updates the Process Request table for your program. After the Process Request table is
updated, the Commit-Transaction function makes this table change permanent.

28.3 CREATING A NEW PROCESS DEFINITION
FOR AN API AWARE PROGRAM CREATING A NEW PROCESS
DEFINITION FOR AN API AWARE PROGRAM

Since our program name has changed from myprob01.sqr to myprob02.sqr, a new
process definition has to be created. Remember that a process definition must have
exactly the same name as your SQR program. If we modify our SQR program with-
out changing its name, we can just update the API Aware flag in the MYPROB01
process definition.

In our case, we create a new one. We repeat the same steps that we performed in
chapter 27. Just remember that, this time our process must be marked as an API Aware
process (figure 28.4).

After you save the panel in figure 28.4, the MYPROB02 process definition is cre-
ated. It has the same characteristics as MYPROB01, except that the API Aware flag is
now turned on. Also, we attached it to the same panel group, MY_PROB01. Will this
present any problems? How will the Process Scheduler know which program to exe-
cute? Let’s find out the answers to our questions by performing a simple test. Select
Status Report from the Problem Tracking menu and press the Traffic Light tool
bar button.

This procedure is usually referenced in the
On-Error parameter of the Begin-Sql

Updating the API
variables

Updating the
PSPRCSRQST table

Licensed to James M White <jwhite@maine.edu>

CREATING A NEW PROCESS DEFINITION FOR AN API AWARE PROGRAM 641

Figure 28.4 Creating a new process definition for an API Aware SQR program

Figure 28.5 Two SQR programs are available to run from the Process Scheduler

Licensed to James M White <jwhite@maine.edu>

642 CHAPTER 28 THE PROCESS SCHEDULER

As you can see from figure 28.5, two SQR programs are available now for execu-
tion from the Process Scheduler. Sometimes, it is a good and economical solution to
have several programs under the same roof (attached to the same panel group). For
example, if you have a detail report and a summary report, and you need to give your
users a way to execute either one of the two, you can place them together. In this case,
your users would have to highlight the process which they need to execute, and then
press the OK button.

In our situation, however, there is no need to keep the first report. It was not
designed to be executed from the Process Scheduler in the first place, and, therefore,
the report did not have any API interface code to communicate with API functions.
We can either disconnect this program from the panel group by deleting the panel
group from its process definition, or, using our database-specific SQL tools, we can
delete the obsolete process definition from the tools tables. Let’s use the second option
in order to keep our system clean.

28.3.1 Deleting the obsolete process definition

We have to use a trick here. Presently, PeopleSoft does not have any online tools avail-
able to delete obsolete process definitions from the database. Using our knowledge of
the PeopleSoft system (tools) tables, and with the help of the native SQL, we can cre-
ate a simple cleanup script:

delete from ps_prcsdefn
where prcsname='MYPROB01' and prcstype = 'SQR Report';
delete from ps_prcsdefngrp
where prcsname='MYPROB01' and prcstype = 'SQR Report';
delete from ps_prcsdefnpnl
where prcsname='MYPROB01' and prcstype = 'SQR Report';
delete from ps_prcsdefnxfer
where prcsname='MYPROB01' and prcstype = 'SQR Report';
delete from psprcsrqst
where prcsname='MYPROB01' and prcstype = 'SQR Report';
delete from pspnlfield
where prcsname='MYPROB01' and prcstype = 'SQR Report';

After the Delete script is executed, log out from your PeopleSoft system, delete your
cache files, and log back on to PeopleSoft.

To verify that the script we executed actually gave us the result we expected, we
repeat the steps again to bring up the process request with Problem Status report. We
can see that this time only one report is available for execution (figure 28.6)

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: ACCEPT PARAMETERS FROM AN ON-LINE PANEL 643

We can click on the OK button and execute our report now, but, if you remem-
ber, we have one more important problem to address. Our program does not currently
accept any parameters from the online panel that we created. Let’s first discuss what
tools PeopleSoft offers to simplify the task of obtaining the input parameters, then
implement this in our program.

28.4 EXERCISE 3: ACCEPT THE AS OF DATE
AND PROBLEM STATUS PARAMETERS
FROM AN ON-LINE PANEL EXERCISE #3: ACCEPT AS OF DATE AND PROBLEM
STATUS FROM AN ONLINE PANEL

Our task now is to modify MYPROB02.sqr so that it knows when it is being executed
from the PeopleSoft online panel and accepts the parameters without further prompt-
ing. The program should also retain the functionality of the Input prompt when it is
executed outside the Process Scheduler.

We have already done most of the work: we’ve developed the Run Control record
and panel and made sure that the online part of this project is working properly. We
were able to enter our parameters and to save them in the record. Let’s do the rest now.

28.4.1 Using application-specific SQC files

to obtain input parameters

PeopleSoft delivers a number of application-specific SQC files that are used to read
input parameters from Application Run Control records. Usually, two SQC files are
involved in reading the parameters: one file selects the input parameters, while

Figure 28.6 Only one report is available now for execution

Licensed to James M White <jwhite@maine.edu>

644 CHAPTER 28 THE PROCESS SCHEDULER

another one formats the selected parameters and moves them to the designated SQR
program variables. You can either use the PeopleSoft-delivered SQC files or develop
your own, depending on the parameters your SQR program needs to accept.

Let’s first learn how PeopleSoft-delivered SQR programs work with input
parameters. Later, you will learn how to use a similar approach in your program. Since
you have already become familiar with the PeopleSoft-delivered Years of Service
report, let’s examine how this program works. We know that this program accepts two
input parameters: As Of Date and Years of Service.

28.4.2 How the Years of Service program

accepts its input parameters

The name of the program that generates the Years of Service report is PER003.sqr. If
you open the PER003.sqr, and scroll down to the end of the program code, you can
see that it uses the following SQC files:

!SQC files that are used to obtain input parameters in the
!Years of Service program
#include 'hrrnctl1.sqc' !Get Run Control parameter values
#include 'hrgetval.sqc' !Get values mask routines
#include 'askaod.sqc' !Ask As Of Date input
#include 'asksrvyr.sqc' !Years Of Service input

This is how the input parameter read section of PER003.sqr appears:

!Procedures used in reading input parameters in PER003.sqr
begin-procedure Init-Report

 move 'PER003' to $ReportID
 do Delete-Worktable
 do Stdapi-Init
 if $prcs_oprid=''
 display ''
 display 'REPORT CAN NOT BE EXECUTED OUTSIDE OF PEOPLESOFT,PLEASE USE
PROCESS SCHEDULER.'
 display ''
 goto last1
 end-if

 do Sqr-Param

 if $prcs_process_instance = ''
 do Ask-As-Of-Date
 do Ask-Years-Of-Service
 else
 do Select-Parameters
 end-if
 do Init_Printer
 do Init_Report_Translation ($ReportID, $language_cd)
 do Append_Report_Translation ('HR')

Check to see if run from the
Process Scheduler. If yes, call
Select-Parameters.

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: ACCEPT PARAMETERS FROM AN ON-LINE PANEL 645

last1:

end-procedure

begin-procedure Get-Values
 let $language_cd = $PRCS_LANGUAGE_CD
 do Get-As-Of-Date
 do Get-Years-Of-Service

end-procedure

In the previous subchapter, we found that the Stdapi-Init procedure initializes
API variables and obtains the Process Scheduler command-line parameters (if any).
Next, the program determines the method of its invocation. The program may be ini-
tiated by the Process Scheduler or invoked some other way (submitted via the SQR
dialog box, executed from the command line, or called by another application). Based
on this check result, the program calls the proper subroutine to obtain the applica-
tion-specific input parameters.

If the program is not run under the Process Scheduler, the $prcs-process-
instance variable remains empty and the regular SQR Input command is used in
the Ask-As-Of-date and Ask-Years-Of-Service subroutines to read the
input parameters from user input. The Ask-As-Of-date code is located in the
ASKAOD.sqc file, and the Ask-Years-Of-Service is located in the
ASKSRVYR.sqc file.

If the program is invoked by the Process Scheduler, the $prcs-process-
instance variable is assigned the process instance number value, and the Select-
Parameters subroutine is called to retrieve the input parameters from a specific
application Run Control table. In terms of the Years of Service report, the program
is designed to work with the Run Control table named PS_RUN_CNTL_HR, but the
procedure logic is a typical example of the communication between an SQR program
and a PeopleSoft online panel.

Let’s examine the Select-Parameters procedure. The procedure code is
located in the HRRNCTL1.sqc file:

!A typical input parameters read procedure in HRRNCTL1.SQC
begin-procedure select-parameters
BEGIN-SELECT
RUN_CNTL_HR.OPRID
RUN_CNTL_HR.RUN_CNTL_ID
RUN_CNTL_HR.ASOFDATE

RUN_CNTL_HR.FROMDATE
RUN_CNTL_HR.THRUDATE
RUN_CNTL_HR.CALENDAR_YEAR
RUN_CNTL_HR.SERVICE_YEARS
RUN_CNTL_HR.AD_STEP
RUN_CNTL_HR.AD_STEP_ENTRY_DT
RUN_CNTL_HR.AD_COMPRATE

This procedure is
called from the
Select-Parameters
procedure.

Licensed to James M White <jwhite@maine.edu>

646 CHAPTER 28 THE PROCESS SCHEDULER

RUN_CNTL_HR.AD_HOURLYRT
RUN_CNTL_HR.AD_MONTHLYRT
RUN_CNTL_HR.AD_ANNUALRT
 !…
 !…
RUN_CNTL_HR.AD_CHANGEAMT
RUN_CNTL_HR.AD_CHANGEPCT
RUN_CNTL_HR.EEO_REPORT_TYPE
 do Get-Values
from PS_RUN_CNTL_HR RUN_CNTL_HR
where RUN_CNTL_HR.OPRID = $prcs_oprid
 and RUN_CNTL_HR.RUN_CNTL_ID = $prcs_run_cntl_id
end-select
end-procedure

In the previous procedure developed by PeopleSoft, the application-specific input
parameters are selected from the PS_RUN_CNTL_HR table for a given combination
of operator ID ($prcs_oprid) and Run Control ID ($prcs_run_cntl_id). As
you learned in the previous chapter, these two variables come from the Process Sched-
uler parameter list. An important and not-to-be-missed part of the Select-Param-
eters procedure is a call to the Get-Values procedure. This procedure moves and
edits the selected input parameter values to the designated variables in an SQR pro-
gram. If your program uses the HRRNCTL1.sqc file, the name of the input parameter
edit subroutine must be Get-Values. If you code the input parameter retrieval
logic yourself, the name of this subroutine (if any) can be different.

In the Years of Service report, a subroutine named Get-Values is a part of the
Per003.sqr code. You can see this subroutine in our previous example explaining pro-
cedures used to read input parameters. Because the Per003.sqr program accepts the
Language Code and two application-specific parameters, As Of Date and Years of
Service, the Get-Values subroutine in this case is simple. It moves the Language
Code value to its designated program variable and then calls the Get-As-Of-Date
and Get-Years-Of-Service procedures to format these two variables and to
move them to their respective designated variables:

begin-procedure Get-Values
 let $language_cd = $PRCS_LANGUAGE_CD
 do Get-As-Of-Date
 do Get-Years-Of-Service

end-procedure

28.4.3 Accepting input parameters in your SQR program

Now that you have learned how a PeopleSoft-delivered program retrieves its applica-
tion-specific input parameters, let’s apply this knowledge to the applicable Problem
Status report.

If your program includes the
HRRNCTL1.sqc file, a procedure
named Get-Values should be
coded withing your program.

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: ACCEPT PARAMETERS FROM AN ON-LINE PANEL 647

Our program has two input parameters: As Of Date and Problem Status.
We want to create our own include (SQC) files, which will help us in selecting and
reformatting input parameters for our program.

28.4.4 Creating your own SQC files

Please note that you do not have to place all input parameter retrieval and reformat-
ting logic into SQC files. This is just a convenient and modular way to read the input
parameters. It also gives you an advantage when you want to re-use this code for other
programs. Another way of working with your input parameters is to place this logic
directly in the application program.

In order to create new application-specific SQC files, we will be using our pre-
ferred technique of cloning the existing SQC files. You already know that you need to
have one SQC file to select the input parameter values from the appropriate Run Con-
trol record and another one to format the selected values and move them to designated
variables in your program. Bearing in mind that your application program should
retain an ability to be executed from either the SQR dialog box or the command line,
you must also provide the code to prompt the user for input parameters.

28.4.5 Creating an SQC file to select parameters

from the Run Control record

To create a new input parameter retrieval SQC file, we’ll clone the existing
HRRNCTL1.sqc file. Let’s bring this file in, save it as MYRUNCTL.sqc and change it
to make it work with the MY_RUN_CNTL Run Control record:

!The modified Select-Parameters procedure in MYRUNCTL.sqc
Begin-Procedure Select-Parameters
Begin-Select
OPRID
RUN_CNTL_ID
ASOFDATE
MY_PROBLEM_STATUS
 Do Get-Values
From PS_MY_RUN_CNTL
Where OPRID = $prcs_oprid
And RUN_CNTL_ID = $prcs_run_cntl_id
End-Select
End-Procedure

28.4.6 Creating an SQC file

to format selected input parameters

We use the existing HRGETVAL.sqc file as a basis when creating the new input
parameter formatting file MYGETVAL.sqc. All you need to do is delete the com-
mands that format unused input parameters, and add logic to format your parame-
ters. The changed program, MYGETVAL.sqc, is listed as follows:

Licensed to James M White <jwhite@maine.edu>

648 CHAPTER 28 THE PROCESS SCHEDULER

!***
! MYGETVAL.SQC:
!***
Begin-Procedure Get-As-Of-Date
!***
 Let $AsOfDate = RTRIM(&Asofdate, ' ')
 If $AsOfDate = ''
 Move $AsOfToday to $AsOfDate
 End-if
End-Procedure
!**
Begin-Procedure Get-Problem-Status
!**
Let $Problem_Status = RTRIM(&MY_PROBLEM_STATUS, ' ')
End-Procedure

As you can see, the modified program includes the Get-As-Of-Date procedure for
the As Of Date column variable. In addition, a new Get-Problem-Status pro-
cedure is added to get the additional parameter, MY_PROBLEM_STATUS.

After your SQC file is created, it should be saved in the directory specified in the
Configuration Manager panel under the Process Scheduler tab, in the SQR Flags
parameter for Client program execution.

28.4.7 Integrating the SQC files with your program

Let’s make a few modifications to the Problem Status report to make it work with the
newly created Run Control record and to include the new SQC files MYRUNCTL.sqc
and MYGETVAL.sqc. This time we list the entire program (listing 28.1):

!MYPROB02.SQR
!Problem Status Report

#include 'setenv.sqc'

#define problem_status_len 10
#define project_descr_len 30
#define date_len 10
#define priority_len 8
#define user_name_len 20
#define responsible_name 20
#define col_sep 2

!**************
Begin-Setup
!**************
Load-Lookup Name=Projects
 Rows = 500
 Table = PS_MY_PROJECT_TBL

Listing 28.1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: ACCEPT PARAMETERS FROM AN ON-LINE PANEL 649

 Key = MY_PROJECT_ID
 Return_Value=Descr

Load-Lookup Name=Users
 Rows = 1000
 Table = PS_MY_USER_TBL
 Key = MY_USER_ID
 Return_Value=Name

End-Setup

!****************
Begin-Heading 7
!****************
print 'Problem Status Report' (1,1) Center

page-number (0,100) 'Page No. '
print 'Run Date ' (+1,100)
print $ReportDate ()
print 'Run Time ' (+1,100)
print $ReportTime ()

Print 'Problem Status: ' (,1)
Print $Stat ()

print '=' (+1, 1, 125) fill
print 'Project Description ' (+1, 1, {project_descr_len})
print 'Incident ' (,+{col_sep}, {date_len})
print 'Priority ' (,+{col_sep}, {priority_len})
print 'User Name ' (,+{col_sep}, {user_name_len})
print 'Responsible ' (,+{col_sep}, {responsible_name})
print 'Close ' (,+{col_sep}, {date_len})

print ' ' (+1, 1, {project_descr_len})
print ' Date ' (,+{col_sep}, {date_len})
print ' ' (,+{col_sep}, {priority_len})
print ' ' (,+{col_sep}, {user_name_len})
print 'To Resolve ' (,+{col_sep}, {responsible_name})
print 'Date ' (,+{col_sep}, {date_len})
print '=' (+1, 1, 125) fill

End-Heading

!**************
Begin-Program
!**************
do Init-DateTime
do Init-Number
Do Init-Report
Do Main
Do Stdapi-Term

Licensed to James M White <jwhite@maine.edu>

650 CHAPTER 28 THE PROCESS SCHEDULER

End-Program

!***************************
Begin-Procedure Init-Report
!***************************
 Do Stdapi-Init
 If $prcs_process_instance = ''

Do Ask-Input-Parameters
 Else

Do Select-Parameters
 End-if
 Do Build-Where
 Do Load-Xlats
End-Procedure

!***************************
Begin-Procedure Get-Values
!***************************
 Do Get-As-Of-Date
 Do Get-Problem-Status

End-Procedure

!*************************
Begin-Procedure Load-Xlats
!*************************
 Let $Where_Xlat1 = 'FIELDNAME=''MY_PRIORITY'''

||' and X.EFFDT = (Select max(Effdt) from XLATTABLE '
||'Where Fieldname=X.Fieldname And FieldValue=X.FieldValue'
||' And Effdt <= Sysdate and Language_Cd = 'ENG') '

 Load-Lookup Name=Priority
 Rows = 10
 Table = 'XLATTABLE X'
 Key = FIELDVALUE
 Return_Value=XLATSHORTNAME
 Where=$Where_Xlat1

 Let $Where_Xlat2 = 'FIELDNAME=''MY_PROBLEM_STATUS'''
||' and S.EFFDT = (Select max(Effdt) from XLATTABLE '
||'Where Fieldname=S.Fieldname And FieldValue=S.FieldValue'
||' And Effdt <= Sysdate)'

 Load-Lookup Name=Status
 Rows = 20
 Table = 'XLATTABLE S'
 Key = FIELDVALUE
 Return_Value=XLATSHORTNAME
 Where=$Where_Xlat2
End-Procedure

Check to see if run from the Process
Scheduler; If yes, call Select- Parameters;
otherwise, call Ask-Input-Parameters

Located in MYRUNCTL.sqc

Call the Get-As-Of-Date and
Get-Problem-Status
procedures from MYGETVAL.sqc

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: ACCEPT PARAMETERS FROM AN ON-LINE PANEL 651

!***********************************
Begin-Procedure Ask-Input-Parameters
!***********************************
!Get User's Input

 Do Ask-As-Of-Date !in askaod.sqc

 Let #Input=1
 While #Input = 1
 Input $Problem_Status Type=Char 'Please Enter Problem Status(1=Initi-
ated, 2=Assigned, 3=Progress, 4=Testing, 5=Resolved,6=Void) or press Enter
for All' Status=#Input_Status
 If $Problem_Status = ''
 Let #Input = 0
 Else
 If $Problem_Status > '0' and $Problem_Status < '7'
 show 'Problem Status Entered = ' $Problem_Status
 Let #Input = 0
 Else
 Show 'Invalid Input, Re-Entry Required'
 End-If
 End-If
 End-While

End-Procedure

!***************************
Begin-Procedure Build-Where
!***************************
!Build Where Clause based on user's Input
 If $Problem_Status = ''
 Let $Where_status = ''
 Else
 Let $Status=Rtrim($Problem_Status,' ')
 Let $Where_status = 'And A.My_Problem_Status = '|| ''''||$Status||''''
 Show $Where_status
 End-If

End-Procedure

!*******************
Begin-Procedure Main
!*******************
Begin-Select
A.My_Problem_Status () on-break Print=Never After=Page-Break
Save=$Status_Cur

A.My_Project_ID
A.Incident_DT
A.My_Priority
A.My_User_ID
A.My_Problem_Tracker
A.Close_Dt

Call PeopleSoft-delivered function
to get As-Of-Date prompt.

Licensed to James M White <jwhite@maine.edu>

652 CHAPTER 28 THE PROCESS SCHEDULER

 Do Print-Line
From PS_MY_PROBLEM_TRKG A
Where A.Incident_Dt <= $AsOfDate
[$Where_status]
order by A.My_Problem_Status
End-Select

End-Procedure

!**************************
Begin-Procedure Print-Line
!**************************
 Lookup Projects &A.My_Project_ID $Descr
 Print $Descr (+1, 1, {project_descr_len})
 Print &A.Incident_DT (,+{col_sep}, {date_len})
 Lookup Priority &A.My_Priority $Priority_Descr
 Print $Priority_Descr (,+{col_sep}, {priority_len})
 Lookup Users &A.My_User_ID $User_Name
 Print $User_Name (,+{col_sep}, {user_name_len})
 Lookup Users &A.My_Problem_Tracker $Problem_Tracker_Name
 Print $Problem_Tracker_Name (,+{col_sep}, {responsible_name})
 Print &A.Close_Dt (,+{col_sep}, {date_len})

End-Procedure

!**************************
Begin-Procedure Page-Break
!**************************
Lookup Status $Status_Cur $Stat
new-page
End-Procedure

!******************************

#include 'stdapi.sqc' !Routines to Update Run Status
#Include 'datetime.sqc' !Routines for date and time formatting
#Include 'number.sqc' !Routines to format numbers
#include 'askaod.sqc' !Ask As Of Date input
#include 'myrunctl.sqc' !Get Run Control parameters
#include 'mygetval.sqc' !Format Run Control parameters

In listing 28.1, the code of the Status Report was changed to include the
MYRUNCNTL.sqc and MYGETVAL.sqc files. Also, we added a code to the
Init-Report and Get-Values procedures to reflect the new SQC functionality.

28.5 TESTING YOUR CHANGES TESTING YOUR CHANGES

Before we start testing, let’s list all the modifications that were made to make the
Problem Status report API Aware and to enable it to accept input parameters from the
Process Scheduler:

The custom SQC
files are added to
the program.

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR CHANGES 653

• The Stdapi-Init and Stdapi-Term procedure calls were added to the
MYPROB02.sqr program. The STDAPI.sqc include file was incorporated into our
program.

• The MYRUNCTL.sqc file was created to select input parameters from the
MY_RUN_CNTL record.

• The MYGETVAL.sqc file was created to format the selected parameters and to
move them to the designated program variables.

• The MYRUNCNTL.sqc and MYGETVAL.sqc files were included in the program.
• The Init-Report and Get-Values procedures in MYPROB02.sqr were

modified to call the new Select-Parameters, Get-As-Of-Date, and
Get-Process-Status procedures.

Let’s execute our program, then verify the program output report.
Since we already created a Run Control ID, MY_STATUS_01, we can re-use it.

Once displayed, we can change its input parameters. Let’s enter 08/03/1999 in the
As Of Date field, and select Assigned as our problem status (figure 28.7).

When all parameters are entered, click on the traffic light to bring in the Process
Request panel.

Navigation: Go → Problem Tracking → Report → Status Report → Update/Display

Figure 28.7 Executing the Problem Status report

Licensed to James M White <jwhite@maine.edu>

654 CHAPTER 28 THE PROCESS SCHEDULER

Let’s click on the OK button and run the program. Since we made our program
API Aware, it should send its process status to the Process Scheduler. The Process
Monitor screen helps us to see the status of our program.

Figure 28.8 Process Request for MYPROB02.sqr

Navigation: Go → PeopleTools → Process Monitor

Figure 28.9 Examining the status of our program execution

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR CHANGES 655

Our program executed successfully. Let’s verify the output report. First, double-
check the destination of our output report. In order to find this, double-click on the
process name of our process (MYPROB02) in the Process Monitor screen, then go to
the second tab, Request Parameters.

Take a look at the Parm list in figure 28.10. The report output file is specified with
the –f flag. Therefore, we look for our .lis file in the c:\windows\temp directory.

TIP An SQR program produces its output file only if there were at least one de-
tail output record. If your program ran to success, but you cannot find
your output report, check the following:

• Are you looking at the right directory?
• Are your input parameters correctly specified?
• Do you have data in the database?
• Is your selection criteria correct?

In our case, we received the report, shown in figure 28.11.
As you can see, our program ran successfully and produced the report which

shows only the assigned incidents. Let’s do one more test and see how our program
handles the situation when we do not enter a specific problem status. We want to print
all incidents entered into the system as of 08/03/99 in our report.

Figure 28.10

Verifying the output file

destination

Licensed to James M White <jwhite@maine.edu>

656 CHAPTER 28 THE PROCESS SCHEDULER

Let’s enter our parameters (figure 28.12).

After our program executes, let’s again examine the output report:
MYPROB02.lis.

Figure 28.11 The output of MYPROB02.sqr report

Figure 28.12 Entering an empty Problem Status to select all incidents as of 08/03/1999 date

Licensed to James M White <jwhite@maine.edu>

TESTING YOUR CHANGES 657

As you can see from figure 28.13, the program produced several pages of the
report. Therefore, our break logic as well as our parameter selection logic works. To
confirm the test results, it is a good habit to use your native SQL tool and select records
from the database to verify your report output. We can also use the online panels of
our Problem Tracking application, and compare the report results. In addition, the
report has to be tested on the Server to make certain that it runs correctly on both plat-
forms. You should never assume that if your report works correctly on one platform,
it runs without problems on another.

Figure 28.13 Problem Status report output that includes all problems grouped by

Problem Status

Licensed to James M White <jwhite@maine.edu>

658 CHAPTER 28 THE PROCESS SCHEDULER

KEY POINTS

1 An API Aware process is a process that updates the Process Request table
(PSPRCSRQST) with the process run status (Error, Success, and so on),
completion code, message set, and message number.

2 To accept input parameters from PeopleSoft online panels, you can either
use the existing PeopleSoft-delivered SQC files or develop your own,
depending on the parameters your SQR program needs to accept.

3 Your program should support both types of input parameter retrieval logic:
retrieving the parameters from the Process Scheduler, and accepting them
from the SQR Dialog Box or the command line.

4 Usually, there are two SQC files involved in accepting program input
parameters from a PeopleSoft online panel. One file should contain a pro-
cedure to select all required fields from the proper Run Control record.
Another one should include procedures to edit the selected fields and place
them into designated SQR variables.

5 Your SQR program must be changed to include the proper SQC files and a
code to call the input parameter retrieval procedures.

6 A Run Control panel which contains all the input parameters should be
developed, or an existing panel should be used or customized.

7 The changed SQR program must be thoroughly tested on both Client and
Server to make sure that the input parameters are passed and accepted correctly.

Licensed to James M White <jwhite@maine.edu>

659

C H A P T E R 2 9

Implementing security
in SQR

29.1 Overview of the PeopleSoft security
layers 659

29.2 Row-level security in PeopleSoft online
applications 660

29.3 Preventing an SQR program from exe-
cuting outside the Process
Scheduler 666

29.4 Incorporating Row-Level security in
SQR 668

29.5 Using Run Control records for SQR
security 672

29.1 OVERVIEW OF THE PEOPLESOFT
SECURITY LAYERS

Most of PeopleSoft-delivered applications work with important and sensitive infor-
mation. Therefore, implementing and maintaining data security is usually a high pri-
ority task.

Before we start a discussion of different methods of implementing security in your
SQR programs, let’s review the online security functionality provided by PeopleSoft.
Please be aware that, while comprehensive online Security Administration is not in the
scope of this book (refer to PeopleSoft technical documentation for details), we will
show you in great detail how to implement security in your SQR programs.

Licensed to James M White <jwhite@maine.edu>

660 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

As we already discussed in the previous parts of this book, PeopleSoft provides
you with layers of security to help protect your data from unauthorized access.

When accessing a PeopleSoft application in a networked environment, you have
to pass through network security, database security, and PeopleSoft online security.

Network security typically includes the following components:

• an assigned ID and password for user verification
• an authorized sign-on time
• file access rights

In order to execute an SQR program, for example, users need to have appropriate
access to the directory where the SQR executable resides and to the delivered or custom
SQR programs. They also need to have access to the produced reports and input/out-
put files (if any).

Database security is comprised of RDBMS (Relational Database Management
System) security and PeopleSoft online security, which work together. The RDBMS
security typically controls the database logon, database tables access and manipula-
tions, and system administration activities.

PeopleSoft Online security includes Operator Security and Object Security. People-
Soft provides you with utilities to maintain these two types of security. (Please refer
to chapter 3.)

Row-Level security is used to control the user’s access to specific rows of data from
the database tables. PeopleSoft delivers applications with row-level security. People-
Soft uses security search view records to provide online row-level security.

The Field-Level security can be implemented by using PeopleCode. For example,
if you allow your operator to see a certain panel but would like to hide some fields in
this panel, you can add logic to check the Operator ID, and either hide or show sen-
sitive fields.

PeopleSoft also provides you with powerful tools to manage and enhance security
based on your specific needs and applications. Using PeopleTools, you can design
your own Row-Level and Field-Level security.

In the following subchapters, we are going to show you how to implement
Row-Level security in batch SQR programs. Let’s see first how Row-Level security
works in PeopleSoft online programs. We will use similar approaches in batch SQR
programs.

29.2 ROW-LEVEL SECURITY IN PEOPLESOFT
ONLINE APPLICATIONS

PeopleSoft delivers a special way of controlling online access to your specific data
rows by the means of security search records. These records are, in fact, regular SQL
views designed with security in mind. You can either design your own security search
records or use the PeopleSoft-delivered ones. After a view is created to be used as a

Licensed to James M White <jwhite@maine.edu>

ROW-LEVEL SECURITY IN PEOPLESOFT ONLINE APPLICATIONS 661

security search record, PeopleTools lets you attach the view to the corresponding
PeopleSoft table and panel group. PeopleSoft delivers different security search mecha-
nisms based on the application. For example, the built-in Department security is
delivered with PeopleSoft HRMS package, while PeopleSoft Financial applications
secure financial transactions by business units and ledgers. We will be using the
HRMS application to review the online security features delivered by PeopleSoft.

If you look at any of your application core record’s properties, you can see how
PeopleSoft attaches these views to the record definition. Let’s display, for example, the
property window of the JOB record.

After the record definition is displayed, press ALT/ENTER to display the record’s
properties, and switch to the Use tab (figure 29.1).

As you can see from figure 29.1, the search view EMPLMT_SRCH_GBL is speci-
fied as a query security record for the JOB record. This lets the PeopleSoft system know
what security record should be used to restrict the user’s query access to the Job table.

Different tables may have the same or different query security records, depending on
the table structure and the key fields it contains. For example, the PERSONAL_DATA
table has the PERS_SRCH_QRY as its query security record, and the EMPLOYMENT
table has the same search record as JOB. If you look at these view definitions, you can see
that they are designed to restrict operator access to employee rows based on the depart-
ment security that was set up for an operator.

Figure 29.1

EMPLMT_SRCH_GBL is a query security

record for the JOB record

Navigation: GO → Application Designer → Open → Record → JOB

Licensed to James M White <jwhite@maine.edu>

662 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

29.2.1 Row-Level security in the PeopleSoft Query tool

In chapter 24, we discussed the nature of the EMPLMT_SRCH_US security record. If
you open the EMPLMT_SRCH_GBL record in the Application Designer, you can see
that this record is similar to the US record. In fact, the security mechanism is abso-
lutely the same. Since we already learned how the record is built (and even took a
brave attempt to modify it), we will show here how it’s designed to work with the
online QUERY tool.

Let’s go to the Query tool and select the JOB record.

Double-click on the JOB record and select a few fields from this record. Take a
look at the SQL statement by clicking on SQL tab on the right side of the Query panel.

What we see in figure 29.3, is an SQL statement that PeopleSoft generated on our
behalf, based on the requirements it received from us. It contains the selection of the
PS_JOB table columns that we specified. In addition, it joined the PS_JOB table with
the PS_EMPLMT_SRCH_GBL table.

Now we can see how the security view limits the PS_JOB table row selection based
on the previously defined security level. The join returns only rows defined in the secu-
rity view PS_EMPLMT_SRCH_GBL. PeopleSoft joins the PS_JOB table with the
Query Security record that we specified in the JOB’s record definition.

Navigation: Go → PeopleTools → Query

Figure 29.2 Selecting data from the JOB table via the Query tool

Licensed to James M White <jwhite@maine.edu>

ROW-LEVEL SECURITY IN PEOPLESOFT ONLINE APPLICATIONS 663

What if we have to select data from two or more tables? Let’s take a look at the
SQL statement that PeopleSoft generates when we ask it to join our JOB table with the
PERSONAL_DATA table (figure 29.4).

We examine the SQL statement now by switching to the SQL tab.

Figure 29.3 PeopleSoft generated SQL statement

Figure 29.4

Adding the

PERSONAL_DATA

table to the Query

Licensed to James M White <jwhite@maine.edu>

664 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

As you can see from the SQL statement in figure 29.5, in addition to joining
PS_JOB with the PS_PERSONAL_DATA table, PeopleSoft also joins these two tables
with the PS_EMPLMT_SRCH_GBL and PS_PERS_SRCH_QRY security search views.
Therefore, when two records are joined with different security search records,
PeopleSoft automatically joins the corresponding security views.

Let’s see one more example. Suppose we want to add the EMPLOYMENT table
to our query. This table (and you can easily verify it) has the same security search view
as the JOB table. Will PeopleSoft add the EMPLOYMENT table along with its security
view or will it take the table alone? Let’s check this out.

If you look again at the SQL statement that PeopleSoft generated, you see that the
EMPLOYMENT table is joined without an additional security view. PeopleSoft is smart
enough to recognize that the EMPLMT_SRCH_GBL is already present in the query.

Now that we learned that PeopleSoft automatically joins its tables with their
respective security views, it’s clear that the user’s selection is controlled based on the
view definition and the security setup. As we mentioned in the beginning of this part,
the goal of our Security overview is to show the PeopleSoft security functionality that
is relevant to our task of implementing security in SQR. The Security administration
is a complex topic. In our examples, we only showed you how PeopleSoft joins its
tables with their security views. The views themselves would never work without the
proper Department security setup and administration. Each operator’s security must
be set up in conjunction with their business needs in order to gain appropriate access.

Figure 29.5 The PERSONAL_DATA table is joined with the Job table

Licensed to James M White <jwhite@maine.edu>

ROW-LEVEL SECURITY IN PEOPLESOFT ONLINE APPLICATIONS 665

In addition to using the Query tool in PeopleSoft, data may also be selected from
online panels. Let’s take a closer look how PeopleSoft manages security in this case.

29.2.2 Row-Level security in online Panels

As an example, let’s open the JOB_DATA panel group (figure 29.7).

If you press ALT/ENTER, you can see the Properties Panel (figure 29.8).

Figure 29.6 Adding the EMPLOYMENT table to our query

Navigation: Go → PeopleTools → Application Designer → Open → Panel Group → JOB_DATA

Figure 29.7 The JOB_DATA panel group

Licensed to James M White <jwhite@maine.edu>

666 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

As you can see from figure 29.8, the EMPLMT_SRCH_US search record is used
for the JOB_DATA panel group. What that means is that this view is responsible for
bringing up the Selection dialog box with all rows that correspond to both the user’s
criteria and the security criteria. For example, if the user specified a partial name search
as “Smith,” not all rows from the database with the name starting with “Smith” will
be returned, only the ones to which the user has access based on the department secu-
rity setup. In chapter 24 of this book, we ran a trace to learn exactly what PeopleSoft
is doing behind the scenes when the search criteria has been entered. As we saw in
chapter 24 when the user specifies the search criteria, PeopleSoft builds the SQL state-
ments to select from the Access Search record specified for a particular panel group.

29.3 PREVENTING AN SQR PROGRAM
FROM EXECUTING OUTSIDE
THE PROCESS SCHEDULER

As we discussed, in online PeopleSoft processing, data selection is controlled by
PeopleSoft Security. This is not necessarily true when you execute your batch proc-
esses. You know that SQR programs in PeopleSoft can be submitted in several differ-
ent ways—from the Process Scheduler, from the SQRW dialog box, or from the
command line.

If you're running your SQR programs through the Process Scheduler, their exe-
cution is controlled by levels of PeopleSoft Security. First, you must be an authorized
PeopleSoft user to login to the PeopleSoft system. Second, menu security is in place
to prevent unauthorized access to a particular menu or panel. Third, when creating a
process definition, you must specify authorized process security groups, thus

Figure 29.8

The EMPLMT_SRCH_US search record is

used for the JOB_DATA panel group

Licensed to James M White <jwhite@maine.edu>

PREVENTING AN SQR PROGRAM FROM EXECUTING 667

restricting the execution of a particular program to a specific group or groups. How-
ever, if a user is authorized to execute a program, the system in most cases will run the
SQR as "SYSADM," which means that your program will have full, unrestricted access
to data. In order to prevent this, you need to implement the Row-Level security in
your SQR program.

If your SQR program is not run from the Process Scheduler, your security is at
much bigger risk; the database access password alone is not sufficient to maintain the
proper security.

In order to prevent SQR execution outside of PeopleSoft Process Scheduler,
PeopleSoft (starting from PeopleSoft release 7.5) offers a simple and efficient solution.
This technique is used in most of the PeopleSoft-delivered SQR programs for HRMS
application. Since we are already familiar with the Years of Service report, let’s look
at this program:

!Part of PER003.SQR with a code that restricts the SQR execution outside of
the Process Scheduler
….
begin-procedure Init-Report

 move 'PER003' to $ReportID
 do Delete-Worktable

 do Stdapi-Init
 if $prcs_oprid=''
 display ''

 display 'REPORT CAN NOT BE EXECUTED OUTSIDE OF PEOPLESOFT,PLEASE USE

PROCESS SCHEDULER.'

 display ''

 goto last1

 end-if

 do Sqr-Param

 if $prcs_process_instance = ''
 do Ask-As-Of-Date
 do Ask-Years-Of-Service
 else
 do Select-Parameters
 end-if
 do Init_Printer
 do Init_Report_Translation ($ReportID, $language_cd)
 do Append_Report_Translation ('HR')
last1:

end-procedure
….

As you can see from the Init-Report procedure of the PER003.sqr, the program
checks the $prcs_oprid variable, which is populated by the API code (in the
Get-Run-Control-Parms procedure), only if the report were initiated from the

PeopleSoft does not allow the report
to run outside the process Scheduler

Licensed to James M White <jwhite@maine.edu>

668 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

Process Scheduler. If the value of $prcs_oprid is Null, SQR displays an error mes-
sage and exits the program.

This simple code can be easily implemented in any custom program, thus ensur-
ing program execution only from the PeopleSoft Process Scheduler.

TIP If you need to bypass this security check during your testing stage you can
enclose the bolded code in the #ifdef/#endif statements.

29.4 INCORPORATING ROW-LEVEL
SECURITY IN SQR

In release 7.5, PeopleSoft incorporated the Row-Level security for its HRMS applica-
tion. This implementation consists of both the online and batch modifications. The
online changes are performed by using PeopleTools, and once implemented, they will
apply to all programs in the HRMS application. The batch modifications are done on
a program-to-program basis.

Take a look at this feature in the INSTALLATION table.
Open the Third Party panel from the Installation Table panel group (figure 29.9).

Figure 29.9 SQR Security flag is added to the Installation Table

Navigation: Go → Define Business Rules → Define General Options → Setup
→ Installation Table

Licensed to James M White <jwhite@maine.edu>

INCORPORATING ROW-LEVEL SECURITY IN SQR 669

As you can see from figure 29.9, the SQR Security flag is added to the Third Party
panel. This is currently delivered for the PeopleSoft HRMS application. If you want
to activate SQR Security, you should set the flag ON. If flag is not on, the system will
not be using SQR Security features.

WARNING In order to use the SQR Security delivered by PeopleSoft you should also
implement the PeopleSoft’s Fast Security to populate the security views
that are used in the delivered SQR programs.

Let’s see now how SQR Security is implemented in PER003.sqr

PER003.sqr

begin-report
 do Init-DateTime
 do Init-Number
 Move 1 to $Year4
 do Init-Report
 if $prcs_oprid=''
 goto last2
 end-if
 if $scrty_flag='Y'
 do Process-Main-Scrty
 else
 do Process-Main
 end-if
 do Reset
 do Stdapi-Term
last2:
end-report

….

begin-procedure Init-Report

 move 'PER003' to $ReportID
 do Delete-Worktable
 do Stdapi-Init
 if $prcs_oprid=''
 display ''
 display 'REPORT CAN NOT BE EXECUTED OUTSIDE OF PEOPLESOFT,PLEASE USE
PROCESS SCHEDULER.'
 display ''
 goto last1
 end-if

 do Sqr-Param

Listing 29.1

If Security is Activated, execute
Process-Main-Scrty, otherwise
execute Process-Main

The Sqr-Param procedure
selects Security flag value
from the Installation table.

Licensed to James M White <jwhite@maine.edu>

670 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

 if $prcs_process_instance = ''
 do Ask-As-Of-Date
 do Ask-Years-Of-Service
 else
 do Select-Parameters
 end-if
 do Init_Printer
 do Init_Report_Translation ($ReportID, $language_cd)
 do Append_Report_Translation ('HR')
last1:
end-procedure

….
begin-procedure Process-Main

 move '1' to $Year4
 move '-' to $DDelimiter
 do Format-DateTime($AsOfDate, $AsOf_YMD, {DEFYMD}, '', '')
 do Data-Selection
 do Create-Report
 do Delete-Worktable

end-procedure

begin-procedure Process-Main-Scrty

 move '1' to $Year4
 move '-' to $DDelimiter
 do Format-DateTime($AsOfDate, $AsOf_YMD, {DEFYMD}, '', '')
 do Data-Selection-Scrty
 do Create-Report
 do Delete-Worktable

end-procedure
…

#include 'hrsecty.sqc' !Get SQR Security parameters

As you can see in the above excerpt from PER003.sqr program, the program calls the
SQR-Param procedure at the beginning. This procedure is located in the HRSECTY.sqc
file. Its only job is to select the Security flag from the INSTALLATION table. Based on the
selection, the program either uses the security features or ignores them. That’s why, when
PeopleSoft modified the old version of this program to incorporate the security features, it
duplicated the data selection procedure leaving intact the old ones to be able to run the
program in two modes—with and without security. Take a look at the Process-Main-
Scrty procedure. It’s a clone of the Process-Main, the only difference being that it
calls another data selection procedure: Data-Selection-Scrty.

Let’s compare two routines—Data-Selection and Data-Selection-
Scrty—and see how PeopleSoft incorporated the row-level security.

HRSECTY.sqc
contains the
SQR-Param
procedure

Licensed to James M White <jwhite@maine.edu>

INCORPORATING ROW-LEVEL SECURITY IN SQR 671

Take a closer look at the two procedures displayed in figure 29.10. The one on
the left is the new data selection with security, while the other on the right, is the pro-
cedure without security. For visibility purposes and to simplify the comparison, all
irrelevant SQR statements between the last selected column and the FROM keyword
were deleted from both procedures since they were absolutely identical.

The procedure with security has all the functionality of the one without security,
plus more. Take a look at line number 13 on the left side. You can see that a new table,
PS_FAST_PERSGL_VW2, is added to the SQL join. This is a fast department security
view that plays the same role as the Query Security view that we discussed earlier in this
chapter. This view is joined with the PS_JOB table by EMPLID and EMPL_RCD#. In
addition (see line number 15) OPRCLASS, which is a key field in the security view, is
matched with the $prcs_oprid. In other words, the Select statement only selects
the records of the employees that the operator ($prcs_oprid) is authorized to access.

The fast security view PS_FAST_PERSGL_VW2 is an alternate fast search record
for PS_PERS_SRCH_GBL. In order to use this view, the Fast Security delivered by Peo-
pleSoft must be implemented. Fast Security uses the Application Engine to populate a
special security table that was created to support search views with faster performance.
Note that you do not have to use fast security search records in order to implement
security in your SQR programs. Instead of the PS_FAST_PERSGL_VW2 record, the
PS_PERS_SRCH_QRY search record could be used. If you have already implemented
Fast Security, you can take advantage of both batch and online fast security access.

Figure 29.10 Data-Selection and Data-Selection-Scrty

Licensed to James M White <jwhite@maine.edu>

672 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

Let’s summarize now what we have learned about implementing security in SQR
and what practical steps have to be undertaken to support this security.

Practical steps necessary to implement security in SQR for HRMS applications:

• make certain that SQR Security flag is checked ON in Installation table
• include the hrsecty.sqc file in your SQR program
• add code to your program to make sure your SQR program is executed from

the Process Scheduler by verifying the $prcs_oprid variable
• call the SQR-Param procedure to select the SQR security flag from the Instal-

lation table
• check if SQR security Flag is On or Off and call the corresponding procedure

(with or without security)
• create an additional data selection procedure that will be called if the SQR

security flag is ON. Add a security search record to this procedure to restrict
access to non-authorized data

TIP When OPRCLASS is retrieved based on OPRID in a sub-select statement
(figure 29.10, lines 16-20) the SQL performance is impacted negatively, be-
cause the sub-select is executed for every selected row. To improve perfor-
mance, obtain OPRCLASS only once outside of the main select procedure.
Then use the retrieved OPRCLASS in the main select.

Now, that we know how simple it is to implement security in SQR, can we go
ahead and incorporate it in all our custom programs? The process may not always be
that straight-forward. You need to know your data and choose a correct search record
for your data selection procedure. If your goal is to limit the employee selection to
authorized operators only based on the department security implemented in your sys-
tem, you can use either the fast security record or query security records. Both these
views utilize the department security. If your SQR program selects neither employees
nor departments, you need to come up with some other alternatives. In the next sec-
tion, we will show how you can limit selection at the Run Control panel level without
changing your SQR program.

29.5 USING RUN CONTROL RECORDS
FOR SQR SECURITY

When executing SQR programs from the Process Scheduler, users are often asked to
enter parameters online via a Run Control panel. These parameters are saved in the
corresponding Run Control records and then passed to your SQR. Of course, not all
SQR programs accept input parameters. We will consider a case when parameters are
entered from an online Run Control panel and will show you how you can imple-
ment a simple security system by using PeopleTools.

!!!

Licensed to James M White <jwhite@maine.edu>

USING RUN CONTROL RECORDS FOR SQR SECURITY 673

Let’s consider, for example, a typical Payroll task—running a Paysheets report.
Figure 29.11 shows a standard Run Control panel used in most Payroll batch

processes. In order to run a process (in this case it is the Paysheets report), the operator
has to either specify a pay run ID or enter the three parameters on the right of the
panel: Company, Pay Group, and Pay End Date. Let’s use the second method and
enter the parameters into the panel. Click on the Company field and you can see the
list of all available companies (figure 29.12). When Company is selected, click on Pay
Group, and you can see all the paygroups for the selected Company (figure 29.13).

As you can see, an operator can select
any Company/Paygroup combination avail-
able from the prompt. What if we make
Company and Paygroup selection depen-
dent on operator class? This will facilitate
implementation of the online Company/
Paygroup security.

1 Create a Company/Paygroup Security
table to control data access for opera-
tors (operator classes) based on Com-
pany/Paygroup combinations.

Navigation: Go → Compensate Employees → Manage Payroll Process → Report 2 → Paysheets

Figure 29.11 A Typical Run Control Panel for a Payroll Process

Figure 29.12 The Company Prompt

Licensed to James M White <jwhite@maine.edu>

674 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

2 Create a panel for online control of
Company/Paygroup Security.

3 Create the company, paygroup, and
run ID views to be used as online
prompt tables for Company and Pay-
group in all records related to any
Payroll Process run. This will limit
the process execution to operator
classes that have access to authorized
Company/Paygroups.

4 Modify the Run Control record defi-
nition to use the new prompt
records.

Our objective is to demonstrate how the online security can be implemented. Fol-
lowing are the highlights of the Company/Paygroup security implementation.

Step 1

Step 2

Creating Company/Paygroup Security table, MY_COMP_PAYGRP (figure 29.14).

Creating Company/Paygroup Security Maintenance panel (figure 29.15).

Figure 29.14 Creating Company/Paygroup Security table

Figure 29.13 The Paygroup Prompt

Licensed to James M White <jwhite@maine.edu>

USING RUN CONTROL RECORDS FOR SQR SECURITY 675

After creating a panel group and adding it to the setup menu, we can populate
the Company/Paygroup Security panel with the appropriate information. For each
operator class, users must enter all combinations of Company and Paygroups a par-
ticular operator class can access. Figure 29.16 shows how the maintenance of the
Company/Paygroup Security is performed.

Figure 29.15 Company/Paygroup Security panel

Figure 29.16 Assigning companies and paygroups to the ALLPANLS operator class

Licensed to James M White <jwhite@maine.edu>

676 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

Let’s get back to our development. We need to create the necessary views for our
prompt records.

Step 3

We need to create three views that may be used as prompt tables for Company,
Paygroup, and Run ID respectively. Since we already created a security table
(MY_COMP_PAYGRP) that contains all Company/Paygroup combinations per oper-
ator class, the view creation is simple. Figures 29.17 thru 29.22 show each of the views
with their definitions.

Creating the company, paygroup, and run ID views.

Figure 29.17

The Company security view

Figure 29.18

The SQL statement for the

 Company security view

Licensed to James M White <jwhite@maine.edu>

USING RUN CONTROL RECORDS FOR SQR SECURITY 677

Figure 29.19

The Paygroup Security view

Figure 29.20

The SQL statement for the

Paygroup Security view

Figure 29.21

The Run ID Security view

Licensed to James M White <jwhite@maine.edu>

678 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

Our views have been created. We should, of course, build them on a database
level. After all is done, we can move on to the next step.

Step 4

In the first three steps, we prepared a basis for our security. Now, we need to
replace the current prompt tables with the new views we just created. Since we already
discussed the Paysheets report, let’s find the Run Control record used for this report,
then modify this record.

Take a look at the Order panel for the RUNCTL_PAYINIT2 panel used in the
Paysheets report (figure 29.23).

Modifying Run Control record definitions.

Figure 29.22

The SQL statement for the

run ID security view

Figure 29.23

The RC_PAYINIT Run Control

record used for the

paysheets report

Licensed to James M White <jwhite@maine.edu>

USING RUN CONTROL RECORDS FOR SQR SECURITY 679

To implement this customization we have two alternatives:

• Customize the existing RC_PAYINIT record.
• Save this record as MY_RC_PAYINIT, then customize it. In addition, all panels

that are linked to the RC_PAYINIT record and the corresponding panel groups
must be cloned as well.

Generally, we do not recommend modifying PeopleSoft-delivered records, but
our modifications in this case are not structural and, therefore, do not require the cor-
responding database level alterations. All panels that use this record with no modifi-
cations will benefit from the Company/Paygroup based security. During the upgrade
process, the Compare and Report process will recognize the difference in the
RC_PAYINIT record.

The second alternative requires more objects to be modified.
Therefore, selecting the first alternative, our customization of the RC_PAYINIT

record is limited to replacing the prompt tables with our custom views.
Let’s open the record and modify it by replacing the values for prompt tables in

Run_ID, Company, and Paygroup fields with the newly created prompt tables
(figure 29.24).

After replacing the prompt tables for Company, Paygroup, and Run_ID, our
table looks like that in figure 29.25.

Figure 29.24

The Prompt tables that are

currently used in

RC_PAYINIT record

Figure 29.25

The RC_PAYINIT record with

the new prompt tables

Licensed to James M White <jwhite@maine.edu>

680 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

The only step remaining is to test everything together. As you may remember, after
the Company/Paygroup security table and maintenance panel were created, we just
associated the ALLPANLS operator class with four combinations of two companies and
two paygroups for each company (figure 29.16). This means that, if we try to select the
company, paygroup, or Run Control ID values, from the modified Run Control
record, we should only be able to select these values. Let’s give this a try (figure 29.26).

After selecting the Company value, let’s select the Paygroup (figure 29.27).
We can also verify if our run ID prompt view works. Let’s select another Run

Control and, this time, enter the values on the left portion of the panel (figure 29.28).

Figure 29.26 The prompt in Company field only shows two companies to which

the ALLPANLS has access to

Licensed to James M White <jwhite@maine.edu>

USING RUN CONTROL RECORDS FOR SQR SECURITY 681

Figure 29.27 The prompt in the Paygroup field only allows to select from two

paygroups

Figure 29.28 The prompt in the Run ID field only shows the run IDs that are valid

for the company/paygroup to which we have access

Licensed to James M White <jwhite@maine.edu>

682 CHAPTER 29 IMPLEMENTING SECURITY IN SQR

As you can see, all our modifications are working. With this simple customization
we can control user security via an online panel without changing your programs. We
demonstrated this change for the Paysheets process, but in fact, any program that uses
the modified Run Control record RC_PAYINIT will now be secured from unautho-
rized execution. If your report uses other Run Control records, you need to modify
the prompt records accordingly.

We based the Company/Paygroup security on the combination of these two fields
but a similar approach can be used to implement security based on other key fields.

As you can see from our examples in this chapter, you may need to make only a
slight code modification in your SQR program to ensure that the program will run
only under the Process Scheduler. We have demonstrated how you control your SQR
security without altering your SQR program in any significant way.

KEY POINTS

1 PeopleSoft provides you with layers of online security to help protect your
data from unauthorized access.

2 When accessing a PeopleSoft application in a networked environment, you
have to pass through network security, database security, and PeopleSoft
online security.

3 PeopleSoft delivers a special way of controlling online access to your data
rows with the help of security search records.

4 In the Query tool, PeopleSoft automatically joins its tables with the corre-
sponding security views.

5 In release 7.5, PeopleSoft incorporated the row-level security for its HRMS

applications. This implementation consists of both the online and batch
modifications. The batch modifications are done routinely on a program-
to-program basis.

Licensed to James M White <jwhite@maine.edu>

683

C H A P T E R 3 0

Additional Process
Scheduler topics

30.1 Scheduling programs for execution on a recurring basis 684
30.2 Using job streams 688

During the course of this book, we’ve discussed the execution of both PeopleSoft-
delivered and custom processes with the help of the PeopleSoft Process Scheduler. We
demonstrated how to create a process definition to execute SQR programs and how to
monitor the process execution status. You also learned how to communicate with the
Process Scheduler via API programs. However, there are some other important aspects
of the PeopleSoft Process Scheduler that we did not cover.

Licensed to James M White <jwhite@maine.edu>

684 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

30.1 SCHEDULING PROGRAMS FOR EXECUTION
ON A RECURRING BASIS

When you execute your programs on the Server, you can schedule them to run at pre-
defined intervals. A special recurrence definition has to be created and assigned to the
process. When the recurrence definition is created, it may be assigned to the process
through its process definition or from the Process Request Dialog panel at runtime.

Let’s see how we can schedule our custom program, MYPROB02.sqr for execution
every Sunday at 8:00 A.M.

TIP Give each Run Control a meaningful name and use it for one process only.

The next screen is our Run Control panel. Since we are planning to schedule the
Status Report for execution every Sunday, we have to supply the appropriate param-
eters to our SQR program every time the program runs. When the program is executed
manually, users enter the parameters when they submit the process for execution. We
need to find a way to automatically fill in our Run Control table. You can use several
methods, depending on your business needs. The simplest method is to use the system
date as the As Of Date parameter. The standard method is to make your program
default to system date if the date in the Run Control record is blank. If you take a look
at our MYGETVAL.sqc, you can see that this is exactly what we did. If the system date
technique is not applicable to your process, you must develop your own custom
method to automatically supply the correct date to your program at each program exe-
cution. The second parameter, Problem Status, can be entered only once, and the
Run Control record retains its value for all the subsequent runs.

Suppose, we are going to use the system date as the As Of Date parameter and
a blank to indicate that we need the status report of all the problem statuses. In this
case, our Run Control panel is saved as shown in figure 30.2.

Navigation: Go → Problem Tracking → Report → Status Report → Add

Figure 30.1

Adding Run Control ID for

every Sunday 8 A.M. run

Licensed to James M White <jwhite@maine.edu>

SCHEDULING PROGRAMS FOR EXECUTION ON A RECURRING BASIS 685

Click on the Traffic Light to go to the Process Request panel, make sure that the
process Run Location is Server, and start creating a new recurrence definition, by
clicking on the New button in the Run Recurrence box.

Figure 30.2 Leaving blank values in both parameters to use the system date as As

of Date and to make the program report all problem statuses

Figure 30.3

Creating a new Run

Recurrence

Licensed to James M White <jwhite@maine.edu>

686 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

After clicking on the OK button, we need to specify our new recurrence infor-
mation (figure 30.4).

In the panel shown in figure 30.4, we clicked on Weekly to specify the occurrence
frequency, then we selected the starting day and time of the cycle. We also clicked on
Su (Sunday), and the system automatically selected all Sundays in the calendar. Based
on our selections, the system created a meaningful description in the lower box of the
panel. You should always verify this description to make sure that all schedule param-
eters are correct. We also selected the option to schedule the next run when the prior
run has completed. This means that the next job will be queued only when the pre-
vious job is completed successfully.

Now we are ready to click on the OK button.

Figure 30.4

Specifying the recurrence

information

Licensed to James M White <jwhite@maine.edu>

SCHEDULING PROGRAMS FOR EXECUTION ON A RECURRING BASIS 687

Note that, even though we are not planning to execute the process now, we must
hit the OK button to schedule our process for recurrent executions. So far, we have
created a process recurrence definition where we have specified all the parameters for
our process scheduling, but we have not yet scheduled the process. We need to do it
manually the first time in order to make the scheduling take place. After that, the
Process Scheduler will do the job.

Let’s click on the OK button again and verify the process status on the Process
Monitor panel.

As you can see in figure 30.6, our process is queued and is scheduled for execution
at 8 A.M. on 08/22/1999. As soon as this process has successfully executed, the next
occurrence of this process will be scheduled automatically by the Process Scheduler in
accordance with your process recurrence definition.

WARNING When scheduling another process for recurring processing, be very careful
if you decide to reuse an existing recurrence definition. Changing any pa-
rameters in the recurrence definition may result in taking the first process
out of the scheduler.

Figure 30.5 The MYPROB02 process is about to be scheduled

Licensed to James M White <jwhite@maine.edu>

688 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

30.2 USING JOB STREAMS

So far we have been executing and scheduling single processes from the PeopleSoft
Process Scheduler. Oftentimes, your business requires the execution of multiple proc-
esses one after another or in parallel. PeopleSoft allows you do this if you run your
processes on Server. The job definition is used to accomplish this task.

A job (or job stream) in PeopleSoft usually consists of two or more processes. You
can combine your SQR and COBOL programs into one Job to be executed in a parallel
or serial mode. When scheduling your job to run in a serial mode, all processes within
the job will be executed sequentially, one after another. Otherwise, they will be exe-
cuted in a parallel mode without any specific order. As with an individual process, you
can schedule a job to run at a later time or on a recurring basis. It is always a good
approach to combine all processes, which should be executed at a specific time (for
example, nightly), into a job stream and schedule this job stream to be executed at pre-
defined time intervals (for example, every night at 10 PM).

In the following examples, we will create a job stream and schedule it for execution.

Exercise 1

Figure 30.6 MYPROB02 is scheduled for execution

Execute the Refresh Employees process (PER099.sqr) and the problem status
report (MYPROB02.sqr) in a job stream every night at 10 P.M.

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 689

In order to schedule any job for execution, a job definition has to be created. Since
our exercise calls for the execution of two reports, we need to create a job definition
that contains PER099.sqr and MYPROB02.sqr. As we already know, when we execute
a process from the Process Scheduler, this process accepts its input parameters from
online panels. A process definition is linked to a specific panel through a panel group.
Like a process definition, a job definition also requires a panel group to be specified.
Therefore, all processes in your job stream accept input parameters from this particular
panel group, which may consist of several panels. To illustrate this point, let’s create
a panel group for our job stream.

30.2.1 Creating a panel group for a job stream

Since the processes we are going to include in our job stream are already designed to
run under the Process Scheduler, our task is simple. We just need to combine their
Run Control panels into one panel group.

Let’s find out what the components are for our new panel group. In order to do
so, we take a look at the process definitions for PER099.sqr and MYPROB02.sqr
(figure 30.7). We start with PER099.sqr.

Navigation: Go → Administer Workforce → Administer Workforce (U.S.) → Process →
Refresh Employees Table → Update/Display

Figure 30.7 Finding the name of the Run Control panel for the Refresh Employees

Table process

Licensed to James M White <jwhite@maine.edu>

690 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

The Run Control panel used to run the Refresh Employees Table process is
RUNCTL_ASOFDATE. When scheduling this program for execution in a job stream,
we obviously want to preserve all the functionality of the job’s components, including
the input parameters processing. Therefore, we include this panel into our new panel
group.

We know from the previous chapter that the name of the Run Control panel for
our problem status report is MY_RUN_CNTL_PRB01.

Let’s now create a new panel group.

Our new panel group includes both the MY_RUN_CNTL_PRB01 and the
RUNCTL_ASOFDATE Run Control panels. After putting meaningful labels for each
panel in the panel group, we need to specify the Panel Group Properties (figure 30.9).

Navigation: Go → PeopleTools → Application Designer → New → Panel Group

Figure 30.8 Creating a new panel group for a job stream

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 691

The Search record and the Detail panel for our
Run Control panel group should be the same as the
one for a panel group in a single process.

Now, we save the new object as MY_HR_
NIGHTLY_01 (figure 30.10).

After clicking on the OK button, we are ready to
add our job to a menu.

30.2.2 Creating a Menu Item for our new job stream

As usual, in order for our users to access a Run Control panel, we need to attach this
panel to an appropriate menu item via a panel group. Let’s create a new menu bar, Job
Stream, and use it for our new job stream menu item and for all future job streams.

As we can see in figure 30.11, we created a new menu bar, Job Stream. Then, just
by clicking on an empty rectangle under this menu bar, we created a new menu item,
HR Nightly, and linked our MY_HR_NIGHTLY_01 panel group to this menu item.

Figure 30.9

Specifying panel group properties

for our job stream

Figure 30.10 Saving panel

group for new job stream

Licensed to James M White <jwhite@maine.edu>

692 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

After clicking on the OK button, we can modify the Operator’s Security to allow
the ALLPNLS operator group access to our new menu item. Now, we can test the
menu (figure 30.12).

Are we ready to run our job? Not yet. We need to create a job definition first.

Figure 30.11 Creating a new menu bar and menu item

Figure 30.12 New menu bar and menu item are created for our job stream

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 693

30.2.3 Creating a job definition

Unlike a process definition creation, when adding a new job definition, the process
job name does not have to match any of your processes. You can give any name to
your job.

The process of creating a job definition is similar to that of creating a process def-
inition. Let’s take a close look at what is involved in this process and discuss the mean-
ing of each field in the job definition.

Navigation: Go → PeopleTools → Process Scheduler → Use → Job Definitions →
Job Definitions → Add

Figure 30.13 Specifying a job definition name

Licensed to James M White <jwhite@maine.edu>

694 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

In the Job Description, you specify the job definition description that will be dis-
played on the Process Scheduler Request panel.

 The Server Name should be specified only if you want to restrict your Job exe-
cution to a specific server. If you leave it blank, the system will find an available server
based on the Process class.

You can specify a new Process Class by entering a unique process class name, or
you can select it from a drop-down list. Usually if all the processes included in your
job stream are SQR programs, you would select SQR Report as your process class.

TIP If you include both SQR programs and other programs such as COBOL, or
programs written in Application Engine, you need to select Programs as the
Process class.

In our case, since we are executing two SQR programs, we select SQR Report.
The Job Run Mode can be either Serial or Parallel. If you want your proc-

esses to be executed sequentially, you select Serial mode, otherwise, use Parallel.
We will run our processes in a parallel mode since the second report does not depend
on the first process execution.

The Job Priority could be High, Medium, or Low. This information is used by
the Process Scheduler to initiate jobs with higher priorities first. We’ll specify a
Medium priority for our job.

Figure 30.14 Creating a job definition

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 695

The Recurrence Name is used to specify a recurrence schedule that you previously
set up. This parameter is optional and can be defined for your JOB on the Process
Scheduler Request panels.

In the lower portion of your job definition panel, specify the processes you want
to include in the job. If you’ve selected a Serial mode, your processes have to be
listed in the order in which they will be executed. In prior releases, you had to number
each item sequentially with no gaps. Release 7.5 takes care of the numbering auto-
matically. It also re-numbers the processes when you need to add a new item between
existing ones or change the order of processes in your job.

You should turn on the Run Always flag if you want your processes to be executed,
even if one of the previous processes failed. Suppose, for example, you selected the
mode as Serial and did not turn on the Run Always flag for any of your processes.
Let’s assume that your job contains three processes: Process1, Process2, and Process3.
If your Process2 fails, you will see the following process statuses in the Process Monitor
screen (assuming that you clicked on the job’s “+” sign to see the individual processes):

After you check the error messages in the log file and fix the problem, you need
to restart your JOB from Process2. Currently, PeopleSoft Process Scheduler does not
have capability to restart the Job from a specific point. You could either re-execute the
entire Job or execute Process2 and Process3 as individual processes. Be careful. It’s not
always safe to execute certain processes again because your processes may be updating
the database.

In the second panel of the JOB Definitions panel group, you specify the Process
Security Groups for the users to whom you would like to give permissions to run your
job. You also specify the panel group to which your job should be attached. For our
job, we specify the name of the panel group that we created to run this Job.

Our job definition is created. Let’s save it and see how we can schedule our job
to run reccurently.

Process Status

- MyJob Error

Process1 Success

Process2 Error

Process3 Hold

Licensed to James M White <jwhite@maine.edu>

696 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

30.2.4 Scheduling a job for recurrent execution

Figure 30.15 Specifying the Process Security Groups and the panel group for our job

Navigation: Go → Problem Tracking → Job Stream → HR Nightly Process → Add

Figure 30.16 Adding a new Run Control record for job’s execution

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 697

Let’s add a new Run Control ID, myjob01, and click on the OK button. The
Run Control panel group appears (figure 30.17).

As shown in figure 30.17, our panel group contains two panels. The first one is
the Problem Status Report panel, and the second one is the Refresh Employees Process
panel. Does this mean that, if you have ten processes in your job definition, you need
ten panels in your Run Control panel group? Not necessarily. Some of your processes
may not require any input parameters and, therefore, do not need additional panels.
Others may need the same input parameters. In that case, one panel may be used for
several processes. It all depends on the Run Control records which your processes use
to get the input parameters.

TIP You need to make sure that all Run Control records used by the processes
in your job are present in the panel group.

Let’s take, for example, the Years of Service program. It accepts two parameters: As
Of Date and Years of Service. If you have one job that includes this program and
another one that only needs As of Date as its input parameter—for example, the Pend-
ing Future Actions report—you can use the same panel to run both reports. This is all,
of course, under condition that both programs are using the same Run Control record.

Figure 30.17 Entering input parameters

Licensed to James M White <jwhite@maine.edu>

698 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

In the second panel of our panel group, the Refresh Employees Process Run Con-
trol panel (figure 30.18), we also use the As Of Date input parameter, but since the Run
Control records for both our processes are different, we have to include both panels in
our panel group.

Since we are planning to schedule our job to be executed on a recurrent basis, we
leave the As Of Date field blank to force the process to use the system date instead.
This way, we make our scheduling much simpler.

After all parameters in the Run Control panels have been entered, we are ready
to schedule our job for execution. Let’s click on the Traffic Light.

As you can see in figure 30.19, we specified the Run Location as Server, and
we also selected a specific Server name from the Server drop-down list. Please note that
jobs can only be scheduled on Server. On the bottom of the panel, you can see our
job name displayed. If you click on the plus sign to the left of the job, as we did, both
the processes that make up the job will be shown. When scheduling the job for exe-
cution, select the Nightly HR Job (figure 30.19).

Figure 30.18 The Refresh Employees Run Control panel

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 699

Let’s now create a new Run Recurrence based on the user’s request to run this job
daily at 10 P.M. To do so, click on the New button in the Run Recurrence group box.

Figure 30.20 shows the parameters we set for our new recurrence definition. Let’s
click on the OK button and give our recurrence definition a meaningful name.

Figure 30.19 Process Scheduler Request panel for MYJOB01 job stream

Figure 30.20

Creating a new definition

Licensed to James M White <jwhite@maine.edu>

700 CHAPTER 30 ADDITIONAL PROCESS SCHEDULER TOPICS

Our job is ready for execution. We click on the OK button to schedule the job
to run for the first time (figure 30.22).

Figure 30.21 Process Scheduler Request with Run Recurrence

Figure 30.22 MYJOB01 is scheduled for execution on 08/16/99 at 10 P.M.

Licensed to James M White <jwhite@maine.edu>

USING JOB STREAMS 701

As you can see from figure 30.22, our job MYJOB01 includes two processes,
PER099 and MYPROB02. Its status is Queued, and it is scheduled for execution on
08/16/99 at 10 P.M. As soon as the job is executed successfully, the system will auto-
matically schedule MYJOB01 for execution on the next day, 08/17/99 at 10 P.M.

KEY POINTS

1 You can schedule programs that run on the Server for execution on a recur-
ring schedule.

2 A job (or job stream) may include more than one process.

3 In order to schedule a job for execution, a job definition has to be created.
Similar to a process definition, a job definition also needs to be associated
with a panel group.

4 You can include processes of different types (SQR program, COBOL, Appli-
cation Engine) into one job.

5 Make sure that all Run Control records used by the processes in your job
are present in the panel group.

6 If you want processes to be executed sequentially, you should select the
Serial mode on your job definition panel; otherwise, routinely use the
Parallel mode.

Licensed to James M White <jwhite@maine.edu>

702

C H A P T E R 3 1

SQR and Process
Scheduler—PeopleSoft 8

31.1 Process Scheduler terminology 703
31.2 Process Definitions 703
31.3 Process Scheduler Request

dialog 706
31.4 Output options 707

31.5 Process Scheduler security 709
31.6 Process Scheduler PeopleCode

support 710
31.7 SQR and PeopleTools 8 710

PeopleSoft introduced a number of new and enhanced features in PeopleTools 8.
These features improve the way in which SQR programs and other processes interact
with the PeopleSoft Process Scheduler. PeopleSoft delivered enhancements in the fol-
lowing areas:

• Process Scheduler terminology
• process definitions
• Process Scheduler Request Dialog
• output options
• Process Scheduler security
• recurrence definitions
• Process Scheduler PeopleCode support

Let’s take a quick tour of these modifications in PeopleTools release 8.

Licensed to James M White <jwhite@maine.edu>

PROCESS DEFINITIONS 703

31.1 PROCESS SCHEDULER TERMINOLOGY

PeopleSoft modified its terminology to avoid confusion and simplify the Process
Scheduler usage for application developers, system administrators, and end-users.
The Process Scheduler tool contains the following components:

• Process Scheduler Manager
• Process Scheduler Request Dialog
• Process Request Monitor
• Process Scheduler Server Agent

Each of these components has a specific task and, depending on your role in the
PeopleSoft world, you may or may not work with all the tools. Nonetheless, the
knowledge of when to use a particular tool is essential. Therefore, the new names that
PeopleSoft introduced are extremely helpful.

As you can see from table 31.1, the Process Scheduler has been renamed to the
Process Scheduler Manager. You use the Process Scheduler Manager to create and
maintain process types and process and job definitions. You access it by selecting Go
→ PeopleTools → Process Scheduler Manager.

Similarly, the Process Monitor has been renamed to the Process Request Moni-
tor. It is accessed by selecting Go → PeopleTools → Process Request Monitor.

The menu items, Process Types, Process Servers, and Process System, have been
renamed to Process Type Definitions, Server Definitions, and System Settings, respec-
tively. You can find these menu items under the Process Scheduler Manager → Use menu.

31.2 PROCESS DEFINITIONS

The Process Definitions panel group now consists of four panels. The existing panels
have been redesigned as well.

Do you remember that the Process name you enter in this add box should be your
SQR name without the .sqr extension? Have you ever tried to enter a name of a non-
existing SQR program? Before release 8 such a blunder was possible. You could easily
create a process definition for a program that was never written. Starting from
release 8, PeopleSoft only allows you to specify programs that can be found in the

Table 31.1 Modified Process Scheduler terminology

Release 7.5 Release 8

Process Scheduler Process Scheduler Manager

Process Monitor Process Request Monitor

Process Types Process Type Definitions

Process Servers Server Definitions

Process System System Settings

Licensed to James M White <jwhite@maine.edu>

704 CHAPTER 31 SQR AND PROCESS SCHEDULER—PEOPLESOFT 8

Configuration Manager’s SQRW search path parameter. This is a great step toward
making the system more secure.

As you can see in figure 31.2, the Process Definition panel group has an addi-
tional tab, Override Options.

Let’s take a closer look at the Process Definition panel. If you compare this panel
to that in release 7.5, you will notice that the panel, too, has changed. The Output
Destination options has been moved from the Process Definitions Options panel to

Navigation: Go → PeopleTools → Process Scheduler Manager → Use →
Process Definition → Add

Figure 31.1 Adding a Process Definition

Figure 31.2 The Process Definition panel group in the Process Scheduler

Manager menu

Licensed to James M White <jwhite@maine.edu>

PROCESS DEFINITIONS 705

this panel. The types of output available for selection are Printer, Window, Email,
File, or Any. The option Any allows a user to specify any valid option.

The Source should still be selected as User Specified for SQR programs.
The Output Destination is only available when the Source is selected as the proc-

ess definition, which means that this request will default to the output destination
specified by the process definition.

Let’s switch to the Override Options tab (figure 31.3).

This panel is actually a simplified version of the old Process Definition Options.
It allows you to specify the Override Options for the Parameter List, Command Line,
and Working Directory.

How many times have you had your Process Scheduler definitions created incor-
rectly? Now, with release 8 tools, you will be able to run the SysAudit process to dis-
play incorrect Process Scheduler definitions.

Figure 31.3 The Override Options tab

Licensed to James M White <jwhite@maine.edu>

706 CHAPTER 31 SQR AND PROCESS SCHEDULER—PEOPLESOFT 8

31.3 PROCESS SCHEDULER REQUEST DIALOG

The Process Scheduler Request dialog box has been modified to simplify the end-
user’s run requests. Let’s examine the panel in figure 31.4.

What makes release 8 exciting is that with it you are able to specify a different
Output Type, Output Format, and Destination at the individual process level (includ-
ing for each process within a job).

Release 8 also brought in some preventive measures that help identify problems
before a process is submitted. For example, the Process type “PSJob” is disabled if you
have Client set as the run location. Available output types and formats depend on
particular process types. We’ll discuss new output types later in this chapter.

Notice that even though the Run Recurrence box is still in the new panel, the
end-user will not be able to update the recurrence definition from the Process Sched-
uler Request dialog panel. The end-user can select the necessary run recurrence from
the list of recurrences previously set up. In release 8, Recurrence definitions are created
through the Process Scheduler Manager → Use menu item. The new Recurrence Def-
inition panel is shown in figure 31.5.

Figure 31.4 The Process Scheduler Request dialog in release 8.0

Licensed to James M White <jwhite@maine.edu>

OUTPUT OPTIONS 707

31.4 OUTPUT OPTIONS

Let’s get back to figure 31.4. As you can see in the lower portion of the Process
Request dialog panel, you can now specify the Output Type, the Output Format, and
the Output Destination for each process. PeopleSoft introduced new output types
and formats in release 8. To avoid any confusion in terminology, let’s describe these
three output options.

31.4.1 Output types

The output type tells the PeopleSoft Process Scheduler where the output of your
process should go.

The following table shows the output types available in release 8.

Figure 31.5 The Recurrence Definition panel in release 8.0

Table 31.2 Output types

Output Type Description
Available

on Client

Available

on Server

Window Directs the process output to a DOS window. Yes No

File Allows you to write the output to the file
specified in Output Destination

Yes Yes

Printer Sends the output to the specified printer Yes Yes

Email Sends the output to the predefined email list No Yes

Licensed to James M White <jwhite@maine.edu>

708 CHAPTER 31 SQR AND PROCESS SCHEDULER—PEOPLESOFT 8

As you can see from table 31.2, the long-awaited email file output is delivered as
a new output type. You will be able to specify email addresses through the Security
Administrator and send your output via email for applications executed on the Server.

31.4.2 Output formats

In addition to the output types, you will be able to select an appropriate Output For-
mat, depending on what process type you have selected. If, for example, you select
the process type as SQR Process, you have the following output format options:

• Acrobat(.pdf)
• Comma Delimited (.csv)
• HP format (.lis)
• HTML documents format (.htm)
• Line Printer Format (.lis)
• Postscript (.lis)
• SQR Portable Format (.spf)
• Other (.lis)

For Crystal Reports Process type the following formats will be available for your
selection:

• Crystal Report (.rpt)
• HTML Document (.htm)
• Lotus 1-2-3 files (.wks)
• Microsoft Excel (.xls)
• Rich Text File (.rft)
• Text Files (.txt)

31.4.3 Output Destination

You can select an appropriate Output Destination depending on the Output Type
and whether you run your process on Client or Server.

Table 31.3 shows the available options:

Table 31.3 Output Destination options

Output

Type
Description Client Output Destination Server Output Destination

File Directory output Default Value:
%OutputDirectory%
defined in the Configura-
tion Manager

Default Value:
%%OutputDirectory%%
defined in PSADMIN

Printer Default printer Printer defined for a Work-
station

Printer defined for a Server

Email Sends the output to a
predefined email list

No Email address

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER SECURITY 709

You can also enter the custom values for your file or printer output destinations
if you have the proper security access.

In release 8, you will be able to select a printer from a list of installed printers in
the Process Request Dialog panel.

You can also preset your process output type and output destination in the process
definition. The values you specify will be reflected in the Process Request Dialog panel.

31.5 PROCESS SCHEDULER SECURITY

With Tools 8, the Security Administrator tool is also enhanced and allows you to
access and set up the Process Profiles and Process Groups via a separate tab
(figure 31.6).

Pay attention to the bottom checkbox in the Allow Requester To group box. By
popular demand, PeopleSoft added an option to restrict certain classes of operators
from running batch processes on their workstation.

In addition, the following changes were made to improve security in scheduling
and executing processes:

• allowing the changing of an Operator/Access password after a process request is
scheduled to run

Figure 31.6 Security Administrator, Process Profile tab in release 8

Licensed to James M White <jwhite@maine.edu>

710 CHAPTER 31 SQR AND PROCESS SCHEDULER—PEOPLESOFT 8

• creating a “Super User” to monitor process requests via the Process Monitor
• offering an option to restrict users from scheduling recurring processes

31.6 PROCESS SCHEDULER PEOPLECODE SUPPORT

If you want to schedule your process from a PeopleCode script, PeopleSoft introduces
a new Process Request PeopleCode Class. The goal is to make scheduling processes
from PeopleCode easier. The ScheduleProcess() PeopleCode function is still
supported in release 8, but it will be phased out in future releases.

The ProcessRequest class is used in release 8 for invoking processes through the
Process Scheduler using PeopleCode. You can design a ProcessRequest PeopleCode
program that can be triggered from a push button, a Save panel, or a field change event.

Using this new feature, you can schedule processes or jobs for immediate execu-
tion or in the future. It also supports the scheduling of recurring processes and jobs
to run automatically at user-defined intervals.

31.7 SQR AND PEOPLETOOLS 8

As SQRiBe/Brio continues to improve its SQR application, PeopleSoft also integrates
new SQR features to work smoothly with PeopleTools.

We already discussed in this chapter how PeopleSoft 8 improved the Process
Request Dialog panel to incorporate Output Types, Output Formats, and Output
Destinations. The SQR Output Formats now also include the PDF and CSV formats.

In addition, PeopleSoft 8 now supports the multiple report outputs.

31.7.1 Unique names for file output and logs

PeopleSoft 8 improved the naming of the output files and the log files. If a report is
executed from the Process Scheduler the filenames will be:

< SQR Program Name>_<Instance>.xxx.
For example, if we executed the MYPROB01.sqr from the Process Scheduler and

the Process Instance is 33876, the output filename will be MYPROB_33876.lis, and the
log file name, MYPROB01_33876.log.

If the process instance is not available, the filenames are
<SQR Program Name>_<timestamp>.xxx

31.7.2 PSSQR shell

PeopleTools 8 delivers a new shell or SQR wrapper: the PSSQR executable. The
PSSQR is an ANSI-C function consistent across different platforms. It replaces the
script file that was previously used on Unix. This shell allows PeopleTools 8 to sup-
port output to HTML and PDF formats.

PSSQR also improves the delivery of reports to printers by employing a different
technique of dealing with file outputs.

Licensed to James M White <jwhite@maine.edu>

SQR AND PEOPLETOOLS 8 711

31.7.3 New printer setup SQCs

Since SQR output is processed differently in release 8, PeopleSoft developed new
printer-independent versions of SETUPxx.sqc files. In order to use the new file output
formats, you need to use either PTSET01.sqc or PTSET02.sqc files. The PTSET01.sqc
was developed to replace PTPSP160.sqc, SETUP31.sqc, and SETUP01.sqc (whichever
was used). The PTSET02.sqc is a replacement for PTPSL177.sqc, SETUP32.sqc, and
SETUP02.sqc.

31.7.4 Additional features

PeopleTools 8 enhanced its support for the Global Time Zone and launched support
of the Unicode.

Files will continue to be the primary way of integration. Release 8 brings in a sim-
pler way of working with files. The File layout is now an object. It supports a graphical
description of files. New robust file support features are added to PeopleCode as well.
All this makes it easy for a third party to manipulate and exchange file layouts.

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

P A R T

Understanding
PeopleSoft COBOL

Many of PeopleSoft’s major business processes are written in COBOL. PeopleSoft docu-
mentation usually includes a section called “Before You Customize,” which cautions against
making any modifications to the delivered COBOL processes. This is generally good advice.
There are many issues to consider, including development cost, version upgrades, and continued
PeopleSoft support. Regardless of whether or not one decides to customize, it’s good practice to
understand how the COBOL applications work. Undoubtedly situations will arise when an anal-
ysis of the COBOL programs will be required. The purpose of this section is to provide the reader
with a basic understanding of PeopleSoft’s COBOL techniques and how they are used to access
the database. All database activity is processed through the use of a called module named
PTPSQLRT. Because no direct SQL execution exists (outside of the PTPSQLRT module), the pro-
gram structure and approach is consistent across all database platforms. This is one of the key
ingredients to PeopleSoft’s success as a provider of packaged solutions. As we discover how
PeopleSoft COBOL is used, we can apply what we’ve learned by making a sample customization
to a delivered application. Additional topics covered include the Process Scheduler API, Configu-
ration Manager, and trace files.

6

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

715

C H A P T E R 3 2

 What’s the difference?

32.1 Conventional COBOL
programming 715

32.2 PeopleSoft structured
programming 717

32.3 The PTPSQLRT module 720
32.4 Parameter descriptions 721
32.5 Setup lists 725
32.6 Action requirements 728

32.1 CONVENTIONAL COBOL PROGRAMMING

COBOL is often used in the client/server world. In fact, it is used just about every-
where! Mainframes, Unix systems, personal computers—all can utilize applications
written in COBOL. COBOL is a portable programming language with little variance
in the “core” language itself. Theoretically, the same program can be compiled suc-
cessfully on different platforms with varying elements that can be utilized depending
upon the platform you’re using. For example, some COBOL compilers have built-in
functions (for running on a client-workstation) for keyboard handling, screen I/O
(cursor control), and so forth. The main difference between conventional COBOL
programming and PeopleSoft COBOL lies in the manner used in accessing the data-
base. Instead of directly embedding your SQL statements, PeopleSoft uses a highly
structured approach. All database access is controlled by calls to a delivered module
called PTPSQLRT. SQL statements are stored in a database table and executed by
passing the statement name and associated parameters to the PTPSQLRT module. We
are going to explore how PeopleSoft uses this module to perform a variety of

Licensed to James M White <jwhite@maine.edu>

716 CHAPTER 32 WHAT’S THE DIFFERENCE?

functions, including connecting to the database, selecting, updating, inserting, and
deleting records; and disconnecting from the database.

Before we dive into PeopleSoft’s method of database access, let’s take a quick look
at how we access the database using embedded SQL in a conventional COBOL program.

32.1.1 Using SQL in COBOL programs

Many COBOL compilers allow you to embed SQL within the program. The follow-
ing example uses Pro*COBOL. The SQL directives are identified by the EXEC SQL
and END-EXEC commands, and the SQL communication area and working storage
section are defined:

 * SQL Communications Area
 EXEC SQL INCLUDE SQLCA
 END-EXEC.
 **
 ***** Declare Host Variables *****
 **
 EXEC SQL BEGIN DECLARE SECTION
 END-EXEC.
 ...
 01 WS-SQL-WORK-AREAS.
 05 WS-USERID-PASSWD.
 10 USERNAME PIC X(10).
 10 PASSWD PIC X(10).
 05 EMPLID-LAST-EMPL PIC S9(08) COMP.
 ...
 EXEC SQL INCLUDE PSTABLES
 END-EXEC.
 ...

 ...
 EXEC SQL END DECLARE SECTION
 END-EXEC.

In the sample below we set a default error-handling routine. When any SQL error is
encountered, the procedure Z999-SQL-ERROR is performed:

 EXEC SQL WHENEVER SQLERROR
 DO PERFORM Z999-SQL-ERROR
 END-EXEC.

It is a good practice to prompt the user for a user ID and password instead of hard-
coding them. Once the user ID and password are entered, a CONNECT command
is executed:

 DISPLAY 'Enter Username: ' WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY 'Password : ' WITH NO ADVANCING.
 ACCEPT PASSWD WITH NO-ECHO.

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT STRUCTURED PROGRAMMING 717

 EXEC SQL CONNECT
 :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

Following we select the column EMPLID_LAST_EMPL from the table
PS_INSTALLATION and place the data into the bind variable EMPLID-LAST-EMPL,
defined in the data division of the program:

 EXEC SQL SELECT EMPLID_LAST_EMPL
 INTO :EMPLID-LAST-EMPL
 FROM PS_INSTALLATION
 END-EXEC.

The table PS_INSTALLATION is updated using the bind variable EMPLID-LAST-EMPL
to populate the column EMPLID_LAST_EMPL:

 EXEC SQL UPDATE PS_INSTALLATION
 SET EMPLID_LAST_EMPL = :EMPLID-LAST-EMPL
 END-EXEC.

Any updates are then committed to the database:

 EXEC SQL COMMIT WORK
 RELEASE
 END-EXEC.

As you can see, all SQL access is controlled by the programmer. The structure is free
form and can vary by developer. PeopleSoft uses a far different approach, one that
may seem cumbersome at first. Once you discover the secret to PeopleSoft’s method-
ology, however, you’ll find it much easier to analyze and, if necessary, modify
PeopleSoft-delivered COBOL processes.

32.2 PEOPLESOFT STRUCTURED PROGRAMMING

All PeopleSoft COBOL programs use the same structured approach. There is no
direct database access using embedded SQL. All SQL statements to be executed must
reside in a database table called PS_SQLSTMT_TBL. PeopleSoft COBOL modules
requiring database access through SQL are accompanied by a Data Mover script that
contains all the SQL statements used by the module. The SQL statement table is pop-
ulated by running the Data Mover script. This is how the SQL statements are initially
loaded. Any modifications or additions to stored SQL statements should be made to
the script and loaded using Data Mover. The key behind PeopleSoft’s structured
approach is the use of a main database activity module called PTPSQLRT. This mod-
ule ensures consistency from one PeopleSoft program to another regardless of data-
base platform or operating system.

Licensed to James M White <jwhite@maine.edu>

718 CHAPTER 32 WHAT’S THE DIFFERENCE?

To demonstrate the functionality of the PTPSQLRT module, let’s use one of Peo-
pleSoft’s less complex processes—the process to delete obsolete monthly payroll bal-
ances (called PSPDLBAL)—as an example:

Figure 32.1 illustrates the overall design of PeopleSoft COBOL processing. Calls
to PTPSQLRT are used to perform all database access functions. Stored SQL state-
ments are retrieved from the SQL statement table and processed.

32.2.1 Stored SQL statements

First, let’s take a quick look at the stored SQL statement table.

Each COBOL program that calls a stored SQL statement has at least one entry.
In our upcoming example, we’ll access SQL statements with a PGM_NAME of
PSPDLBAL. The statements are also qualified by a STMT_TYPE, which designates the
type of SQL statement. The valid types are S (Select), U (Update), I (Insert), and

COBOL
modules

PTPSQLRT
SQL statement

table

Call PTPSQLRT using action
 sqlrt,
 cursor,
 statement,
 bind-setup,
 bind-data,
 select-setup,
 select-data

PeopleSoft
database

Figure 32.1

PeopleSoft COBOL processing

SQLSTMT_TBL Stored SQL Statement Table

PGM_NAME Program Name

STMT_TYPE Statement Type

STMT_NAME Statement Name

STMT_TEXT Statement Text

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT STRUCTURED PROGRAMMING 719

D (Delete). Finally, the STMT_NAME field is used to assign a unique statement
name. The actual statement text is stored in the STMT_TEXT column. This statement
text will be retrieved and compiled by PTPSQLRT.

32.2.2 Storing SQL statements from Data Mover scripts

The PSPDLBAL COBOL process comes with a Data Mover script (PSPDLBAL.DMS)
which is loaded into the table PS_SQLSTMT_TBL. Let’s look at a portion of this script:

STORE PSPDLBAL_S_RUNCTL
SELECT COMPANY,
 BALANCE_ID,
 BALANCE_YEAR,
 BALANCE_PERIOD
 FROM PS_PAY_DBAL_RUNCTL
 WHERE OPRID = :1
 AND RUN_CNTL_ID = :2
;

Our first line contains a Data Mover STORE command. This is used to store the sub-
sequent text in the STMT_TEXT column of the stored SQL statement table. The
STORE command parameter PSPDLBAL_S_RUNCTL is used to identify the key ele-
ments. The parameter is a consolidated form of the SQL statement table keys. They
are then broken down by Data Mover into the PGM_NAME, STMT_TYPE, and
STMT_NAME columns of the SQL statement table. When we discuss the PTPSQLRT
module in detail, you’ll discover the SQL statements are accessed using the same con-
solidated method of identifying the statement.

The SQL statement text following the STORE command is placed in the SQL state-
ment table. Notice the use of bind variables :1 and :2. All bind variables are entered
in this manner. When the statement is retrieved, the bind variable is resolved and the
statement processed.

Figure 32.2 depicts the Data Mover process of loading stored SQL statements.
The DMS script contains all the stored SQL statements. Data Mover loads the SQL
statements into the SQL statement table where they can then be utilized by the
COBOL processes through calls to PTPSQLRT.

DMS
Script

SQL statement
table

DATA
Mover

Figure 32.2 Data Mover processes DMS script (stores SQL statements)

Licensed to James M White <jwhite@maine.edu>

720 CHAPTER 32 WHAT’S THE DIFFERENCE?

Once the DMS script has executed, the stored SQL statement table can be queried
using a simple Select statement. Figure 32.3 shows the results of a Select when
using SQLTalk for Windows. All Select statement types for program PSPDLBAL
are returned. The COBOL program uses a similar method to retrieve the SQL state-
ment text.

Keep in mind that no need exists to query the stored SQL statements. This is infor-
mational only and demonstrates how the SQL statements are stored in the database.

32.3 THE PTPSQLRT MODULE

The module PTPSQLRT performs a variety of functions:

• executes Select statements
• fetches rows from the database
• processes SQL updates—Update, Delete, Insert statements
• performs commits and rollbacks
• connects to database
• disconnects from database
• disconnects cursors
• performs error handling

Figure 32.3 Viewing stored SQL statements using SQLTalk

Licensed to James M White <jwhite@maine.edu>

PARAMETER DESCRIPTIONS 721

32.3.1 Calling PTPSQLRT

When calling PTPSQLRT from a COBOL program, the following format is used:

CALL 'PTPSQLRT' USING action,
 sqlrt,
 cursor,
 statement,
 bind-setup,
 bind-data,
 select-setup,
 select-data

The preceding parameters are positional and must be passed in the precise order
shown. The number of parameters passed to PTPSQLRT can range from two to eight,
depending upon the particular Action being executed. For example, an error handling
action only requires the first two parameters, while all eight are required when per-
forming an Action that selects data from the database. Once we describe each of the
parameters, the requirements for each particular Action will be explained.

32.4 PARAMETER DESCRIPTIONS

We’ll now examine each of the parameters that may be passed to the PTPSQLRT
module.

32.4.1 Parameter 1—ACTION

A one-character code is used to specify the action to be performed. These codes are
already defined in a copybook called PTCSQLRT and should be used when interfac-
ing with PTPSQLRT:

 02 ACTION-SELECT PIC X VALUE 'S'.
 02 ACTION-FETCH PIC X VALUE 'F'.
 02 ACTION-UPDATE PIC X VALUE 'U'.
 02 ACTION-COMMIT PIC X VALUE 'C'.
 02 ACTION-ROLLBACK PIC X VALUE 'R'.
 02 ACTION-DISCONNECT PIC X VALUE 'D'.
 02 ACTION-DISCONNECT-ALL PIC X VALUE 'A'.
 02 ACTION-CONNECT PIC X VALUE 'N'.
 02 ACTION-ERROR PIC X VALUE 'E'.
 02 ACTION-CLEAR-STMT PIC X VALUE 'L'.
 02 ACTION-TRACE PIC X VALUE 'T'.
 02 ACTION-START-BULK PIC X VALUE 'X'.
 02 ACTION-STOP-BULK PIC X VALUE 'Y'.
 02 ACTION-FLUSH-BULK PIC X VALUE 'Z'.
 02 ACTION-DML-COUNT PIC X VALUE 'M'.

Here’s how we specify Action as the first parameter in a parameter list:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 <additional parameters>

Licensed to James M White <jwhite@maine.edu>

722 CHAPTER 32 WHAT’S THE DIFFERENCE?

32.4.2 Parameter 2—SQLRT (Communication Area)

SQLRT is the communication area required by PTPSQLRT. Information about the
database and the current run is stored here and passed to PTPSQLRT. The database
platform, user ID, password, process instance, and job instance are some examples of
data stored here. When control is passed back from PTPSQLRT to the calling mod-
ule, a return code, which is also found within the PTCSQLRT copybook, is set. This
code should be evaluated to determine if the operation were successful:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 <additional parameters>

IF RTNCD-ERROR OF SQLRT
 <error handling>
END-IF

Here are a few guidelines for using the PTCSQLRT copybook:
SQLRT should be defined as a 01-level item in the working storage section of the

main module. A Copy statement should immediately follow, designating PTCSQLRT.

 /***

 * SQL COMMUNICATION *

 **
 01 SQLRT. COPY PTCSQLRT.

The SQLRT communication area must be passed to all called modules. This ensures
the same communication area is used:

 CALL 'PSPDCWS1' USING SQLRT
 PSLCT
 DARRY

All called modules must have SQLRT defined as a 01-level item in the programs link-
age section. A COPY statement should immediately follow designating PTCSQLRT:

 LINKAGE SECTION.

 /***

 * SQL COMMUNICATION *

 **
 01 SQLRT. COPY PTCSQLRT.

The procedure division of the called program must accept the SQLRT parameter:

Licensed to James M White <jwhite@maine.edu>

PARAMETER DESCRIPTIONS 723

 PROCEDURE DIVISION USING SQLRT
 PSLCT
 DARRY
 .

32.4.3 Parameter 3—CURSOR

Some actions require the use of a database cursor. This is defined as a four-digit com-
putational number. If you don’t need to re-use the cursor, the SQL-CURSOR-COMMON
variable, which is found in the PTCSQLRT copybook, may be used. If you need to re-
use the cursor, a dedicated variable will need to be defined. A cursor is also referred to
as a resource connection unit:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 <additional parameters>

Here is a brief explanation on what it means to re-use a cursor: If you are selecting
from a table only one time in your program, you don’t need to dedicate a cursor vari-
able. For example, when you select parameters from a Run Control record, you spec-
ify the cursor as SQL-CURSOR-COMMON in your Select and immediately fetch the
row of data for the same cursor. You can then re-use the SQL-CURSOR-COMMON vari-
able for other re-useable cursors. Please note that this is simply a convention used by
PeopleSoft to make programming easier. It would be unnecessary to define a distinct
cursor variable for every SQL function executed only one time.

A dedicated cursor is required when you perform a Select and fetch rows mul-
tiple times in the COBOL program. Between each fetch from the assigned cursor, you
could perform SQL tasks on other open cursors. By dedicating a cursor, you can fetch
a row of data at any time in your COBOL program without regard to any other cursors
that may currently be open.

32.4.4 Parameter 4—SQL statement name

An SQL statement name is the consolidated name of the stored SQL statement. As we
mentioned in our description of the stored SQL statement table, the table keys
PGM_NAME, STMT_TYPE, and STMT_NAME must be passed as one string separated by
underscores. An example of an SQL statement name is PSPDLBAL_S_RUNCTL.
PeopleSoft commonly stores this statement name in a variable called SQL-STMT. The
SQL-STMT variable is grouped under a 01-level item with all other components
required for the call to PTPSQLRT. This may include Bind Setup/Data, Select
Setup/Data, and SQL Cursor elements.

The SQL-STMT variable in the following example is part of the 01-level item
called S-RUNCTL:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT

Licensed to James M White <jwhite@maine.edu>

724 CHAPTER 32 WHAT’S THE DIFFERENCE?

 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 <additional parameters>

32.4.5 Parameter 5—Bind Setup

The fifth and sixth parameters, the Bind Setup and Bind Data parameters, are
used together to pass bind variable information. These define the format of the bind
variable and the actual bind variable values. The number of bind variables must
match that of the stored SQL statement which is designated as :1, :2, etc. The Bind
Setup area is a group of picture clauses defined as FILLER, which represents the for-
mat of the corresponding bind data. This is known as a setup list. We will discuss this
in detail following the parameter descriptions. Let’s specify Bind Setup as the fifth
parameter in a parameter list.

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 <additional parameters>

32.4.6 Parameter 6—Bind Data

The sixth parameter is the Bind Data list, which holds the bind variable values used
in the stored SQL statement. Each bind data value in the list has a matching bind
setup value. Some examples of where bind variables are used are in WHERE clauses or
in the values list of an Insert statement:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL
 <additional parameters>

32.4.7 Parameter 7—Select Setup

The seventh and eighth parameters are used together to define the Select area. This
Select area is used by the Fetch action to return the selected row of data elements.
The Select Setup list is similar to the Bind Setup list. Both use the setup list
format, which will be described in detail shortly:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL

Licensed to James M White <jwhite@maine.edu>

SETUP LISTS 725

 SELECT-SETUP OF S-RUNCTL
 <additional parameter>

32.4.8 Parameter 8—Select Data

The eighth and final parameter is the Select Data list, which holds the returned
values from a Fetch action. The number of Select Setup and Select Data
entries corresponds to the number of Select columns in the stored SQL statement:

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL
 SELECT-SETUP OF S-RUNCTL
 SELECT-DATA OF S-RUNCTL

Notice the S-RUNCTL designated by the COBOL designator OF for the parameters
SQL-STMT, BIND-SETUP, BIND-DATA, SELECT-SETUP, and SELECT-DATA.
S-RUNCTL is a 01-level item that contains all of these parameters. Using OF tells the
COBOL compiler to qualify the variable names with the 01-level item. This feature
allows duplicate variable names to be used. Generally speaking, each 01-level item
used to access the database utilizes the same variable names for the desired
PTPSQLRT parameters.

32.5 SETUP LISTS

The setup list is used to define the attributes of an accompanying list of data ele-
ments. The length of each setup item matches the length of its data item counterpart.
The setup item contains a string of characters which designate the data type and,
when applicable, the number of decimal places. With the exception of decimal num-
bers (COMP-3), two codes exist for each data type. If the same data types are defined
one after the other, the setup list alternates between the two codes (table 32.2).

Table 32.1 PeopleSoft’s Setup List table

Data types Codes Length Data list picture

Character C, H 1 to 255 X(1) through X(255)

Date D, A 10 X(10)

Time T, E 26 X(26)

Small integer S, M 2 [S]999 or [S]9999 COMP

Large integer I, N 4 [S]9(8) or [S]9(9) COMP

Licensed to James M White <jwhite@maine.edu>

726 CHAPTER 32 WHAT’S THE DIFFERENCE?

Note that all Bind-Setup, Bind-Data, Select-Setup, and Select-Data
areas must end with the termination character of ‘Z.’ If there are no bind data values,
as in the case of an unconditional Select or Update, a single ‘Z’ termination char-
acter must exist in the Bind-Setup/Bind-Data areas.

Let’s elaborate briefly on the decimal number setup (COMP-3). Look at the three
examples used in the Decimal Number section of the Setup List table (table 32.1). The
first example requires a string defined as PIC X(4) with a value of 2PPP. This rep-
resents the number of decimal places along with the total length of the data field. A
field defined as S9(5)V99 COMP-3 takes up four bytes. The trailing ‘P’ character sim-
ply fills the remainder of the field after the number of decimal places. The second
example would use a string defined as PIC X(3) with a value of 2PP, which represents
two decimals and a total length of three bytes. The data field in example 2 is defined
as 999V99 which takes up three bytes. The last example uses a PIC X(8) string with
a value of 3PPPPPPP. This designates three decimal places and a total length of eight
bytes. The data field defined as S9(11)V999 COMP-3 takes up eight bytes in storage.

Let’s take a look at an actual working storage area that includes a setup list. This
section was taken from the PSPDLBAL module. Notice the stored SQL statement def-
inition, Bind Setup/Data, and Select Setup/Data areas:

 01 S-RUNCTL.
 02 SQL-STMT PIC X(18) VALUE
 'PSPDLBAL_S_RUNCTL'.

 02 BIND-SETUP.
 03 FILLER PIC X(8) VALUE ALL 'C'.
 03 FILLER PIC X(30) VALUE ALL 'H'.
 03 FILLER PIC X VALUE 'Z'.

 02 BIND-DATA.
 03 OPRID PIC X(8).
 03 BATCH-RUN-ID PIC X(30).
 03 FILLER PIC X VALUE 'Z'.

Decimal
number

d[P…] 1 to 8 [S]9(w)[V9(d)] COMP-3

Example 1:
S9(5)V9(2) COMP-3 => 2PPP

Example 2:
999V99 COMP-3 => 2PP

Example 3:
S9(11)V999 COMP-3 => 3PPPPPPP

END OF LIST Z 1 All setup and data areas must be terminated with the
character ‘Z’.

Table 32.1 PeopleSoft’s Setup List table (continued)

Data types Codes Length Data list picture

Licensed to James M White <jwhite@maine.edu>

SETUP LISTS 727

 02 SELECT-SETUP.
 03 FILLER PIC X(10) VALUE ALL 'C'.
 03 FILLER PIC XX VALUE ALL 'H'.
 03 FILLER PIC XX VALUE ALL 'S'.
 03 FILLER PIC XX VALUE ALL 'M'.
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-DATA.
 03 COMPANY PIC X(10).
 03 BALANCE-ID PIC XX.
 03 BALANCE-YEAR PIC 9999 COMP.
 03 BALANCE-PERIOD PIC 999 COMP.
 03 FILLER PIC X VALUE 'Z'.

The preceding example shows a good sample of contiguous setup list strings. Let’s
examine the Bind-Setup and Bind-Data areas. The Bind-Data area is for the
OPRID and BATCH-RUN-ID, which are both character fields. The Bind-Setup
uses the character 'C' for the OPRID setup list string while the character 'H' is used
for the BATCH-RUN-ID setup list string. You can also see that the character 'Z' ter-
minates each setup and data area. This produces an image that will be recognized by
the PTPSQLRT module to determine the position of the two fields.

If both fields use 'C' in the setup list string, the PTPSQLRT module interprets
this as one thirty-eight character field with the second field missing. This produces an
error in the COBOL program.

Let’s also look at the stored SQL statement that will be executed. The following
displays the portion of the DMS script containing the statement text:

STORE PSPDLBAL_S_RUNCTL
SELECT COMPANY,
 BALANCE_ID,
 BALANCE_YEAR,
 BALANCE_PERIOD
 FROM PS_PAY_DBAL_RUNCTL
 WHERE OPRID = :1
 AND RUN_CNTL_ID = :2
;

The Bind Setup/Data area in working storage contains the OPRID and BATCH-
RUN-ID and will be used as the criteria for the Select. PTPSQLRT substitutes these
for bind variables :1 and :2. The Select Setup/Data area will be used to store
the results of the Select statement. COMPANY, BALANCE_ID, BALANCE_YEAR,
and BALANCE_PERIOD will be stored in the format specified in the Select Setup.
It is the developers responsibility to ensure that the datatypes are compatible. The
Select Data elements are now populated and can be used by the COBOL program.

Licensed to James M White <jwhite@maine.edu>

728 CHAPTER 32 WHAT’S THE DIFFERENCE?

32.6 ACTION REQUIREMENTS

Let’s review some of the basic actions found in PeopleSoft COBOL and the required
parameters for each.

CONNECT— connects to the database.

CALL 'PTPSQLRT' USING ACTION-CONNECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT

IF RTNCD-ERROR OF SQLRT
 <Error Handling>
END-IF

CONNECT uses three parameters: The Action, SQL communication area, which is the
minimum requirement for all actions, and a reuseable cursor which is required to con-
nect. The return code is checked to determine whether or not the connect action
was successful.

DISCONNECT— disconnects a cursor from database.
DISCONNECT uses three parameters. Notice the following example specifies a

dedicated cursor, defined within the S-PYGRP 01-level of working storage.

CALL 'PTPSQLRT' USING ACTION-DISCONNECT OF SQLRT
 SQLRT
 SQL-CURSOR OF S-PYGRP

IF RTNCD-ERROR OF SQLRT
 <Error Handling>
END-IF

DISCONNECT ALL— disconnects all cursors from database.

CALL 'PTPSQLRT' USING ACTION-DISCONNECT-ALL OF SQLRT
 SQLRT

IF RTNCD-ERROR OF SQLRT
 <Error Handling>
END-IF

DISCONNECT ALL uses two parameters. All cursors are disconnected. You will find
this immediately before the end of the program.

ERROR—is the error handling routine.

CALL 'PTPSQLRT' USING ACTION-CONNECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT

Licensed to James M White <jwhite@maine.edu>

ACTION REQUIREMENTS 729

IF RTNCD-ERROR OF SQLRT

 MOVE 'SELECT-RUNCTL(CONNECT)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

...

 ZZ000-SQL-ERROR SECTION.
 ZZ000.

 CALL 'PTPSQLRT' USING ACTION-ERROR OF SQLRT
 SQLRT

ACTION-ERROR—uses two parameters: the Action and SQL communication area.
This Action provides a consistent means of error handling. The PTCSQLRT copybook
contains a field called ERR-SECTION. The section which caused the error should be
placed in the ERR-SECTION field. The previous example shows both the controlling
section, which may cause an error, and the ZZ000-SQL-ERROR section, which exe-
cutes the Action-Error process. The error handling procedure displays the section
which caused the error and also halts further processing. The user can see that the error
occurred in the SELECT-RUNCTL section while trying to connect to the database.

COMMIT—performs a commit.

CALL 'PTPSQLRT' USING ACTION-COMMIT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
IF RTNCD-ERROR OF SQLRT

 MOVE ‘COMMIT' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

ACTION-COMMIT—uses three parameters: The Action, SQL Communication Area,
and a database cursor. The SQL-CURSOR-COMMON variable (found in PTCSQLRT)
may be used for reuseable cursors. When executed, all work will be committed since
the latest commit (or rollback).

ROLLBACK—performs a Rollback.

CALL 'PTPSQLRT' USING ACTION-ROLLBACK OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
IF RTNCD-ERROR OF SQLRT

 MOVE 'ROLLBACK' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

Licensed to James M White <jwhite@maine.edu>

730 CHAPTER 32 WHAT’S THE DIFFERENCE?

ACTION-ROLLBACK—uses three parameters: The Action, SQL Communication
Area, and a database cursor. When executed, all work completed since the last commit
will be rolled back.

SELECT—selects and formats data from the database.

MOVE OPRID OF SQLRT TO OPRID OF S-RUNCTL
MOVE BATCH-RUN-ID OF SQLRT TO BATCH-RUN-ID OF S-RUNCTL

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL
 SELECT-SETUP OF S-RUNCTL
 SELECT-DATA OF S-RUNCTL

IF RTNCD-ERROR OF SQLRT

 MOVE 'SELECT-RUNCTL(SELECT)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

ACTION-SELECT—uses all eight available parameters. The primary function of
ACTION-SELECT is to create a result set of data from the database. Once created, the
rows may be retrieved one-at-a-time using a Fetch action which we’ll explain next.
The example above is used to select Run Control information and is using a reuseable
cursor. Before the call to PTPSQLRT, the OPRID and BATCH-RUN-ID are moved to
the Bind-Data area within the S-RUNCTL 01-level area. The Bind Data is used as
the Where clause criteria in the SQL statement. Let’s look at some of the parameter
definitions in working storage:

01 S-RUNCTL.
 02 SQL-STMT PIC X(18) VALUE
 'PSPDLBAL_S_RUNCTL'.

 02 BIND-SETUP.
 03 FILLER PIC X(8) VALUE ALL 'C'.
 03 FILLER PIC X(30) VALUE ALL 'H'.
 03 FILLER PIC X VALUE 'Z'.

 02 BIND-DATA.
 03 OPRID PIC X(8).
 03 BATCH-RUN-ID PIC X(30).
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-SETUP.
 03 FILLER PIC X(10) VALUE ALL 'C'.

Licensed to James M White <jwhite@maine.edu>

ACTION REQUIREMENTS 731

 03 FILLER PIC XX VALUE ALL 'H'.
 03 FILLER PIC XX VALUE ALL 'S'.
 03 FILLER PIC XX VALUE ALL 'M'.
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-DATA.
 03 COMPANY PIC X(10).
 03 BALANCE-ID PIC XX.
 03 BALANCE-YEAR PIC 9999 COMP.
 03 BALANCE-PERIOD PIC 999 COMP.
 03 FILLER PIC X VALUE 'Z'.

We can see the working storage definitions used in the ACTION-SELECT example.
Notice the last five parameters in the call are grouped together under the same 01-
level item called S-RUNCTL. If a dedicated cursor were required, it would also be
defined in the S-RUNCTL area. This is a very structured and consistent approach
used throughout PeopleSoft COBOL. Any analysis or modifications may be carried
out with relative ease due to this structure.

Let’s take a closer look at the SQL-STMT parameter. This contains the consolidated
key of the SQL statement stored in the SQL statement table. Let’s look at the SQL state-
ment text retrieved by PTPSQLRT when the ACTION-SELECT is performed:

SELECT COMPANY,
 BALANCE_ID,
 BALANCE_YEAR,
 BALANCE_PERIOD
 FROM PS_PAY_DBAL_RUNCTL
 WHERE OPRID =:1
 AND RUN_CNTL_ID =:2

The bind data OPRID and BATCH-RUN-ID are substituted for the bind variables :1
and :2. The statement is executed, and Select Data will be used to accept the
data. An ACTION-FETCH needs to be performed to physically retrieve each row in
the result set created by ACTION-SELECT.

FETCH—fetches a single row from result set created by Select:

MOVE OPRID OF SQLRT TO OPRID OF S-RUNCTL
MOVE BATCH-RUN-ID OF SQLRT TO BATCH-RUN-ID OF S-RUNCTL

CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL
 SELECT-SETUP OF S-RUNCTL
 SELECT-DATA OF S-RUNCTL

Licensed to James M White <jwhite@maine.edu>

732 CHAPTER 32 WHAT’S THE DIFFERENCE?

IF RTNCD-ERROR OF SQLRT

 MOVE 'SELECT-RUNCTL(SELECT)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

INITIALIZE SELECT-DATA OF S-RUNCTL

CALL 'PTPSQLRT' USING ACTION-FETCH OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT

IF RTNCD-ERROR OF SQLRT

 IF RTNCD-END OF SQLRT

 DISPLAY 'Delete Balances Run Control Missing.'
 DISPLAY ' for Operator ID ' OPRID OF S-RUNCTL
 DISPLAY ' and Batch Run ID ' BATCH-RUN-ID OF S-RUNCTL
 SET RTNCD-USER-ERROR OF SQLRT TO TRUE
 PERFORM ZZ000-SQL-ERROR
 ELSE
 MOVE 'SELECT-RUNCTL(FETCH)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF
ELSE
 PERFORM DD000-RUNCTL-ACCEPTED
END-IF

ACTION-FETCH—uses three parameters. When the Fetch is performed, the data
are placed in the Setup Data area defined in the ACTION-SELECT for the desig-
nated cursor. Notice that the ACTION-SELECT above utilizes the SQL-CURSOR-
COMMON reusable cursor. The ACTION-FETCH uses the same cursor and all associated
characteristics including the Select Data area. Upon returning from the Fetch, the
return code is tested. If there is no error, a row has been successfully returned. If there
is an error, it could be due to an end-of-data condition. An error message is displayed
if there is no data (Missing Run Control). Any other database errors are handled as
well with a simple 'SELECT-RUNCTL(FETCH)' message.

Our example was very straightforward. Since we are selecting a Run Control
record, we are expecting one row to be returned. If multiple rows were processed, a
loop would be required. The rows would be fetched one at a time with an end-of-data
test used to break out of the loop. The Select Data area would be updated with each
fetched row and utilized accordingly by the program.

UPDATE—performs an Insert, Update, or Delete.

MOVE OPRID OF SQLRT TO OPRID OF D-RUNCTL
MOVE BATCH-RUN-ID OF SQLRT TO BATCH-RUN-ID OF D-RUNCTL

Licensed to James M White <jwhite@maine.edu>

ACTION REQUIREMENTS 733

CALL 'PTPSQLRT' USING ACTION-UPDATE OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF D-RUNCTL
 BIND-SETUP OF D-RUNCTL
 BIND-DATA OF D-RUNCTL

IF RTNCD-ERROR OF SQLRT

 MOVE 'RUNCTL-ACCEPTED(DELETE)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
END-IF

PERFORM ZA000-COMMIT

ACTION-UPDATE—uses six parameters. This function is used to execute Inserts,
Updates, and Deletes. The Select Setup and Data areas are omitted. The
Bind Setup and Data areas are used to pass WHERE clause criteria, Update values
and Insert values. The order of the Bind Setup/Data lists must match the order of
the bind variables (:1, :2, :3, etc.) in the stored SQL statement. Now, let’s have a
look at the working storage section:

01 D-RUNCTL.
 02 SQL-STMT PIC X(18) VALUE
 'PSPDLBAL_D_RUNCTL'.

 02 BIND-SETUP.
 03 FILLER PIC X(8) VALUE ALL 'C'.
 03 FILLER PIC X(30) VALUE ALL 'H'.
 03 FILLER PIC X VALUE 'Z'.

 02 BIND-DATA.
 03 OPRID PIC X(8).
 03 BATCH-RUN-ID PIC X(30).
 03 FILLER PIC X VALUE 'Z'.

We see the 01-level item D-RUNCTL, which is the area used in our ACTION-
UPDATE example. Notice the name of the SQL-STMT, 'PSPDLBAL_D_RUNCTL'.
The middle character indicates that this is a Delete statement. The only bind vari-
ables utilized by a Delete are in the WHERE clause. We now know that the criteria
for the Delete is OPRID and BATCH-RUN-ID. This statement will delete the Run
Control record for the process we’re running.

DELETE

 FROM PS_PAY_DBAL_RUNCTL
 WHERE OPRID =:1
 AND RUN_CNTL_ID =:2

Bind variables :1 and :2 serve
as the WHERE clause criteria in
a DELETE

Licensed to James M White <jwhite@maine.edu>

734 CHAPTER 32 WHAT’S THE DIFFERENCE?

If you look in the DMS script (PSPDLBAL.DMS) or query the SQL statement table
itself, you find the SQL statement displayed previously. The OPRID and BATCH-
RUN-ID values in the Bind Data area are substituted for the :1 and :2 bind vari-
ables. The Delete SQL statement is then compiled and executed, and the Run Con-
trol record is deleted (if all goes well). Notice the error handling in our example as
well as the Commit routine, which is performed if the Action were successful.

Let’s look at a sample of an Update and Insert statement. We’ll examine the
working storage area and the portion of the DMS script which contains the SQL state-
ment text. These examples can be found in the program PAPPPYMT.CBL and the
DMS script PAPPPYMT.DMS:

01 U-RUNCNTL.
 05 SQL-CURSOR PIC S9(4) VALUE 0 COMP.
 05 SQL-STMT PIC X(18) VALUE
 'PAPPPYMT_U_RUNCNTL'.
 05 BIND-SETUP.
 10 FILLER PIC X(11) VALUE ALL 'C'.
 10 FILLER PIC X(8) VALUE ALL 'H'.
 10 FILLER PIC X(30) VALUE ALL 'C'.
 10 FILLER PIC X(01) VALUE 'Z'.
 05 BIND-DATA.
 10 EMPLID PIC X(11) VALUE SPACE.
 10 OPRID PIC X(8).
 10 RUN-CNTL-ID PIC X(30).
 10 FILLER PIC X(01) VALUE 'Z'.

The preceeding example displays a typical working storage area used in an Update
action. Depending on the SQL statement, the bind data can be any combination of
Update values or WHERE clause criteria. The bind data may be all Update values
with criteria hard-coded in the SQL statement itself (or no criteria at all for a mass
update). The bind data may be made up entirely of WHERE clause criteria with the
Update value hard-coded in the SQL statement. There may not be any bind data val-
ues at all! Consider the statement, ‘UPDATE PS_INSTALLATION SET
EMPLID_LAST_EMPL = 0’. There are no bind data values and no WHERE clause val-
ues. The SQL statement requires no bind data at all. The bind data and bind setup
lists would still be required. A single termination character of 'Z' would reside in
both lists, and the statement would be executed without bind values.

STORE PAPPPYMT_U_RUNCNTL
UPDATE PS_PA_RUN_CNTL
 SET EMPLID = :1

 WHERE OPRID = :2
 AND RUN_CNTL_ID = :3

The bind data values in our (Update) working storage example correspond to the
bind variables :1, :2, and :3 in the SQL statement text depicted above. Once again,

Bind variable :1 is used as an UPDATE
value while :2 and :3 are used as
WHERE clause criteria.

Licensed to James M White <jwhite@maine.edu>

ACTION REQUIREMENTS 735

the order and datatype of the bind data should match that of the bind variables in the
SQL statement text.

Now let’s look at a typical working storage area used in an Insert action. The
bind values EMPLID, BENEFIT_PLAN, EFFDT, and PENSION-STATUS will be
inserted into the table contained in the SQL statement:

01 I-PENSTAT.
 05 SQL-CURSOR PIC S9(4) VALUE 0 COMP.
 05 SQL-STMT PIC X(18) VALUE
 'PAPPPYMT_I_PENSTAT'.
 05 BIND-SETUP.
 10 FILLER PIC X(11) VALUE ALL 'C'.
 10 FILLER PIC X(6) VALUE ALL 'H'.
 10 FILLER PIC X(10) VALUE ALL 'D'.
 10 FILLER PIC X(3) VALUE ALL 'C'.
 10 FILLER PIC X(01) VALUE 'Z'.
 05 BIND-DATA.
 10 EMPLID PIC X(11).
 10 BENEFIT-PLAN PIC X(6).
 10 EFFDT PIC X(10).
 10 PENSION-STATUS PIC X(3).
 10 FILLER PIC X(01) VALUE 'Z'.

The bind variables :1 thru :4 will be replaced by the bind data values in the previous
working storage definition. As you know, the order and datatype of the bind variables
and bind data must match exactly to be executed successfully:

STORE PAPPPYMT_I_PENSTAT
INSERT INTO PS_PA_EMP_PEN_STAT
 (EMPLID
 ,BENEFIT_PLAN
 ,EFFDT
 ,PENSION_STATUS)
 VALUES (:1, :2, :3, :4)

Bind variables :1 thru :4 must be
accounted for properly in the Bind Setup
and Bind Data areas of the COBOL program

Licensed to James M White <jwhite@maine.edu>

736 CHAPTER 32 WHAT’S THE DIFFERENCE?

KEY POINTS

1 It is always wise to avoid COBOL customizations whenever possible. Make
sure all possible solutions are investigated before deciding to modify deliv-
ered COBOL processes.

2 Even if you don’t plan on modifying COBOL programs, become familiar
with PeopleSoft COBOL techniques. There will surely be times when you
need to browse the COBOL source code when troubleshooting.

3 The PTPSQLRT module regulates all database activity required by the
COBOL process. Since it is one encapsulated routine, it remains consistent
across all database platforms.

4 All SQL statements are stored in a database table and retrieved by the
COBOL process where they are compiled and executed.

5 The SQL statements are loaded into the stored SQL statement table using
Data Mover scripts. Any required modifications should be made to the
scripts so they may be reloaded.

6 PTPSQLRT performs database functions as well as error handling. These
functions are referred to as actions. Up to eight positional parameters may
be passed, depending on the action requested.

7 The eight parameters are the Action, the SQL communication area, an
SQL cursor, the SQL statement name reference, the Bind Setup/Data
areas and the Select Setup/Data areas.

8 The copybook PTCSQLRT contains the SQL communication area used by
the PTPSQLRT module and must be included in all COBOL modules. The
Main module must define the SQLRT area as an 01-level item in working
storage and must pass this area as a parameter to other called modules. All
called or subordinate modules must define the SQLRT area as an 01-level
item in the linkage section and the procedure division must accept the
SQLRT parameter. This insures the same SQLRT area is used by all modules.

Licensed to James M White <jwhite@maine.edu>

ACTION REQUIREMENTS 737

9 Setup lists are used to define the Bind and Setup areas in working storage.
Each datatype has a pair of corresponding setup codes. The codes are alter-
nated when two consecutive fields with the same datatype are used. This
allows the PTPSQLRT module to parse the incoming bind data and outgo-
ing select data properly.

KEY POINTS (CONTINUED)

Licensed to James M White <jwhite@maine.edu>

738

C H A P T E R 3 3

Modifying PeopleSoft
COBOL

33.1 Defining a modification 738
33.2 Making our modifications 739

33.1 DEFINING A MODIFICATION

To demonstrate how to modify a PeopleSoft COBOL program, we need to define a
task. We’ll continue to use the program PSPDLBAL as a model. As we mentioned ear-
lier, this process is used in PeopleSoft Payroll to delete obsolete balances from the sys-
tem. Let’s take a closer look at this process before we decide on a sample
customization.

33.1.1 Delivered functionality

In short, the PSPDLBAL process deletes obsolete balances from the following tables:

• YTD Check Balances (CHECK_YTD)
• YTD Earnings Balances (EARNINGS_BAL)

Licensed to James M White <jwhite@maine.edu>

MAKING OUR MODIFICATIONS 739

• YTD Deduction Balances (DEDUCTION_BAL)
• YTD Garnishment Balances (GARN_BALANCE)
• YTD Tax Balances (TAX_BALANCE)

The Run Control record contains the parameters:

• Company
• Balance Year
• Balance ID
• Balance Period

Any obsolete balances in the tables for the Company and Balance ID that were
before (or equal to) the period defined by the Balance Year and Balance Period
will be removed. All five tables will be checked and updated where necessary.

33.1.2 A simple modification

Let’s say that I would like to have the ability to delete balances from all of the tables
(as delivered) OR only one of the tables if I so choose. To accomplish this, I’m going
to add the field RECNAME to the Run Control record. If no recname is specified on
the Run Control panel, then all five tables will be processed. If the RECNAME is not
blank, then I’ll only process the record specified. The valid values are CHECK_YTD,
EARNINGS_BAL, DEDUCTION_BAL, GARN_BALANCE, and TAX_BALANCE.

If a value is entered that is not blank or not one of these five tables, an error mes-
sage should be produced and the process halted.

Please note that we’ll skip the steps to add the RECNAME field to the Run Control
record and panel. A full description of adding fields to records and panels using
Application Designer has been given earlier in this book. We’ll assume these changes
have been implemented during our modification example.

33.2 MAKING OUR MODIFICATIONS

Let’s take a look at the AA000-MAIN section following the PROCEDURE DIVISION.
This is where the routine for each individual table is unconditionally called and will
be one of the sections we’ll modify. Before each of these routines is performed, we’re
going to test the RECNAME parameter passed on the Run Control record. If it is blank
or matches the tablename, then the routine will be performed:

/***
* *
 PROCEDURE DIVISION.
* *
**
* *
 AA000-MAIN SECTION.
 AA000.
* *

Licensed to James M White <jwhite@maine.edu>

740 CHAPTER 33 MODIFYING PEOPLESOFT COBOL

**

 COPY PTCLIBFX.
 COPY PSCVERSN.

 SET PAYROLL-STEP-DLTBALNC OF PSLCT TO TRUE
 PERFORM DA000-SELECT-RUNCTL

 ACCEPT TIME-OUT OF W-WK FROM TIME
 INSPECT TIME-OUT OF W-WK CONVERTING SPACE TO ':'
 INSPECT TIME-OUT OF W-WK CONVERTING '/' TO '.'
 DISPLAY 'Delete Balances started for Company: '
 COMPANY OF S-RUNCTL
 DISPLAY ' Calendar Year: '
 BALANCE-YEAR OF S-RUNCTL
 DISPLAY ' Month: '
 BALANCE-PERIOD OF S-RUNCTL
 DISPLAY ' at ' TIME-OUT OF W-WK '.'

 PERFORM GA000-PURGE-CHECK-YTD
 PERFORM IA000-PURGE-EARNINGS-BAL
 PERFORM KA000-PURGE-DEDUCTION-BAL
 PERFORM MA000-PURGE-GARN-BALANCE
 PERFORM OA000-PURGE-TAX-BALANCE
 PERFORM SA000-TERM

 COPY PSCRTNCD.

 .
 MAIN-EXIT.
 STOP RUN.

Let’s also take a look at the working storage area used when selecting data from the
Run Control record:

/***
* PAY_DBAL_RUNCTL BUFFER AND STMT *
**
 01 S-RUNCTL.
 02 SQL-STMT PIC X(18) VALUE
 'PSPDLBAL_S_RUNCTL'.

 02 BIND-SETUP.
 03 FILLER PIC X(8) VALUE ALL 'C'.
 03 FILLER PIC X(30) VALUE ALL 'H'.
 03 FILLER PIC X VALUE 'Z'.

 02 BIND-DATA.
 03 OPRID PIC X(8).
 03 BATCH-RUN-ID PIC X(30).

Each PURGE routine is
called unconditionally

Licensed to James M White <jwhite@maine.edu>

MAKING OUR MODIFICATIONS 741

 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-SETUP.
 03 FILLER PIC X(10) VALUE ALL 'C'.
 03 FILLER PIC XX VALUE ALL 'H'.
 03 FILLER PIC XX VALUE ALL 'S'.
 03 FILLER PIC XX VALUE ALL 'M'.
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-DATA.
 03 COMPANY PIC X(10).
 03 BALANCE-ID PIC XX.
 03 BALANCE-YEAR PIC 9999 COMP.
 03 BALANCE-PERIOD PIC 999 COMP.
 03 FILLER PIC X VALUE 'Z'.

Take a close look at the Select Setup and Data areas as presented. We need to
modify both of these areas to accept our new field RECNAME. Let’s do it now:

/***
* PAY_DBAL_RUNCTL BUFFER AND STMT *
**
 01 S-RUNCTL.
 02 SQL-STMT PIC X(18) VALUE
 'PSPDLBAL_S_RUNCTL'.

 02 BIND-SETUP.
 03 FILLER PIC X(8) VALUE ALL 'C'.
 03 FILLER PIC X(30) VALUE ALL 'H'.
 03 FILLER PIC X VALUE 'Z'.

 02 BIND-DATA.
 03 OPRID PIC X(8).
 03 BATCH-RUN-ID PIC X(30).
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-SETUP.
 03 FILLER PIC X(10) VALUE ALL 'C'.
 03 FILLER PIC XX VALUE ALL 'H'.
 03 FILLER PIC XX VALUE ALL 'S'.
 03 FILLER PIC XX VALUE ALL 'M'.
 03 FILLER PIC X(15) VALUE ALL 'C'.
 03 FILLER PIC X VALUE 'Z'.

 02 SELECT-DATA.
 03 COMPANY PIC X(10).
 03 BALANCE-ID PIC XX.
 03 BALANCE-YEAR PIC 9999 COMP.
 03 BALANCE-PERIOD PIC 999 COMP.
 03 RECNAME PIC X(15).
 03 FILLER PIC X VALUE 'Z'.

RECNAME
picture string
added to
Select
Setup list

RECNAME
added to Select
Data list

Licensed to James M White <jwhite@maine.edu>

742 CHAPTER 33 MODIFYING PEOPLESOFT COBOL

The preceding example shows the changes we’ve made to the Select Setup and
Data area. The RECNAME field length is fifteen characters. We’ve added the string
'CCCCCCCCCCCCCCC' as filler to the setup list. We’ve also added the field RECNAME
to the data list. We’re now ready to accept the additional parameter RECNAME on the
Run Control record. We still have one important step to complete if we’re going to
pass an additional Run Control parameter. We need to update the DMS script to
select the new field:

STORE PSPDLBAL_S_RUNCTL
SELECT
 COMPANY
,BALANCE_ID
,BALANCE_YEAR
,BALANCE_PERIOD
FROM PS_PAY_DBAL_RUNCTL
WHERE OPRID=:1
 AND RUN_CNTL_ID=:2

Now we can see the portion of the DMS script in its delivered form. We still need to
add the new RECNAME column to the select list. It needs to be the last field contained
in the SELECT list so it matches the order used in the Select Setup and Data
areas in working storage. Let’s change it now:

STORE PSPDLBAL_S_RUNCTL
SELECT
COMPANY
,BALANCE_ID
,BALANCE_YEAR
,BALANCE_PERIOD
,RECNAME
FROM PS_PAY_DBAL_RUNCTL
WHERE OPRID=:1
 AND RUN_CNTL_ID=:2

We can see that the new column RECNAME has been added to the end of the Select
list in the DMS script. Data Mover should be used to execute the DMS script so the
stored SQL statement table will have the modified version of the SQL statement. Let’s
now make some programming changes to the delivered process:

Main section of PSPDLBAL.cbl after modifications

/***
* *
 PROCEDURE DIVISION.
* *
**

Listing 33.1

RECNAME column added
to SELECT list

Licensed to James M White <jwhite@maine.edu>

MAKING OUR MODIFICATIONS 743

* *
 AA000-MAIN SECTION.
 AA000.
* *
**

 COPY PTCLIBFX.
 COPY PSCVERSN.

 SET PAYROLL-STEP-DLTBALNC OF PSLCT TO TRUE
 PERFORM DA000-SELECT-RUNCTL

 ACCEPT TIME-OUT OF W-WK FROM TIME
 INSPECT TIME-OUT OF W-WK CONVERTING SPACE TO ':'
 INSPECT TIME-OUT OF W-WK CONVERTING '/' TO '.'
 DISPLAY 'Delete Balances started for Company: '
 COMPANY OF S-RUNCTL
 DISPLAY ' Calendar Year: '
 BALANCE-YEAR OF S-RUNCTL
 DISPLAY ' Month: '
 BALANCE-PERIOD OF S-RUNCTL
 DISPLAY ' at ' TIME-OUT OF W-WK '.'

* Modification – Validate RECNAME Parameter

 IF RECNAME OF S-RUNCTL NOT EQUAL SPACE
 AND RECNAME OF S-RUNCTL NOT EQUAL ‘CHECK_YTD’
 AND RECNAME OF S-RUNCTL NOT EQUAL ‘EARNINGS_BAL’
 AND RECNAME OF S-RUNCTL NOT EQUAL ‘DEDUCTION_BAL’
 AND RECNAME OF S-RUNCTL NOT EQUAL ‘GARN_BALANCE’
 AND RECNAME OF S-RUNCTL NOT EQUAL ‘TAX_BALANCE’

 DISPLAY ‘Invalid RECNAME: ‘
 RECNAME OF S-RUNCTL
 MOVE ‘MAIN(RECNAME)’ TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR

 END-IF

* Modification – Conditionally perform each routine

 IF RECNAME OF S-RUNCTL = SPACE
 OR RECNAME OF S-RUNCTL = ‘CHECK_YTD’
 PERFORM GA000-PURGE-CHECK-YTD
 END-IF

 IF RECNAME OF S-RUNCTL = SPACE
 OR RECNAME OF S-RUNCTL = ’EARNINGS_BAL’
 PERFORM IA000-PURGE-EARNINGS-BAL
 END-IF

 IF RECNAME OF S-RUNCTL = SPACE

Simple validation
routine added. If
RECNAME is not one
of six valid values,
an error message is
produced, and the
process is halted.

Licensed to James M White <jwhite@maine.edu>

744 CHAPTER 33 MODIFYING PEOPLESOFT COBOL

 OR RECNAME OF S-RUNCTL = ‘DEDUCTION_BAL’
 PERFORM KA000-PURGE-DEDUCTION-BAL
 END-IF

 IF RECNAME OF S-RUNCTL = SPACE
 OR RECNAME OF S-RUNCTL = ‘GARN_BALANCE’
 PERFORM MA000-PURGE-GARN-BALANCE
 END-IF

 IF RECNAME OF S-RUNCTL = SPACE
 OR RECNAME OF S-RUNCTL = ‘TAX_BALANCE’
 PERFORM OA000-PURGE-TAX-BALANCE
 END-IF

 PERFORM SA000-TERM

 COPY PSCRTNCD.

 .
 MAIN-EXIT.
 STOP RUN.

Consider the programming modifications we’ve implemented. The changes, although
not elegant by any means, effectively produce the results we want. The validation of
the RECNAME parameter could have been performed within the DA000-Select-Runctl
section. We placed this validation within the AA000-Main section to keep things sim-
ple. After all, the focus of this exercise is on accessing an additional field in the data-
base, not on creating the ideal placement of standard COBOL code.

A series of simple IF statements controls the execution of each of the Purge rou-
tines. As you can see, the changes required to access the new field RECNAME have been
minimal. Let’s review the basic steps required to implement our change:

1 Add RECNAME field to the Run Control record and panel using Application
Designer.

2 Add RECNAME column to the Select list in the DMS script. Run Data Mover to
update the stored SQL statement table with the new version of the SQL statement.

3 Update the Select Setup and Data areas in the working storage section to
accept the new RECNAME parameter.

4 Add any required programming logic that utilizes the new RECNAME field. In
our example, this includes validating parameters along with controlling the bal-
ance updates using the new parameter.

33.2.1 One important note

Because of PeopleSoft’s structured technique, it isn’t necessary to modify the routine
that actually selects the Run Control information. In our example, this routine is called
DA000-Select-Runctl. The only modification required within the program to accept an

Conditional logic has been added
to control the execution of each
of the five purge routines. They
will be performed if the RECNAME
is not entered (SPACE) or
matches the table updated by
each particular routine.

Licensed to James M White <jwhite@maine.edu>

MAKING OUR MODIFICATIONS 745

additional field is to the Select Setup and Select Data areas. Because the call to
PTPSQLRT uses both Select Setup and Select Data as input parameters, the
new field automatically is included. Let’s look at the Run Control access routine:

DA000-SELECT-RUNCTL section (no modifications required)

/***
* *
 DA000-SELECT-RUNCTL SECTION.
 DA000.
* *
**

 CALL 'PTPSQLRT' USING ACTION-CONNECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 IF RTNCD-ERROR OF SQLRT

 MOVE 'SELECT-RUNCTL(CONNECT)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF

 IF PROCESS-INSTANCE OF SQLRT NOT = ZERO

 PERFORM DB000-SET-RUN-STAT-PROCESSING
 MOVE PROCESS-INSTANCE OF SQLRT
 TO PROCESS-INSTANCE-ERRMSG OF PSLCT
 ELSE

 CALL 'PTPRUNID' USING SQLRT
 PROCESS-INSTANCE-ERRMSG
 OF W-PRC-INSTANCE
 MOVE PROCESS-INSTANCE-ERRMSG OF W-PRC-INSTANCE
 TO PROCESS-INSTANCE-ERRMSG OF PSLCT
 END-IF

 MOVE OPRID OF SQLRT TO OPRID OF S-RUNCTL
 MOVE BATCH-RUN-ID OF SQLRT TO BATCH-RUN-ID OF S-RUNCTL

 CALL 'PTPSQLRT' USING ACTION-SELECT OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT
 SQL-STMT OF S-RUNCTL
 BIND-SETUP OF S-RUNCTL
 BIND-DATA OF S-RUNCTL
 SELECT-SETUP OF S-RUNCTL
 SELECT-DATA OF S-RUNCTL

 IF RTNCD-ERROR OF SQLRT

Listing 33.2

RECNAME is added
within Select-
Setup and
Select-Data
areas in working
storage. RECNAME
has been implicitly
accounted for in the
Select routine.

Licensed to James M White <jwhite@maine.edu>

746 CHAPTER 33 MODIFYING PEOPLESOFT COBOL

 MOVE 'SELECT-RUNCTL(SELECT)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF

 INITIALIZE SELECT-DATA OF S-RUNCTL

 CALL 'PTPSQLRT' USING ACTION-FETCH OF SQLRT
 SQLRT
 SQL-CURSOR-COMMON OF SQLRT

 IF RTNCD-ERROR OF SQLRT

 IF RTNCD-END OF SQLRT

 DISPLAY 'Delete Balances Run Control Missing.'
 DISPLAY ' for Operator ID ' OPRID OF S-RUNCTL
 DISPLAY ' and Batch Run ID ' BATCH-RUN-ID OF S-RUNCTL
 SET RTNCD-USER-ERROR OF SQLRT TO TRUE
 PERFORM ZZ000-SQL-ERROR
 ELSE
 MOVE 'SELECT-RUNCTL(FETCH)' TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF
 ELSE
 PERFORM DD000-RUNCTL-ACCEPTED
 END-IF

 .
 SELECT-RUNCTL-EXIT.

Licensed to James M White <jwhite@maine.edu>

MAKING OUR MODIFICATIONS 747

KEY POINTS

1 Modifying the delivered COBOL process to accept an additional Run Con-
trol parameter requires:

• defining the modification requirements
• modifying the DMS script to include our new Run Control field in the
Select statement, and once modified, loading the new Run Control field
into the SQL statement table using Data Mover.

• adding our new Run Control field to both the Select Setup and
Select Data areas.

• placing logic in the Main section of the COBOL program, which deter-
mines which Purge routines to execute based on the contents of our new
Run Control field.

• no explicit coding is required in the procedure to select the Run Control
parameters. The routine itself requires no modifications due to the method-
ology used by PeopleSoft.

Licensed to James M White <jwhite@maine.edu>

748

C H A P T E R 3 4

Additional topics

34.1 Process Scheduler API 749
34.2 Using trace files 758
34.3 Cross reference files 765

Chapters 32 and 33 described the key aspect of PeopleSoft’s particular flavor of
COBOL: the manner in which the database is accessed. Numerous books have been
written about the COBOL language itself. When you purchase the MicroFocus com-
piler, you receive documentation that may appear to be a small library! While this
book does not make any attempt to explain standard COBOL material, we do want to
cover some additional topics in COBOL that relate specifically to PeopleSoft.

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER API 749

34.1 PROCESS SCHEDULER API

This section deals with interfacing with the Process Scheduler through PeopleSoft
COBOL. When a process is submitted, you can view the job status through Process
Monitor. The COBOL program needs to update the run status information on the
Process Monitor panel so you will know if the program is processing successfully or if
it has encountered an error. To illustrate how the run status information is updated,
we’ll monitor a COBOL process and point out the code required to update the run
status information.

34.1.1 The PTCUSTAT copybook and PTPUSTAT module

The best place to start is with the PTCUSTAT.CBL copybook, which contains the
Process Scheduler interface structure. This copybook must exist as an 01-level item in
your program.

 /***
 * PROCESS SCHEDULER REQUEST STATUS INTERFACE *
 **
 01 USTAT. COPY PTCUSTAT.

The following shows an 01-level item called USTAT that includes the PTCUSTAT
copybook:

Let’s look at the field definitions that comprise the Process Scheduler interface
structure. Values may be assigned to the fields in the copybook. This is how the run
information is communicated to the Process Monitor:

 03 PROCESS-INSTANCE PIC S9(10) VALUE ZERO COMP-3.
 03 RUN-STATUS PIC 9(4) VALUE ZERO COMP.
 88 RUN-STATUS-CANCEL VALUE 1.
 88 RUN-STATUS-DELETE VALUE 2.
 88 RUN-STATUS-ERROR VALUE 3.
 88 RUN-STATUS-HOLD VALUE 4.
 88 RUN-STATUS-QUEUED VALUE 5.
 88 RUN-STATUS-INITIATED VALUE 6.
 88 RUN-STATUS-PROCESSING VALUE 7.
 88 RUN-STATUS-CANCELLED VALUE 8.
 88 RUN-STATUS-SUCCESSFUL VALUE 9.
 88 RUN-STATUS-UNSUCCESSFUL VALUE 10.
 03 RUN-STATUS-MSGSET PIC S9(5) VALUE ZERO COMP.
 88 MSGSET-PRCS-SCHED VALUE 65.
 03 RUN-STATUS-MSGID PIC S9(5) VALUE ZERO COMP.
 88 MSGID-SUCCESSFUL VALUE 35.
 88 MSGID-UNSUCCESSFUL VALUE 43.
 03 RC PIC S9(4) VALUE ZERO COMP.
 88 RC-SUCCESSFUL VALUE 0.
 03 RC-CHAR REDEFINES RC
 PIC X(2).
 03 MESSAGE-PARM1 PIC X(30) VALUE SPACE.

Licensed to James M White <jwhite@maine.edu>

750 CHAPTER 34 ADDITIONAL TOPICS

 03 MESSAGE-PARM2 PIC X(30) VALUE SPACE.
 03 MESSAGE-PARM3 PIC X(30) VALUE SPACE.
 03 MESSAGE-PARM4 PIC X(30) VALUE SPACE.
 03 MESSAGE-PARM5 PIC X(30) VALUE SPACE.
 03 CONTINUE-JOB PIC 9(4) VALUE ZERO COMP.
 88 CONTINUE-JOB-NO VALUE 0.
 88 CONTINUE-JOB-YES VALUE 1.

 03 PRUNSTATUS-RC PIC S9(4) VALUE ZERO COMP.
 88 PRUNSTATUS-RC-OK VALUE ZERO.

 03 CALLING-PROGRAM PIC X(8) VALUE SPACE.
 88 CALLED-FROM-PTPUPRCS VALUE 'PTPUPRCS'.

A call to the delivered module PTPUSTAT performs the actual update:

 INITIALIZE USTAT
 MOVE PROCESS-INSTANCE OF SQLRT TO PROCESS-INSTANCE OF USTAT
 SET RUN-STATUS-PROCESSING OF USTAT TO TRUE

 CALL 'PTPUSTAT' USING SQLRT
 USTAT

The sample call displayed sets the run status to 'Processing'. First, the entire
interface structure denoted by the 01 group level item USTAT is initialized. The
process instance of the current program is then assigned along with the desired run
status. The PTPUSTAT module updates the PSPRCSRQST entry for the process
instance specified in the PROCESS-INSTANCE field, and Process Monitor displays
the information contained in the PSPRCSRQST table.

Let’s take a look at the Process Monitor panel after a process has completed.
Figure 34.1 shows the Process Monitor panel after a COBOL process is completed

successfully. By double-clicking on the highlighted line, we can examine some addi-
tional details about the run.

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER API 751

A panel with two folder tabs appears. The first folder tab, called “Process Detail”
(figure 34.2), contains information on the run such as operating system, database type,
and beginning and ending times.

Figure 34.1 The Process Monitor panel

Figure 34.2 The Process Monitor Details folder tab

Licensed to James M White <jwhite@maine.edu>

752 CHAPTER 34 ADDITIONAL TOPICS

The second folder tab, “Request Parameters,” displays additional run information
such as the COBOL execution string, the working directory, and the parameters passed
to the program.

Take special note of the parameter list passed to the COBOL program. It consists
of the database type, the database name, the operator ID, the password, the Run Con-
trol ID, and the process instance. If a COBOL process is submitted through the process
scheduler, a process instance is assigned. If it is submitted outside of PeopleSoft and
the Process Scheduler, the process instance is set to zero. A COBOL process can be exe-
cuted in its native environment through, for example, the MS-DOS prompt or Unix
command line. In that case, the parameters are entered by the user through a series
of prompts. The process instance may be entered if you are restarting an aborted
COBOL process. Otherwise, the default of zero is used. Before any updates to the
Process Monitor are made, the process instance needs to be interrogated to determine
if the Process Monitor is being utilized.

 IF PROCESS-INSTANCE OF SQLRT NOT = ZERO

 PERFORM SD000-SET-RUN-STAT-SUCCESSFUL
 END-IF

If the process instance does not equal zero, then any updates to the run information
may be executed. The preceeding code performs the SD000-SET-RUN-STAT-
SUCCESSFUL only if a valid process instance is used.

Figure 34.3 The Process Monitor Request Parameters folder tab

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER API 753

Let’s take a look at a real life example. Once again, we’ll use the process to delete
obsolete payroll balances called PSPDLBAL.

34.1.2 A real life example

We’re going to execute the COBOL process to delete obsolete payroll balances. We’ll
fill in the required Run Control parameters first.

Once the Run Control panel is set with the parameters (figure 34.4), it is then
saved. Click on the Traffic Light to initiate the run request.

The Process Request screen appears (figure 34.5). Select the correct process from
the attached list (in our case, the U.S. balance process). If the Run Location and Out-
put Destination are correct, click the OK button to execute the PSPDLBAL process.

Figure 34.4 Setting the Run Control parameters

Licensed to James M White <jwhite@maine.edu>

754 CHAPTER 34 ADDITIONAL TOPICS

If we were to immediately view the Process Monitor screen, we would see the status is set
to 'Initiated' (figure 34.6), the default status before the COBOL program has started.
Once the COBOL process takes over, it should set the run status to 'Processing'.

Figure 34.5 Executing a Process Scheduler request

Figure 34.6 PSPDLBAL process in Initiated phase

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER API 755

The run status shown in figure 34.7 is now set to Processing. This was con-
trolled by the COBOL process by changing the Run Status field and calling the
PTPUSTAT module.

Let’s look at a common method of determining whether the process was run
through Process Scheduler. If not, an alternate method is used to select the Run Con-
trol parameters.

 IF PROCESS-INSTANCE OF SQLRT NOT = ZERO

 PERFORM DB000-SET-RUN-STAT-PROCESSING
 MOVE PROCESS-INSTANCE OF SQLRT
 TO PROCESS-INSTANCE-ERRMSG OF PSLCT
 ELSE

 CALL 'PTPRUNID' USING SQLRT

 PROCESS-INSTANCE-ERRMSG
 OF W-PRC-INSTANCE
 MOVE PROCESS-INSTANCE-ERRMSG OF W-PRC-INSTANCE
 TO PROCESS-INSTANCE-ERRMSG OF PSLCT
 END-IF

Now, let’s look at the steps required to set the run status to Processing. First, the
USTAT interface area is initialized. This must be done the first time only. The Process

Figure 34.7 PSPDLBAL status moved to Processing

Licensed to James M White <jwhite@maine.edu>

756 CHAPTER 34 ADDITIONAL TOPICS

Instance and Run Status fields are assigned. A call to PTPUSTAT is performed fol-
lowed by the appropriate error handling.

 INITIALIZE USTAT
 MOVE PROCESS-INSTANCE OF SQLRT TO PROCESS-INSTANCE OF USTAT
 SET RUN-STATUS-PROCESSING OF USTAT TO TRUE

 CALL 'PTPUSTAT' USING SQLRT
 USTAT
 IF RTNCD-ERROR OF SQLRT

 MOVE 'SET-RUN-STAT-PROCESSING(PTPUSTAT)'
 TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF

Figure 34.8 shows the MS-DOS box that appears while the program is running. This
may appear for only a few seconds if there isn’t much processing to be performed.
Any DISPLAY commands in the COBOL program will appear here.

Looking at the Run Status field in figure 34.9, you can see our process ended suc-
cessfully. Note the process below PSPDLBAL had some problems. The status has been
set to Error.

Figure 34.8 PSPDLBAL process executing (MS-DOS Box)

Licensed to James M White <jwhite@maine.edu>

PROCESS SCHEDULER API 757

The following code sets the run status to 'Success'. First the new Run Status
field is assigned, then the PTPUSTAT module performs the update.

 SET RUN-STATUS-SUCCESSFUL OF USTAT TO TRUE

 CALL 'PTPUSTAT' USING SQLRT
 USTAT
 IF RTNCD-ERROR OF SQLRT

 MOVE 'SET-RUN-STAT-SUCCESSFUL(PTPUSTAT)'
 TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF

The following code sets the run status to 'Error'. Once again, the new run status is
set and the call to PTPUSTAT performs the update.

 SET RUN-STATUS-ERROR OF USTAT TO TRUE

 CALL 'PTPUSTAT' USING SQLRT
 USTAT
 IF RTNCD-ERROR OF SQLRT

 MOVE 'SET-RUN-STAT-ERROR(PTPUSTAT)'
 TO ERR-SECTION OF SQLRT
 PERFORM ZZ000-SQL-ERROR
 END-IF

Figure 34.9 Viewing the results using Process Monitor

Licensed to James M White <jwhite@maine.edu>

758 CHAPTER 34 ADDITIONAL TOPICS

34.2 USING TRACE FILES

Ultimately, the goal of updating the Process Status is to enable the user to monitor
the progress of their application. This is a very high-level method of monitoring. To
actually determine what is happening within the program, a trace file may be gener-
ated. This is used primarily by the technical staff to debug problems or perform per-
formance-tuning functions. Some highly skilled functional or “power” users may also
use trace files to become more familiar with processes.

Configuration Manager is a PeopleTool that allows you to update PeopleSoft reg-
istry entries. Updates are made through a GUI interface that is much easier to use than
the Windows Registry editor (regedit). A series of folder tabs groups each set of entries
by category or function. Some of these include Startup, Process Scheduler, and Client
Setup parameters. Trace settings may be turned on using Configuration Manager.

Click on the Trace folder tab to designate the desired tracing level. Three sections
exist within the Trace panel: One section controls trace settings for PeopleCode;
another controls the Message Agent trace; the third group of Trace settings, under the
label “SQL Trace,” controls the Trace settings for online activity and COBOL proc-
esses. Online activity is defined as all SQL activity generated by the Panel Processor.
We’re interested in the COBOL Trace settings. The checkboxes indicate the Trace
level combinations you would like to use.

You can see the Configuration Manager trace settings in figure 34.10. Notice the
Online Trace File edit box. Normally, this is used to redirect your trace file output.
COBOL trace file output cannot be redirected using this field.

Figure 34.10 Configuration Manager trace settings

Licensed to James M White <jwhite@maine.edu>

USING TRACE FILES 759

The COBOL trace file is written to the following directory:

For Windows: %TEMP%\ps\<database_name>
For Unix: $PS_HOME/log/<database_name>

The filename has the following format:
COBSQL[_progname]{_processinstance | _MMDDHHMMSS}.TRC

Depending on the COBOL process, the trace filename may vary. Special coding
exists in each program that dictates the trace filename to use. The sample COBOL proc-
ess we’ve been using (PSPDLBAL) writes the trace file as COBSQL_<process_
instance>.TRC when run through Process Scheduler. When it is executed outside of
PeopleSoft (MS-DOS prompt), it uses the format COBSQL_<MMDDHHMMSS>.TRC
since no process instance is provided.

34.2.1 Trace settings

Each trace setting checkbox has a unique value. The combination of selected trace
setting values are added and stored in the windows registry via Configuration Man-
ager. Let’s take a closer look at the trace values and how they are stored.

The individual trace setting values are shown in table 34.1. For each trace level,
the decimal value and binary equivalent are presented. When your trace settings are
applied, the values are added and stored in the Windows Registry.

The registry address (or key) is
My Computer\HKEY_CURRENT_USER\Software\PeopleSoft\
PeopleTools\Release7.5\Trace

Table 34.1 SQL Trace values

Trace function Decimal value Binary value

SQL statement 1 0000 0000 0000 0001

SQL statement Variables 2 0000 0000 0000 0010

Connect, Disconnect, Rollback and
Commit

4 0000 0000 0000 0100

Row Fetch 8 0000 0000 0000 1000

All other API calls besides SSBs 16 0000 0000 0001 0000

Set Select Buffers (SSBs) 32 0000 0000 0010 0000

Database API-specific calls 64 0000 0000 0100 0000

COBOL statement timings 128 0000 0000 1000 0000

Sybase Bind information 256 0000 0001 0000 0000

Sybase Fetch information 512 0000 0010 0000 0000

N/A 1024 0000 0100 0000 0000

Network services 2048 0000 1000 0000 0000

Manager information 4096 0001 0000 0000 0000

Licensed to James M White <jwhite@maine.edu>

760 CHAPTER 34 ADDITIONAL TOPICS

The registry field (or subkey) is:
TraceSQL

Let’s take a look at the Windows Registry after we apply the trace settings used
in figure 34.10. In this particular example, we have selected the checkboxes to turn on
the SQL statement, SQL statement variable, and COBOL statement timing levels. The
corresponding values for these are 1, 2, and 128. The TraceSQL registry field (also
referred to as a subkey) contains the total value of the selected checkboxes, which is
131 (1 + 2 + 128).

Using the Windows Registry Editor (regedit.exe), we can open the PeopleSoft
Configuration Manager key and look at the TraceSQL subkey contents. The Registry
Editor can be found in the Windows directory. Notice the key value in the Registry
Editor window on the bottom of the screen. This is the full path key that leads to the
TraceSQL subkey. You can see it contains the total of the selected trace values (131).
The data in the subkey is displayed as a hexadecimal value (x'83') with the decimal
equivalent in parentheses. Take special caution when using the Windows Registry edi-
tor. Incorrectly set values or transferred subkeys may cause serious problems with the
Windows operating system.

Figure 34.11 PeopleSoft registry entries

Licensed to James M White <jwhite@maine.edu>

USING TRACE FILES 761

34.2.2 Tracing a COBOL process

Now let’s see the COBOL Trace in action. We’ll trace the PSPDLBAL process we’ve
been using throughout this chapter (Delete Obsolete Balances). We’ll use the same
trace values as shown in figure 34.10 (SQL statement, SQL statement variable, and
COBOL statement timings). Since we’ve already set these, we can move directly to the
Run Control panel and initiate the process.

Once we fill in the parameters for our run (figure 34.12), we click on the Traffic
Light to initiate the process. The COBOL process detects that the trace levels have been
set through the Windows Registry subkey TraceSQL and produces the trace file in
the default directory.

Figure 34.13 displays the results on the Process Monitor. Our run was successful.
The process instance for our run was 61. Let’s take a look at the trace file generated
during this run.

Figure 34.12 Setting the Run Control parameters

Licensed to James M White <jwhite@maine.edu>

762 CHAPTER 34 ADDITIONAL TOPICS

Figure 34.14 shows the COBOL trace file as it appears in Windows Explorer. The
directory is C:\WINDOWS\TEMP\PS\HRDMO, and the trace filename is
COBSQL_61.TRC. This adheres to the naming conventions we spoke of earlier.

Figure 34.13 The process PSPDLBAL has ended successfully

Figure 34.14 Locating the COBOL trace file

Licensed to James M White <jwhite@maine.edu>

USING TRACE FILES 763

34.2.3 Examining the trace file contents

We can view the trace file contents using an editor or word processor. Let’s take a look
at the trace output now.

Since our trace file is relatively small, we can open and view it using Notepad (fig-
ure 34.15). Take a look at the highlighted area. The first highlighted line shows the
word GETSTMT followed by the stored SQL statement retrieved by the PTPSQLRT
module. The name of it is PSPDLBAL_D_RUNCTL. Once retrieved, the next line dis-
plays the SQL statement text to be compiled within the COBOL process. Notice the
:1 and :2 bind variables used in the criteria of the SQL statement. The third and
fourth highlighted lines show the data used when resolving the :1 and :2 bind vari-
ables. If you recall from earlier chapters, the bind variables are defined within the
Bind Setup and Bind Data areas for each stored SQL statement called. The :1 bind
variable is used for the OPRID which is set to the value 'PS'. The :2 bind variable
is used for the RUN_CNTL_ID and has been set to 1. You can verify these values by
looking at the Run Control panel in figure 34.12. All other stored SQL statements and
the SQL statement variables appear in the trace file. This is because we have specifically
checked them using Configuration Manager.

Figure 34.15 Viewing a portion of the trace file

Licensed to James M White <jwhite@maine.edu>

764 CHAPTER 34 ADDITIONAL TOPICS

We also selected the COBOL statement timings checkbox. At the end of the trace
file, we can see the COBOL statement timings (figure 34.16). The checkbox shows sta-
tistics for each stored SQL statement processed by the COBOL program. This can be
used for performance tuning functions.

NOTE Once you have produced the trace output, make certain you turn off the
trace options. If you don’t, all subsequent activity will continue to be
traced, which can greatly affect performance.

A simple batch program can be written to automatically deactivate the trace
options when you restart Windows. Simply place the batch program in the Startup
directory on the workstation. Here is an example, using a language called WinBatch
(You can find information about WinBatch at http://www.windowware.com):

ErrorMode(@OFF)

Rpath = "Software\PeopleSoft\PeopleTools\Release75\Trace"
Rkey = RegOpenKey(@REGCURRENT, Rpath)
Rerr = LastError()

if Rerr == 0

 TraceFile = ''
 TracePC = 0
 TraceSQL = 0

 RegSetValue(Rkey, "[TraceFile]", TraceFile)

Figure 34.16 Viewing the COBOL statement timings

Licensed to James M White <jwhite@maine.edu>

CROSS REFERENCE FILES 765

 RegSetDword(Rkey, "[TraceSQL]", TraceSQL)
 RegSetDword(Rkey, "[TracePC]", TracePC)

 RegCloseKey(Rkey)

endif

ErrorMode(@CANCEL)

The preceeding sample WinBatch script simply opens the key node of the registry
and updates the subkeys with NULL or zeroes. The NULL is used for the TraceFile
output subkey, and the zeroes will override the SQL Trace (Online/COBOL) and
PeopleCode Trace subkey settings. Finally, the key node is closed. When the user
signs on to PeopleSoft, the trace values will no longer be set.

34.3 CROSS REFERENCE FILES

PeopleSoft provides Cross-Reference report files, which accompany the delivered
COBOL processes and help explain how they work. Some .xrf files list the programs
and the modules they call. Others list the stored SQL statements or the database
tables referenced by the SQL statements.

An example of a delivered Cross-Reference report is found in figure 34.17. It lists
the COBOL processes and a tree listing of the modules called. Notice the highlighted
area, which shows the sample COBOL process we have been using (PSPDLBAL). You
can see that the PSPDLBAL module called three other modules: PTPRUNID,
PTPSQLRT, and PTPUSTAT.

All of the delivered Cross-Reference reports are static. If any COBOL process is
modified, they cannot be reproduced to reflect the latest version. The Cross-Reference
listings may need to be tracked and updated manually (assuming it is being used as
actual documentation for all updates).

Figure 34.17

Delivered Call Structure

Cross-Reference report

Licensed to James M White <jwhite@maine.edu>

766 CHAPTER 34 ADDITIONAL TOPICS

In part 7, “Using Application Engine,” we will discuss an SQR utility that can be
downloaded and used to flowchart Application Engine programs. The same site con-
tains utilities that produce an updated COBOL Call Structure listing (similar to the
static Cross-Reference report) and a utility that flowcharts the actual COBOL perform
structure (COBOL Analyzer). Both can be found on the site:

 http://www.sqrtools.com.
The COBOL Analyzer produces a nested process flowchart of all the performed

sections within a program. This can be extremely useful when looking through some
of the larger processes such as those in PeopleSoft Payroll.

Let’s look as a sample of the COBOL Analyzer output listing:

The first section above is AA000-MAIN. All subsequent sections appear in execu-
tion order. If the program is modified, either through customizations or upgrade
patches, the analyzer can be run again and a new listing generated.

Report ID: TDCBL02 COBOL ANALYZER Page No. 6
 Run Date 06/12/1999
 Program: c:\src\pipcmpar.cbl Run Time 10:26:34
===
 Process Flowchart
===

 AA000-MAIN
 XA000-LOAD-FILE-DEFN
 <CALL>.PIPUTLTY
 XA100-SET-STOP-DATE
 XW000-GET-START-TIME
 XZ000-GET-CLOCK-TIME
 DA000-BUILD-PARTIC-LIST
 DD000-INSERT-PIPRT
 DE000-SELECT-PARTIC-CURRENT
 ZM000-MESSAGE
 <CALL>.PSPPYMSG
 DF000-FETCH-PARTIC-CURRENT
 ZM000-MESSAGE <R>
 DG000-SELECT-PARTIC-PRIOR
 ZM000-MESSAGE <R>
 DH000-FETCH-PARTIC-PRIOR
 ZM000-MESSAGE <R>
 DI000-INSERT-PARTIC-DATA
 ZM000-MESSAGE <R>
 DF000-FETCH-PARTIC-CURRENT <R>

Licensed to James M White <jwhite@maine.edu>

CROSS REFERENCE FILES 767

KEY POINTS

1 PeopleSoft COBOL programs interface with Process Scheduler using the
PTPUSTAT module and the PTCUSTAT copybook. Specific COBOL code
is called to update Process Monitor fields.

2 Set the SQL Trace levels using Configuration Manager. The trace values are
stored in the Windows Registry. Make sure you turn the trace off when
you’re done. Since the online panels use the same trace settings as COBOL,
system performance can be greatly affected.

3 You can use the trace to view the SQL statements executed along with the
resolved bind variable contents. You may use several other trace options
when troubleshooting.

4 PeopleSoft delivers Cross-Reference reports for their COBOL processes. You
can also find additional downloadable utilities for COBOL processes at
http://www.sqrtools.com.

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

P A R T

Using Application Engine
Application Engine (A/E), a PeopleTool introduced in version 5.0, offers an alternative to
conventional structured programming. Application Engine programs are created using a series of
online panels which allow you to define your application along with any section, step, and state-
ment components. You can use radio buttons, checkboxes, and drop-down lists to designate exe-
cution options in your program. SQL statements are entered on the statement panel in an edit
box. All of this information is saved within the database and utilized by the Application Engine
driver program PTPEMAIN. Because Application Engine is not an intuitive development tool,
we follow our introduction to Application Engine with a “hands-on” approach, presenting a
series of exercises in a tutorial designed to illuminate the differences between A/E and conven-
tional structured programming. As a prerequisite to part 7, the user should be well-versed in
PeopleTools, particularly Application Designer. A good understanding of SQR programming (as
well as SQL) would also be helpful. We end the section with an overview of new Application
Engine features in release 8.0.

7

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

771

C H A P T E R 3 5

What is
Application Engine?

35.1 About Application Engine 771
35.2 Advantages/disadvantages 772
35.3 Set processing concepts 772
35.4 The main components of

Application Engine 776

35.5 A/E definition tables 777
35.6 A/E definition panels 779
35.7 A/E section/step relationship 786
35.8 Application Engine: the big

picture 788

35.1 ABOUT APPLICATION ENGINE

Application Engine (A/E) is a PeopleTool that allows you to create and execute Batch
SQL programs. SQL statements are entered online and processed by the PeopleSoft
COBOL program PTPEMAIN. Applications can be broken into smaller pieces called
Sections and within these Sections are Steps. Each Step either executes SQL state-
ments, another Section, a COBOL program, or a Mass Change program. In struc-
tured programming languages such as SQR, variables are used to store information
throughout the life of the program. In Application Engine, a Cache record is used to
store values so they may be utilized by subsequent steps in the AE program. As your
program proceeds through its Sections/Steps, messages may be written, which are
stored in the Message Log tables. These messages may be viewed through the Appli-
cation Engine Messages panel.

Licensed to James M White <jwhite@maine.edu>

772 CHAPTER 35 WHAT IS APPLICATION ENGINE?

35.2 ADVANTAGES/DISADVANTAGES

Application Engine offers both advantages and disadvantages:

35.2.1 Advantages

• All Application Engine components reside within the database itself. All applica-
tion development and testing is done within PeopleTools.

• Application Engine programs are considered multi-platform. Database-specific
sections can be utilized using a database platform directive that matches your
particular installation.

• PeopleSoft Meta-SQL is supported within Application Engine.
• Changes to the PeopleSoft data dictionary are global. No modifications to Appli-

cation Engine programs are normally required when a field attribute is changed
• Application Engine programs use effective-dating for each section (or proce-

dure). A history of modifications can be easily maintained instead of overlaid.
• Extremely efficient programs can be created using set processing techniques.

35.2.2 Disadvantages

• Application Engine panels are not intuitive: It can be confusing scrolling
through a maze of checkboxes, radio buttons, and folder tabs.

• It is difficult to visualize the flow of an Application Engine program. Sections
are stored and displayed in alphabetical order in the list box instead of a more
logical order.

• Even the simplest of modifications to Application Engine programs can be a har-
rowing experience. Some more complex programs need to use temporary tables
to pass information from one step to another. The dependencies on these tempo-
rary tables by other sections need to be carefully analyzed.

35.3 SET PROCESSING CONCEPTS

The most efficient Application Engine programs use set processing techniques when-
ever possible. In fact, Application Engine was designed with this technique in mind.
Large groups of data with the same criteria can be processed at once instead of indi-
vidually (or row-by-row). Depending on the volume of data processed, set processing
can dramatically improve the overall performance of your program.

The set processing SQL concept has been around for many years. It is used exten-
sively when updating the database using native SQL tools such as SQL*Plus or
SQL*Talk. Set processing can also be referred to as a mass update. These mass updates
may be split into several SQL statements to accommodate different sets of update cri-
teria for each group of data. Let’s look at a simplified example of set processing before
we move on to Application Engine Basics. We’ll use basic SQR routines to demon-
strate set processing in comparison to row by row processing.

Licensed to James M White <jwhite@maine.edu>

SET PROCESSING CONCEPTS 773

35.3.1 Set processing vs. row by row processing

For our example, let’s assume we have a record called MY_TABLE. Many fields exist in
the table including MY_KEY, DEPTID, and ACCT_TYPE. MY_KEY will serve as the
unique table key. Also included is a field called BUSINESS_UNIT, which is not popu-
lated. Based on the ACCT_TYPE value, we need to perform two different methods of
deriving the BUSINESS_UNIT using the DEPTID field.

If the ACCT_TYPE has a value of 'A', BUSINESS_UNIT will be extracted from
a table called MY_CONV_A. If ACCT_TYPE has a value of 'B', the BUSINESS_UNIT
will be extracted from a table called MY_CONV_B.

35.3.2 Example of row by row processing

First, we’ll use the row-by-row processing technique to derive the business unit:

...

begin-select

u.my_key
u.deptid
u.acct_type

 let $NEW_business_unit = ''

 if &u.acct_type = 'A'
 do Select-Conv-A
 else
 do Select-Conv-B
 end-if

 if not isnull($NEW_business_unit)
 do Update-My-Table
 end-if

 from ps_my_table
where u.acct_type in ('A','B')

end-select

...

The main Select, as indicated, fetches a row from MY_TABLE one by one. Only rows
with ACCT_TYPE of 'A' or 'B' are selected. If ACCT_TYPE is equal to 'A', then
the Select-Conv-A routine is performed. If ACCT_TYPE is not equal to 'A', then
the Select-Conv-B routine is performed by default. If a BUSINESS_UNIT is
found in either of these tables, then the routine Update-My-Table is performed.
This process will continue until all rows with ACCT_TYPE equal to 'A' or 'B' have
been processed.

Licensed to James M White <jwhite@maine.edu>

774 CHAPTER 35 WHAT IS APPLICATION ENGINE?

Let’s look at the Select-Conv-A routine. If there is a matching entry in the
MY_CONV_A table for the DEPTID, then the $NEW_business_unit variable will
be set to the BUSINESS_UNIT value in the table:

begin-procedure Select-Conv-A

begin-select

a.business_unit

 let $NEW_business_unit = &a.business_unit

 from ps_my_conv_a a
where a.deptid = &u.deptid

end-select

end-procedure

Let’s look at the Select-Conv-B routine. If there is a matching entry in the
MY_CONV_B table for the DEPTID, then the $NEW_business_unit variable will
be set to the BUSINESS_UNIT value in the table:

begin-procedure Select-Conv-B

begin-select

b.business_unit

 let $NEW_business_unit = &b.business_unit

 from ps_my_conv_b b
where b.deptid = &u.deptid

end-select

end-procedure

Finally, let’s have a look at the routine that updates MY_TABLE with the new
BUSINESS_UNIT value (if a matching entry were found):

begin-procedure Update-My-Table

begin-sql

update ps_my_table
 set business_unit = $NEW_business_unit
 where my_key = &u.my_key

end-sql

end-procedure

Licensed to James M White <jwhite@maine.edu>

SET PROCESSING CONCEPTS 775

Depending on the volume of data that will be processed, the row by row approach
may be fine. At a minimum, each row selected from MY_TABLE must perform a
Select to retrieve the Business Unit. If it exists, an Update statement is performed.
Imagine if the number of rows affected by this process were over 100,000. Maybe even
500,000 or more! This means the Select against a conversion table would be executed
that many times. The Update routine could potentially execute the same amount of
times! That’s a lot of database activity that could be avoided! Network traffic, which
could yield the greatest degradation in performance, needs to be considered.

We can implement optimization techniques in our row by row processing exam-
ple to improve performance. For example, we can order the main Select by
ACCT_TYPE and DEPTID. We then perform a Conversion Lookup only when a
change to one of these fields occurs. We store and utilize the results based on the
changing combination of these two fields in our update routine. Even with these
improvements, performance can still be poor when processing large amounts of data
one row at a time.

35.3.3 Example of set processing

Our set processing example is much simpler and much more efficient. The improve-
ment in performance increases with the volume of transactions processed. Let’s per-
form the set processing Update using the MY_CONV_A table:

...

begin-sql

update ps_my_table u
 set u.business_unit =
 (select z.business_unit
 from ps_my_conv_a z
 where z.deptid = u.deptid)
 where u.acct_type = 'A'
 and exists
 (select 'X'
 from ps_my_conv_a x
 where x.deptid = u.deptid);

commit;

end-sql

...

The WHERE clause limits the Update to all rows in MY_TABLE that have
ACCT_TYPE equal to 'A' and an existing entry in the MY_CONV_A table equal to
the DEPTID on the row. This one Update statement populates all the rows that

Licensed to James M White <jwhite@maine.edu>

776 CHAPTER 35 WHAT IS APPLICATION ENGINE?

match this criteria at once. Now let’s perform the set processing Update using the
MY_CONV_B table:

...

begin-sql

update ps_my_table u
 set u.business_unit =
 (select z.business_unit
 from ps_my_conv_b z
 where z.deptid = u.deptid)
 where u.acct_type = 'B'
 and exists
 (select 'X'
 from ps_my_conv_b x
 where x.deptid = u.deptid);

commit;

end-sql

...

The WHERE clause limits the Update to all rows in MY_TABLE that have an
ACCT_TYPE equal to 'B' and an existing entry in the MY_CONV_B table equal to
the DEPTID on the row. This one update statement also populates all the rows that
match this particular criteria at once.

TIP It’s a good idea to COMMIT frequently during set processing operations.
Large amounts of data may be updated at once, causing more system re-
sources to be utilized.

The set processing examples executed two SQL Updates. No further database
activity was required, and there was no network traffic at all. The Updates were
entirely at the database level.

Always keep set processing in mind when you’re developing with Application
Engine, and try to use it whenever possible to achieve the maximum performance in
your programs.

35.4 THE MAIN COMPONENTS
OF APPLICATION ENGINE

Application Engine contains the following main components:

APPLICATION The highest level of an Application Engine program comprised of
one or more sections.

Licensed to James M White <jwhite@maine.edu>

A/E DEFINITION TABLES 777

SECTION Equivalent to an SQR procedure or COBOL paragraph comprised of
one or more steps. An Application Engine program always begins with a section
called MAIN.

STEP Can be considered the actual work component of an Application Engine pro-
gram. In most cases, it is used to execute an SQL statement or call another section. It
can also call a COBOL program or a Mass Change program.

STATEMENTS An SQL statement attached to a step. Several statement types are
used to qualify a statement: Select, Update/Insert/Delete, DO Select, DO
When, DO Until, DO While, and Comment. The Update/Insert/Delete state-
ment type is used not only to update the database but also to insert messages into the
message log.

35.5 A/E DEFINITION TABLES

All Application Engine development is done within the database itself. Just as a
record or panel definition is created and stored in the database, the same can be said
of Application Engine. Using the Application Engine panels, the application is
defined and stored in an application table. Next a section is defined and stored in the
section table. The same occurs for each step and each statement. Four definition
tables are used to store Application Engine programs along with the relationship to
one another (table 35.1 through table 35.5).

We will now briefly describe some of the more important fields stored in each of
these tables.

Table 35.1

AE_APPL_TBL AE_SECTION_TBL AE_STEP_TBL AE_STMT_TBL

AE_PRODUCT AE_PRODUCT AE_PRODUCT AE_PRODUCT

AE_APPL_ID AE_APPL_ID AE_APPL_ID AE_APPL_ID

AE_SECTION AE_SECTION AE_SECTION

DB_PLATFORM DB_PLATFORM DB_PLATFORM

EFFDT EFFDT EFFDT

AE_STEP AE_STEP

AE_STMT_TYPE

Table 35.2

AE_APPL_TBL Application Definition Table

AE_PRODUCT Product

AE_APPL_ID Application Name

AE_VERSION Version Number

Licensed to James M White <jwhite@maine.edu>

778 CHAPTER 35 WHAT IS APPLICATION ENGINE?

DESCR Description

AE_CACHE_RECNAME Cache Record Name

MESSAGE_SET_NBR Message Set Number

AE_DEBUG_MODE Debug Application

AE_TRACE Trace Application Steps

Table 35.3

AE_SECTION_TBL Section Definition Table

AE_PRODUCT Product

AE_APPL_ID Application Name

AE_SECTION Section

DB_PLATFORM Database Platform

EFFDT Effective Date

EFF_STATUS Effective Status

DESCR Description

Table 35.4

AE_STEP_TBL Step Definition Table

AE_PRODUCT Product

AE_APPL_ID Application Name

AE_SECTION Section

DB_PLATFORM Database Platform

EFFDT Effective Date

AE_STEP Step Name

AE_SEQ_NUM Step Sequence Number

EFF_STATUS Effective Status

PROGRAM_NAME COBOL Program

MC_DEFN_ID Mass Change Definition

AE_DO_PRODUCT DO Product

AE_DO_APPLID DO Application

AE_DO_SECTION DO Section

AE_SQL_UPDATE Edit SQL

AE_SQL_SELECT Select Present

AE_DO_WHEN When

AE_DO_WHILE While

AE_DO_UNTIL Until

Table 35.2 (continued)

AE_APPL_TBL Application Definition Table

Licensed to James M White <jwhite@maine.edu>

A/E DEFINITION PANELS 779

Be aware there is an additional table called AE_STMT_B_TBL, which is a State-
ment Chunk Table. This is used to store the SQL statements entered in
AE_STMT_TBL into smaller pieces or chunks once you save the definitions using the
online panels. When an Application Engine program is executed, the chunks are
selected and pieced together to form the original statement entered. This alleviates any
incompatibility problems using Long datatypes in other databases. The synchroniza-
tion between the AE_STMT_TBL and AE_STMT_B_TBL may become corrupted. An
option does exist on the Application Definition panel which rebuilds the chunked
statements. We’ll identify this option in the pages ahead. Keep in mind that the break-
down of the SQL statements is done in the background.

As you begin constructing your Application Engine program through the online
panels, the fields in each of these tables will be populated based on the selections you
make. For example, a statement type of DO When sets the AE_DO_WHEN indicator
in the AE_STEP_TBL. You have to fill in the name of your application, sections, and
steps along with the descriptions. The statements themselves must also be filled in
manually. Most of the remaining options are selected using radio buttons, drop-down
lists, and checkboxes.

35.6 A/E DEFINITION PANELS

The Application Engine Definitions for each application, section, step, and statement
are entered through a series of panels. You can navigate freely through these panels

AE_DO_SELECT Select

AE_SELECT_END_DO Select Ends the DO

AE_DO_SELECT_TYPE Type of DO Select

Table 35.5

AE_STMT_TBL Statement Definition Table

AE_PRODUCT Product

AE_APPL_ID Application Name

AE_SECTION Section

DB_PLATFORM Database Platform

EFFDT Effective Date

AE_STEP Step Name

AE_STMT_TYPE Statement Type

AE_STMT SQL Statement

Table 35.4 (continued)

AE_STEP_TBL Step Definition Table

Licensed to James M White <jwhite@maine.edu>

780 CHAPTER 35 WHAT IS APPLICATION ENGINE?

using the folder tabs at the top or through some strategically placed push buttons.
Let’s take a look at the panels for each of the A/E categories (figures 35.1-35.4).

35.6.1 Application definition panel

application folder tab, navigates through the four A/E panels

description of application

cache record used by application to store and pass values from one step to another

version number (information only)

default message set number, writes messages as our program progresses

Trace options are used to create a trace file. Options are

Off NO trace file produced

Steps Only Each executed step is displayed on trace file showing time, section,
step, and statement type.

SQL In addition to Steps Only, the executed SQL is displayed on the trace file.

Abend Trap Same information on trace file as SQL option. The trace file out-
put is appended to any prior output for the same run rather than creating a new
version. This creates a historical trace file that shows when an application prema-
turely aborted and was restarted.

Figure 35.1 Application definition panel

1

2

3

4

5

6

7

8

1

2

3

4

5

6

Licensed to James M White <jwhite@maine.edu>

A/E DEFINITION PANELS 781

Processing checkboxes are used to control the behavior of Application Engine.

Debug puts the application in interactive debugging mode. This allows you to set
breakpoints, view the cache record contents, execute one step at a time, and issue
commits and rollbacks.

Issue Message for each commit writes a message for each executed commit. It is rec-
ommended to use the trace option instead due to the volume of messages that
may be produced by this feature.

Force Commit after each step instructs Application Engine to commit each step as
the default method. Each section and step can override this if need be.

Force Abend after each commit is used for testing purposes. This is used to test
your application restart capability. You can continually execute and restart the
application until it is completed. If this cannot be done successfully, the program
will need to be corrected.

Disable Restart allows you to restart your application from the beginning even if
an abend occurs. Under normal circumstances a restart would be required. Use
caution when using this option.

Rebuild SQL Statements is used to repopulate the Statement Chunk table
(AE_STMT_B_TBL). When you create an SQL statement, it is stored in chunks.
If you believe your chunked statements are out of sync with the statements
entered, you can use this option to rebuild them.

The default date is used when filling in the effective date for each section. Sections are
effective-dated. If development is spread out over several days, it’s convenient to have
the same effective date used when creating each new section.

7

8

Licensed to James M White <jwhite@maine.edu>

782 CHAPTER 35 WHAT IS APPLICATION ENGINE?

35.6.2 Section definition panel

section folder tab, navigates through the four A/E panels

effective date of the section

effective status of the section

description of application

commit after each step within the section (This overrides the default setting.)

Type option, used to designate the type of update being performed by the section

Critical Database Update should be used when a section could affect the integrity
of the database in the event of an abend. A restart would be mandatory under
these circumstances. Application Engine uses this indicator to update a column
called AE_CRITICAL_PHASE in the AE_RUN_CONTROL table. This column
will be set to 'Y' and can be used to determine if a restart is necessary.

Preparation Only simply means the section does not perform any critical database
updates.

Figure 35.2 Section definition panel

1

2 3

4

5

6

7

1

2

3

4

5

6

Licensed to James M White <jwhite@maine.edu>

A/E DEFINITION PANELS 783

NOTE When trying to determine if a restart is necessary you can’t rely totally on
the AE_CRITICAL_PHASE indicator. If it is set to 'Y', you should defi-
nitely restart. If it does not equal 'Y', you may still need to restart your
application. A prior step may have had critical database updates that need
to be propagated in subsequent steps not yet executed. Extreme caution
should be used to prevent integrity problems.

The action buttons manage your section development:

New adds a new section.

Save As can be used to copy the current section to a new name.

Rename renames the current section.

Delete deletes the current section.

35.6.3 Step definition panel

step folder tab, navigates through the four A/E panels

the name of your step

effective status of the step

7

Figure 35.3 Step definition panel

1

2 3

5 6 7

8

94

1

2

3

Licensed to James M White <jwhite@maine.edu>

784 CHAPTER 35 WHAT IS APPLICATION ENGINE?

type of step

SQL Statement is used to perform an SQL or Application Engine statement
entered in the Statements Panel. To access the Statements panel, press the SQL
Statement Edit push button OR click on the Statement folder tab.

Mass Change allows you to execute a Mass Change program. The Mass Change
definition ID can be selected from the drop-down list.

DO Section allows you to call another section. The called section can exist in your
current application or an entirely different application. Sections can also be called
dynamically at run time. Click on the DO Section Edit push button to access the
DO Section properties dialog box. Here you will enter the DO section attributes.

COBOL Program allows a COBOL program to be called.

Commit override attributes for the current step

Error handling instructions

Abort Application performs a rollback and stops the process.

Ignore Error writes a message log entry and continues processing.

Suppress Error continues processing without any messages.

DO Method for DO Select statement types

The Select and Fetch method executes the DO Select statement once and
fetches the rows one at a time. For each row fetched, the DO section is executed
until all the rows have been processed.

The Re-Select method executes the DO Select statement and processes the first
row fetched. After the first row is fetched, the DO section is executed. Upon
returning, the DO Select statement is executed again, and if another row is
returned, the DO section is executed again. This process continues until no rows
are remaining.

step position buttons allow you to rearrange the order of steps in the section

alternate method to access DO Select statement types on the Statements panel

4

5

6

7

8

9

Licensed to James M White <jwhite@maine.edu>

A/E DEFINITION PANELS 785

35.6.4 Statement definition panel

Statement folder tab, navigates through the four A/E panels

The type of statement to perform:

Comments is used to enter information about the step or to temporarily de-
activate an executable statement.

Select is used to extract information and load it into your cache record.

Update statement types are used when executing SQL Updates, Inserts, or
Deletes. It is also used when using the &MSG statement to write to the mes-
sage log.

DO Select unconditionally executes a DO section for each row returned by the
select SQL statement.

DO When conditionally executes a DO section. A Select statement is entered
which will either return a row (representing a TRUE condition) or no rows
(representing a FALSE condition). The DO section is executed when the con-
dition is TRUE.

DO Until is used to break out of a DO Select. The DO section is performed
and then the DO Until condition is evaluated. If a row is returned by the DO

Figure 35.4 Statement definition panel

1

2 3

4

5

1

2

Licensed to James M White <jwhite@maine.edu>

786 CHAPTER 35 WHAT IS APPLICATION ENGINE?

Until Select statement, the DO section is no longer performed. If no rows
are returned, the DO section is repeated.

DO While is similar to an SQR or COBOL while function. As long as the DO
While Select statement returns a row (representing a TRUE condition), the
DO section is performed. The DO While Select is executed again after the DO
section has completed. This process continues until the DO While Select
returns a FALSE condition (no rows returned).

To convert &BIND cache fields into true bind variables, use the Re-Use checkbox. A
true bind variable means those designated by :1, :2, etc. You may have seen these in
PeopleCode’s SQLExec functions or stored SQL statements in COBOL.

NOTE The PeopleSoft documentation does not provide a full explanation of this
feature. It is used to improve performance by compiling the statement
once and re-executing it with updated bind variable values. When using
this feature, make sure the application is adequately tested with the desired
results produced.

Click Return to go back to the Step Definition panel OR click on the Step folder tab.

Enter your SQL or Application Engine statements here.

No validation is performed on the SQL or Application Engine statement text
entered. Any syntax errors will be identified at runtime. Proper testing is required
for each step.

35.7 A/E SECTION/STEP RELATIONSHIP

All Application Engine programs begin with a section called MAIN. This can be con-
sidered the parent section when viewed in a hierarchical manner as depicted in
figure 35.5. MAIN.STEP1 executes a section called LEVEL2A. This level has three
steps. Once all three steps have been completed, control is passed back to MAIN, and
MAIN.STEP2 is executed. This performs the LEVEL2B section. In turn,
LEVEL2B.STEP1 performs LEVEL3. All called sections are performed in this manner
until the last step in the MAIN section has been completed.

3

4

5

Licensed to James M White <jwhite@maine.edu>

A/E SECTION/STEP RELATIONSHIP 787

Let’s take a look at the process flow (using the example in figure 35.5) as it would
appear on a trace file listing. Each line represents a step executed within a section using
the SECTION.STEP format:

MAIN.STEP1
LEVEL2A.STEP1
LEVEL2A.STEP2
LEVEL2A.STEP3

MAIN.STEP2
LEVEL2B.STEP1

LEVEL3.STEP1
LEVEL3.STEP2

LEVEL4.STEP1
LEVEL4.STEP2

LEVEL3.STEP3
LEVEL2B.STEP2

Section / Step

Level 1

Step 1

Step 2

Section / Step

Level 2

Step 1

Step 2

Step 3

Step 1

Step 2

Step 1

Step 2

Section / Step

Level 3

Step 3

Section / Step

Level 4

Step 1

Step 2

Main

Level 2B

Level 2A

Level 3

Level 4

Figure 35.5 Section/step relationship

Licensed to James M White <jwhite@maine.edu>

788 CHAPTER 35 WHAT IS APPLICATION ENGINE?

This is the basic execution structure of an Application Engine program. Visualizing
the process in this manner will help tremendously when creating a new program or
modifying an existing one.

35.8 APPLICATION ENGINE: THE BIG PICTURE

If you look at the “big picture” in figure 35.6 you will see the heart of the Application
Engine is the COBOL process PTPEMAIN. This is what controls each action being
performed. When a process request is submitted, the PTPEMAIN program is called. It
reads any parameters that may be assigned and automatically updates the cache
record of your application. It reads and processes the A/E definitions you have created
(application, sections, steps, statements). It compiles and executes SQL statements
against the PeopleSoft tables specified. It inserts messages into the message log. The
PTPEMAIN process also maintains a special Run Control record called
AE_RUN_CONTROL which tracks the last committed step for restart purposes.
PTPEMAIN handles all processing of Trace Files.

PTPEMAIN

Process
Request

Cache
Record

A/E
Program

Message
Log

Trace
File

PeopleSoft
Tables

A/E
Run Control

Figure 35.6 PTPEMAIN is the “heart” of Application Engine

Licensed to James M White <jwhite@maine.edu>

789

C H A P T E R 3 6

Build your first application

36.1 Before we begin: an introduction to
our tutorial 789

36.2 Adding message catalog entries 790
36.3 Creating a custom cache record 793

36.4 Beginning our tutorial 797
36.5 Exercise 1: Hello World! 797
36.6 SQR/Application Engine

comparison 805

36.1 BEFORE WE BEGIN:
AN INTRODUCTION TO OUR TUTORIAL

As discussed earlier, two of the elements of an Application Engine program are the
message catalog and the cache record. It’s not necessary to build these from scratch.
Any predefined cache record within PeopleSoft can be used as can any existing mes-
sage set. You can also modify the existing cache record or message set to support your
particular requirements. For our purposes, we’ll create a new cache record and a new
message set.

Licensed to James M White <jwhite@maine.edu>

790 CHAPTER 36 BUILD YOUR FIRST APPLICATION

36.2 ADDING MESSAGE CATALOG ENTRIES

Before we begin developing any custom applications, let’s create our own custom
message set in the Message Catalog table. The message set number will be linked to
our Application Engine programs.

Note that PeopleSoft reserves message set numbers up to 20000. When adding
a custom message set, utilize any available number after 20000. This will make
upgrades go much smoother. For our custom message set number, we’ll be using
20001. English will be the language code for our custom applications (figure 36.2).

We’ll use the description “User Messages” for the 20001 message set. For each
message we add to the message set, we’ll assign a sequential number starting from 1

Navigation: Go → PeopleTools → Utilities → Message Catalog → Add

Figure 36.1 Adding a message catalog entry

Figure 36.2 Adding Message Set Number 20001

Licensed to James M White <jwhite@maine.edu>

ADDING MESSAGE CATALOG ENTRIES 791

(figure 36.3). This is the message number we’ll use to specify which message text and
parameter format to use.

The %1 in the body of the message text indicates a value will be passed as a param-
eter and substituted in its place. We will use this in our first application we create. We
are also adding two more messages to the message set that we’ll be using in subsequent
exercises. To add more messages, place the cursor in the message number edit box and
press the F7 key to insert a new row. Use the scroll bar to view the messages in the
message set.

Message Number 2 of our message set contains two input parameters %1 and %2
(figure 36.4).

Message Number 3 has two input parameters as well as actual text in the body of
the message text area (figure 36.5). As you may have guessed by the Text and Explana-
tion, we will be writing an application to select a table and display the number of rows.

Figure 36.3 Message 1 definition

Licensed to James M White <jwhite@maine.edu>

792 CHAPTER 36 BUILD YOUR FIRST APPLICATION

Figure 36.4 Message 2 definition

Figure 36.5 Message 3 definition

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM CACHE RECORD 793

36.3 CREATING A CUSTOM CACHE RECORD

A cache record is no different than any other PeopleSoft record (or work record) you
create in Application Designer. A couple of simple rules must be followed: there can
only be one key field, and that key field has to be PROCESS_INSTANCE. When your
Application Engine program is executed, a process instance is assigned by the Process
Scheduler. This process instance is used to store the cache fields for your job, as
opposed to someone else’s (which has its own process instance).

Navigation: Go → PeopleTools → Application Designer → File → New…

Figure 36.6 Creating a new object using Application Designer

Figure 36.7

Creating a new record object

Licensed to James M White <jwhite@maine.edu>

794 CHAPTER 36 BUILD YOUR FIRST APPLICATION

Now we’re going to add the following fields to our custom cache record:
PROCESS_INSTANCE (Process Instance), COUNTER (Generic Counter),
RECNAME (Record (Table) Name), FIELDNAME (Field Name), and AE_DECIDE
(Decision Switch).

Figure 36.8 Inserting existing fields into the new record

Figure 36.9 Inserting the process instance field object

Licensed to James M White <jwhite@maine.edu>

CREATING A CUSTOM CACHE RECORD 795

The purpose of these fields will become evident as we build our applications.

NOTE Only one key field can exist on a cache record—PROCESS_INSTANCE!

Once the fields have been added and the pri-
mary key (PROCESS_INSTANCE) assigned (fig-
ure 36.10), we can save the record (figure 36.11).

We’ll call our custom cache record
USER_AET.

Now, we need to create the table within the
database itself using SQL*Create. This isn’t
necessary if the cache record is a work record. For

the purposes of this book, we will use a physical SQL table for the cache record. When
a work record is used, the cache values are lost if the program ends or aborts. You will
not be able to restart an aborted process using a work record, therefore, it is a good
practice to avoid them and use a physical SQL table.

While the USER_AET record is still open, click on the Build menu item, then
click on Current Object (figure 36.12).

Figure 36.10

Assigning the primary key

Figure 36.11 Saving the record

Licensed to James M White <jwhite@maine.edu>

796 CHAPTER 36 BUILD YOUR FIRST APPLICATION

The Build screen appears with our current object, USER_AET, in the selection box.
Click on the Create Tables checkbox and the Execute SQL now radio button. Now click
on the Build push button to create the USER_AET table at the database level.

Our cache record is complete. We’re ready for our first Application Engine program.

Figure 36.12 Building the current object in the database

Figure 36.13

Executing SQL table creation

Licensed to James M White <jwhite@maine.edu>

EXERCISE 1: HELLO WORLD! 797

36.4 BEGINNING OUR TUTORIAL

Our first application isn’t original but will clearly demonstrate basic Application
Engine functionality. In many books about programming languages, it’s customary to
begin with an exercise that displays the short phrase “Hello world.” This book is no
exception. Let’s begin.

36.5 EXERCISE 1: HELLO WORLD!

36.5.1 Creating an SQR version

Let’s start by writing a simple SQR that displays “Hello World” on the log file:

! USER001.SQR
begin-program
do Main-Step1
end-program
begin-procedure Main-Step1
show 'Hello World'
end-procedure

After execution the SQR.log looks like this:

Hello World

Now, let’s create a version of the program using Application Engine.

Licensed to James M White <jwhite@maine.edu>

798 CHAPTER 36 BUILD YOUR FIRST APPLICATION

36.5.2 Defining the application

Our first step here is to add a fully qualified program name. Application Engine
programs are identified by product and application. Some examples of products are
HR, Accounts Receivable, and General Ledger. Product categories are used to logically
group your Application Engine programs.

Let’s select the Application Engine Product type (PS/AE). We’ll call our first
application USER001 (figure 36.15). Remember, all Application Engine programs
must begin with a section called MAIN. Additional sections may be added if necessary.
Since we don’t plan on using any database specific functionality, we can leave database
platform blank.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine
→ Application → Add

Figure 36.14 Creating a new application

Figure 36.15

Naming the

application

Licensed to James M White <jwhite@maine.edu>

EXERCISE 1: HELLO WORLD! 799

The screen in figure 36.16 shows the Application Definition screen for our new
program USER001. Notice the cache record and message set number edit boxes. We’ll
use our custom cache record USER_AET and custom message set 20,001. We can also
document the program version using the Version edit box.

Take note of the group box As Of Date. It is set to use the current date when add-
ing any new sections. When program development is spread out over several days, it’s
a good idea to override the current date with a common date for all sections.

We can now move to the Section MAIN definition.

TIP Application Engine requires a section called MAIN in every program. The
MAIN section is always executed first.

Figure 36.16 Defining our application

Licensed to James M White <jwhite@maine.edu>

800 CHAPTER 36 BUILD YOUR FIRST APPLICATION

36.5.3 Creating sections, steps, and statements

The only additional piece of information we need to include on the section MAIN
definition is the description. We’re ready to add a step to our application.

Our first and only step of the application will be called STEP1 (figure 36.18).
Since the objective of this step is to write a message, we use the SQL statement type.
The message function of Application Engine comes under the SQL statement cate-
gory. Notice the additional step options. In some cases, a Mass Change program,
another A/E Section, or a COBOL program can be used instead of an SQL statement.

Figure 36.17 Defining section MAIN

Licensed to James M White <jwhite@maine.edu>

EXERCISE 1: HELLO WORLD! 801

36.5.4 Introducing the &MSG function

Figure 36.18 Defining our first step

Figure 36.19 Defining our first statement

Licensed to James M White <jwhite@maine.edu>

802 CHAPTER 36 BUILD YOUR FIRST APPLICATION

The &MSG function writes a message to the Message Log using the following format:

&MSG([Message_Set_Number], Message_Number, [Parm_1],…. [Parm_n])

The &MSG function always uses an SQL statement type of UPDATE and must be the
first and only function or command in the statement.

For more information on the &MSG function refer to the function reference in
appendix F.

In our &MSG function, we do not specify a message set, thereby defaulting to the
20001 message set we’ve defined on the application definition. The message number
is 1, which you may recall consisted of a lone %1 input parameter. The “Hello World”
text is the input parameter we are passing. We have completed our first Application
Engine program! If all goes as planned, the “Hello World” phrase will appear in the
message log.

We’re ready to test the USER001 Application.

36.5.5 Running an Application Engine program

Navigation: Go → PeopleTools → Application Engine → Process → Request →
Request → Add

Figure 36.20 Adding a Process Request

Licensed to James M White <jwhite@maine.edu>

EXERCISE 1: HELLO WORLD! 803

We can test our Application Engine program through the Process Request panel.
This provides a means to test without having to set up individual Run Control panels
for each program we create. We also don’t have to create any Process Scheduler def-
initions. Simply enter a Run Control ID and execute your program!

In figure 36.21, we assign a Run Control ID of #USER001.

On the Process Request panel, we enter the product and application of our pro-
gram (figure 36.22). The bottom half of the screen is used to initialize fields on the
cache record. We’ll discuss these in a future exercise. Our first application doesn’t uti-
lize any cache fields directly.

Once the Process Request panel is populated correctly, click on Traffic Signal to
initiate a Process Scheduler request.

Figure 36.21

Assigning a Run Control ID

Figure 36.22 Defining a Process request

Licensed to James M White <jwhite@maine.edu>

804 CHAPTER 36 BUILD YOUR FIRST APPLICATION

Highlight the Application Engine AEADHOC Process, and click the OK button
to start (figure 36.23).

NOTE You may find two process definitions in the Process Scheduler Request
panel. Both AEADHOC and PTPEMAIN are linked to the Process Request
panel.

Because AEADHOC is defined as an Application Engine process type, it will call
the PTPEMAIN program by default. We could choose either to test our application.
For purposes of this book, we’ll use the same process definition throughout our exer-
cises. We’ll choose AEADHOC since this demonstrates a link to PTPEMAIN, which
we’ll also create in our last exercise.

Although you can run Application Engine processes on both the client and server,
we will run on the client throughout this book.

Figure 36.23 Submitting a Process Scheduler request

Licensed to James M White <jwhite@maine.edu>

SQR/APPLICATION ENGINE COMPARISON 805

36.5.6 Reviewing Application Engine messages

To view the message log, click on the Message folder tab. Set the View Messages
radio button and the Use Latest Process Instance radio button. Click on the Flashlight
to display the Latest Process Instance Message Log which happens to be our first run.
At precisely 08.48.45, the “Hello World” message was displayed (figure 36.24). Our
first program was successful!

36.6 SQR/APPLICATION ENGINE COMPARISON

Let’s take a look at the logical structure of both our programs.

SQR: Application Engine:

Both programs follow the same structure: a step which writes a message, is per-
formed. This comparison should prove to be beneficial as our exercises become
more complex.

Figure 36.24 Reviewing Process Request messages

Begin-Program
 Main-Step1

USER001
 MAIN.STEP1

Licensed to James M White <jwhite@maine.edu>

806 CHAPTER 36 BUILD YOUR FIRST APPLICATION

KEY POINTS

1 Two important elements of an Application Engine program are the message
catalog and the cache record.

2 A cache record can have only one key, the process instance. The cache
record will be used to store and retrieve values similar to using variables in
conventional programs.

3 A cache record is assigned to your A/E program. The cache record is used to
store and pass values from one step to another.

4 All Application Engine programs begin with a section called MAIN. Sec-
tions are similar to procedures in COBOL or SQR.

5 Each unit of work is broken down into a step. A step can call other sections,
a COBOL program, a mass change program, or an SQL statement within
the step itself.

6 Statements can be native SQL statements or Application Engine functions
(or in some cases a combination of the two).

7 The &MSG function allows you to monitor the progress of your program by
writing messages to the message log.

8 You can test your Application Engine programs using the Process Request
panel.

9 The Process Request Messages panel allows you to view the messages gener-
ated during the run. Some messages are due to the &MSG function in your
program while others are written by the PTPEMAIN process automatically.

Licensed to James M White <jwhite@maine.edu>

807

C H A P T E R 3 7

Using cache fields

37.1 Exercise 2: How many rows in PERSONAL_DATA? 807
37.2 SQR/Application Engine comparison 816

Variables do not exist in an Application Engine. Values are stored in a cache field and
utilized by subsequent steps. Our next exercise demonstrates the use of cache fields.

37.1 EXERCISE 2: HOW MANY ROWS
IN PERSONAL_DATA?

Our next exercise is also a basic one. We’re going to select the number of rows in the
PERSONAL_DATA table and store the count in the cache record. The next step will
utilize the cached value and display the results in the message log.

PERSONAL_DATA is a core table in the PeopleSoft HRMS application. You may
substitute any table for this exercise. For example, if you’re running PeopleSoft
Accounts Receivable you may want to use the CUSTOMER table instead.

Licensed to James M White <jwhite@maine.edu>

808 CHAPTER 37 USING CACHE FIELDS

37.1.1 Creating an SQR version

We’ll begin this exercise by displaying the SQR version of this program:

! USER002.SQR

begin-program

do Main-Step1
do Main-Step2

end-program

begin-procedure Main-Step1

let #counter = 0

begin-select

count(*) &counter

 let #counter = &counter

 from ps_personal_data

end-select

end-procedure

begin-procedure Main-Step2

show 'PERSONAL_DATA Record Count: ' #counter

end-procedure

The first procedure, Main-Step1, populates the variable #counter with the number
of rows in the PERSONAL_DATA table. The second procedure, Main-Step2, displays
the results.

After execution, the SQR.log looks like this:

PERSONAL_DATA Record Count: 347.000000

Now, let’s create a version of the program using Application Engine.
Our second Application Engine program (figure 37.1) is called USER002, and, as

we’ve learned, must begin with the section MAIN.

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: HOW MANY ROWS IN PERSONAL_DATA? 809

Once again, we use the USER_AET cache record and the 20001 message set num-
ber (figure 37.2).

Figure 37.3 shows the section definition for MAIN.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine
→ Application → Add

Figure 37.1

Naming the

application

Figure 37.2 Defining our application

Licensed to James M White <jwhite@maine.edu>

810 CHAPTER 37 USING CACHE FIELDS

Our first step is called STEP1 (figure 37.4). It consists of one SQL statement,
which selects the number of rows in the PERSONAL_DATA table and stores the result
in our cache field COUNTER.

Figure 37.3 Defining section MAIN

Figure 37.4 Defining STEP1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: HOW MANY ROWS IN PERSONAL_DATA? 811

37.1.2 Assigning cache fields values with &SELECT

We begin our statement definition by assigning a statement type of SELECT. Our
statement text looks like this:

&SELECT(COUNTER)

SELECT COUNT(*)

 FROM PS_PERSONAL_DATA

The first line uses the Application Engine function &SELECT. This function updates
the cache field with the value assigned by the corresponding SQL SELECT statement.
The &SELECT function has the following format:

&SELECT(cache_field_1 [,cache_field_2] [,cache_field_x])
SELECT field_1 [,field_2] [,field_x])

&SELECT is immediately followed by an SQL Select statement.
The number of cache fields must match the number of fields in the SQL Select.
The datatypes of corresponding cache and Select fields must match.
If NO rows are returned by the SQL Select statement, the cache fields are

assigned a value of zero or blank, depending on the datatype.

Figure 37.5 Entering the SQL statement text

Licensed to James M White <jwhite@maine.edu>

812 CHAPTER 37 USING CACHE FIELDS

For more information on the &SELECT statement, refer to the function reference
in appendix F.

37.1.3 Defining multiple steps within a section

Our second step, STEP2, accesses the cache field COUNTER and displays the
results in the message log. To create the new step, place the cursor in the step edit box
and press the F7 key to insert a new row. When the step panel is complete, press the
statement folder tab to enter our statement.

Figure 37.6 Defining STEP2

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: HOW MANY ROWS IN PERSONAL_DATA? 813

37.1.4 Retrieving cache field values with &BIND

As we did in exercise 1, we utilize the &MSG Application Engine function to write
to the message log. We’re not specifying a message set, so we default to the 20001 mes-
sage set we’ve defined on the Application Definition panel. Message 2 was defined
using two input parameters, %1 and %2. The first parameter we’re passing is the string
'PERSONAL_DATA Record Count: '. The second parameter is the value stored
in our cache field COUNTER. To retrieve the assigned cache field value, we use another
Application Engine function called &BIND. This function has the following format:

&BIND(cache_field [,NOQUOTES] [,NOWRAP] [,STATIC])

The &BIND function follows these rules:

• The &BIND function can be used almost anywhere in an SQL statement. It can-
not be used in a SELECT statement result set field list.

• A character field is returned enclosed in quotation marks unless the optional
NOQUOTES parameter is used.

• Date fields will be automatically enclosed (or “wrapped”) within the
%DATEIN or %DATEOUT Meta-SQL functions unless the optional NOWRAP
parameter is specified.

Figure 37.7 Entering &MSG statement text

Licensed to James M White <jwhite@maine.edu>

814 CHAPTER 37 USING CACHE FIELDS

• When the STATIC parameter is specified, Application Engine will resolve the
&BIND variable before compiling the SQL statement. This is useful when creat-
ing Dynamic SQL statements.

We’ll discuss Dynamic SQL in the next exercise. Also, you can refer to the func-
tion reference in appendix F for more information on the &BIND function.

We’re now ready to test USER002.
We test our new application using the Process Request Panel. We’ll use

‘#USER002’ as our Run Control ID (figure 37.8).

Simply fill in the PRODUCT/APPLICATION without any cache field values.
Click on Traffic Signal to initiate a Process Scheduler request.

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 37.8

Assigning a Run Control ID

Figure 37.9 Defining a process request

Licensed to James M White <jwhite@maine.edu>

EXERCISE 2: HOW MANY ROWS IN PERSONAL_DATA? 815

Highlight the Application Engine AEADHOC process and click the OK button
to start (figure 37.10).

Figure 37.10 Submitting a Process Scheduler request

Figure 37.11 Reviewing process request messages

Licensed to James M White <jwhite@maine.edu>

816 CHAPTER 37 USING CACHE FIELDS

To view the message log, click on the Message Folder tab. Set the View Messages
radio button and the Use Latest Process Instance radio button. Click on the Flashlight
to display the Latest Process Instance Message Log for the current run. Our message
appears in the log with the same record count as our SQR version of the program.
Another success!

37.2 SQR/APPLICATION ENGINE COMPARISON

Let’s take a look at the logical structure of both our programs:

SQR: Application Engine:

Once again, the structures are the same. Step 1 in both programs retrieves the
number of rows in PERSONAL_DATA and displays the results in step 2.

Begin-Program
Main-Step1
Main-Step2

USER002
MAIN.STEP1
MAIN.STEP2

KEY POINTS

Exercise 2 demonstrated some key features in Application Engine:

1 Multiple Steps may be defined within a section.

2 The &SELECT function is used in tandem with an SQL Select to assign
values to cache record fields.

3 Cache record field values are retrieved with the &BIND function. The
&BIND function can be used within SQL statements as bind variables or to
create dynamic SQL.

Licensed to James M White <jwhite@maine.edu>

817

C H A P T E R 3 8

Dynamic SQL statements

38.1 Exercise 3: How many rows in any table? 817
38.2 SQR/Application Engine comparison 826

38.1 EXERCISE 3: HOW MANY ROWS
IN ANY TABLE?

In our previous exercise, we determined the number of rows in PERSONAL_DATA.
In this exercise, we display the number of rows in ANY table. When we created

our USER_AET cache record, we included the field RECNAME. This cache field is
populated on the Process Request Panel with the name of the record we want to uti-
lize. Using the RECNAME value, we select and store the resulting count in the cache
record. The next step will utilize the cached value and display the results in the message
log as we did in the prior exercise.

38.1.1 Creating an SQR version

We begin this exercise by displaying the SQR version of this program:

Licensed to James M White <jwhite@maine.edu>

818 CHAPTER 38 DYNAMIC SQL STATEMENTS

USER003.sqr

! USER003.SQR

begin-program

input $recname 'Enter RECNAME' maxlen=15

do Main-Step1
do Main-Step2

end-program

begin-procedure Main-Step1

let $table = 'ps_' || $recname
let #counter = 0

begin-select

count(*) &counter

 let #counter = &counter

 from [$table]

end-select

end-procedure

begin-procedure Main-Step2

show ' '

show $recname ' Record Count: ' #counter

end-procedure

The user is prompted for a record name using the INPUT statement. Note there is no
validation on the entered value. We are assuming valid input to keep the program
simple. The first procedure Main-Step1 populates the variable #counter with the
number of rows in the table specified by the user (SQR also supports Dynamic SQL).
The second procedure Main-Step2 displays the results. For our example, we use the
JOB table as our RECNAME value.

After execution the SQR.log looks like this:

Enter RECNAME: JOB

JOB Record Count: 1685.000000

Listing 38.1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: HOW MANY ROWS IN ANY TABLE? 819

Now, let’s create a version of the program using Application Engine.

Our third Application Engine program is called ‘USER003’ and starts with sec-
tion MAIN.

We’ll continue to use the USER_AET cache record as well as the 20,001 message set.
We’ll fill in the description of our section (figure 38.3) and proceed with the first step.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Add

Figure 38.1

Naming the application

Figure 38.2 Defining the application

Licensed to James M White <jwhite@maine.edu>

820 CHAPTER 38 DYNAMIC SQL STATEMENTS

We’ll call our first step STEP1 (figure 38.4) and move to the Statement Defini-
tion panel.

Figure 38.3 Defining section MAIN

Figure 38.4 Defining STEP1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: HOW MANY ROWS IN ANY TABLE? 821

38.1.2 Using &BIND parameters NOQUOTES and STATIC

Notice the third line of the Select statement text:

&SELECT(COUNTER)

SELECT COUNT(*)

 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)

Remember, when we run this program through the Process Request panel we initialize
the cache field RECNAME with the name of our table. In our test, we use JOB. Using
the &BIND function Application Engine compiles the following SQL statement:

SELECT COUNT(*)
 FROM PS_JOB

Notice the RECNAME value JOB is prefixed by PS_. This is the standard PeopleSoft
convention. The SQR version concatenates the PS_ with the entered RECNAME as
well. Let’s look at the &BIND value a little closer. RECNAME has a character datatype.
If the NOQUOTES parameter was omitted, the resulting value would be JOB enclosed
in quotation marks or 'JOB'. Since we are binding this value to the prefix PS_, the
SQL would attempt to select from PS_'JOB', which is not valid and would cause an

Figure 38.5 Entering the statement text

Licensed to James M White <jwhite@maine.edu>

822 CHAPTER 38 DYNAMIC SQL STATEMENTS

error condition. The STATIC parameter tells Application Engine to resolve the
&BIND value before the SQL statement is compiled.

The row count from the JOB table is stored in the cache field COUNTER.

Figure 38.6 shows the completed Step Definition panel for STEP2. Let’s move to
the statement panel next.

Figure 38.6 Defining STEP2

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: HOW MANY ROWS IN ANY TABLE? 823

38.1.3 Multiple &BIND parameters in a &MSG function

Step 2 produces a message that includes two of our cache fields: the RECNAME
initially entered by the user, and the COUNTER that’s populated with the number of
rows. We’re using message number 3 of the default Message Set (20,001) which we
entered as

%1 contains %2 records

Here is our &MSG function:
&MSG(,3,&BIND(RECNAME,NOQUOTES),&BIND(COUNTER))

The RECNAME value will be inserted into the first parameter or %1 of the mes-
sage text.

The COUNTER value will be inserted into the second parameter or %2 of the
message text.

We can now test the USER003 Application using the Process Request panel.

Figure 38.7 Entering &MSG statement text

Licensed to James M White <jwhite@maine.edu>

824 CHAPTER 38 DYNAMIC SQL STATEMENTS

38.1.4 Assign initial cache values on

the Process Request panel

Assign a Run Control ID—#USER003 (figure 38.8).

Once we fill in the Product (AE) and Application (USER003), we can assign an
initial value to any cache fields included in the cache record. Simply click on the cache
field ‘Down Arrow’ to display the drop-down list box. Figure 38.9 shows the drop-
down list with all of the cache fields on the USER_AET cache record. We included the
field RECNAME when we built our cache record for the purpose of this exercise. Select
the RECNAME cache field.

Now assign the value JOB to our RECNAME cache field. Our application will
substitute the value JOB in our Dynamic SQL Select statement.

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 38.8

Assigning the

Run Control ID

Figure 38.9 The cache field drop-down list box

Licensed to James M White <jwhite@maine.edu>

EXERCISE 3: HOW MANY ROWS IN ANY TABLE? 825

Once again, highlight the AEADHOC process and click OK.

Figure 38.10 Assigning an initial value to the cache field

Figure 38.11 Submitting a Process Scheduler request

Licensed to James M White <jwhite@maine.edu>

826 CHAPTER 38 DYNAMIC SQL STATEMENTS

As the message log indicates, the USER003 program was successful. The Job
record was dynamically called, and the correct number of rows were selected. Our
totals match those generated by the USER003 SQR program (1685 rows).

38.2 SQR/APPLICATION ENGINE COMPARISON

Now, let’s look at the logical structure of both our programs:

SQR: Application Engine:

The structures are once again identical. The only exception lies in the method of
entering the RECNAME. The SQR structure used an input prompt while the A/E pro-
gram used the Process Request cache field assignment. Please note that a Run Control
panel can be created for the SQR process, and values may be assigned in the same man-
ner as the A/E program.

Figure 38.12 Reviewing Process Request messages

Begin-Program
User prompted
Main-Step1
Main-Step2

USER003
Cache assignment
MAIN.STEP1
MAIN.STEP2

Licensed to James M White <jwhite@maine.edu>

SQR/APPLICATION ENGINE COMPARISON 827

KEY POINTS

1 The &BIND function can create dynamic SQL statements.

2 The &BIND parameters NOQUOTES and STATIC are used to format the
bind value within the SQL statement.

3 Multiple &BIND parameters are permitted in a &MSG function.

4 The Process Request panel allows us to assign initial cache field values. This
allows us to test our application engine programs without having to build a
Run Control panel.

Licensed to James M White <jwhite@maine.edu>

828

C H A P T E R 3 9

Selecting multiple rows

39.1 Exercise 4: Processing multiple rows 829
39.2 SQR/Application Engine comparison 848

In our last two exercises, we selected one row of data and displayed a message. We will
now learn how to process multiple rows returned by our Select. Also, we have been
using one section only—the MAIN section. We will introduce multiple sections in
this next exercise. The additional sections will give us increased flexibility and control
in our Application Engine program.

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 829

39.1 EXERCISE 4: PROCESSING MULTIPLE ROWS

In the last exercise, we selected and displayed the number of rows from a record
entered by the user. We’ll add a little bit more complexity in this next exercise. The
user will now enter a FIELDNAME. We are going to select the number of rows in
EACH record containing this field. A message will be generated for each record as
well. We will access the PeopleTools table PSRECFIELD to determine which record(s)
to select based on the field entered by the user.

39.1.1 Creating an SQR version

We begin this exercise by displaying the SQR version of this program:

USER004.sqr

! USER004.SQR

begin-program
input $fieldname 'Enter FIELDNAME' maxlen=18

do Main-Step1

end-program

begin-procedure Main-Step1

begin-select
a.recname

 let $recname = &a.recname

 do Count-Step1
 do Count-Step2

 from psrecfield a,
 psrecdefn b
where a.recname = b.recname
 and a.fieldname = $fieldname
 and b.rectype = 0
order by a.recname
end-select

end-procedure

begin-procedure Count-Step1

let $table = 'ps_' || $recname
let #counter = 0
begin-select

Listing 39.1

Licensed to James M White <jwhite@maine.edu>

830 CHAPTER 39 SELECTING MULTIPLE ROWS

count(*) &counter
 let #counter = &counter
 from [$table]
end-select

end-procedure

begin-procedure Count-Step2

show ' '
show $recname ' Record Count: ' #counter

end-procedure

The user is prompted for a field name using the Input statement. Once again, we
are not concerned with the validation of the user input. In our example, we use the
field PAY_END_DT. Any record that has the PAY_END_DT field is selected and
processed by the program.

Consider a portion of the SQR.LOG produced by the run:

Enter FIELDNAME: PAY_END_DT

BEN_PLAN_DATA Record Count: 0.000000
BOND_LOG Record Count: 471.000000
DED_CALC Record Count: 90.000000
DED_LINE Record Count: 29.000000
DED_MESSAGE Record Count: 0.000000
DED_WORK Record Count: 0.000000
ESPP_RUNCTL Record Count: 2.000000
GL_GEN_HISTORY Record Count: 0.000000
GP_CAL_BLD Record Count: 0.000000
GP_CRT_GER_AET Record Count: 0.000000
IMP_ADJUST Record Count: 0.000000
IMP_CALC Record Count: 0.000000
PAYROLL_ACCRUAL Record Count: 0.000000
PAY_CALC_RUNCTL Record Count: 0.000000
PAY_CALENDAR Record Count: 1170.000000
PAY_CALENDR_NLD Record Count: 241.000000
PAY_CAL_BAL_ID Record Count: 911.000000
PAY_CBLD_RUNCTL Record Count: 1.000000
PAY_CHECK Record Count: 7385.000000

Etc…

If you were to view each of these record definitions in Application Designer, you
would see that each of the records listed above contains the field PAY_END_DT.

Now, let’s duplicate this functionality in our Application Engine program.

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 831

We’ll begin by adding the USER004 Application name and the section MAIN.
Set the description, cache record, version and message set number for our appli-

cation (figure 39.2).

Now set the description on the section MAIN panel (figure 39.3).

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Add

Figure 39.1

Naming the application

Figure 39.2 Defining the application

Licensed to James M White <jwhite@maine.edu>

832 CHAPTER 39 SELECTING MULTIPLE ROWS

We’ll now proceed with STEP1. There hasn’t been much variation in our exer-
cises so far; this will change very soon.

Figure 39.3 Defining section MAIN

Figure 39.4 Defining STEP1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 833

39.1.2 Using the DO Select statement type

In this exercise, we use a different statement type called a Do Select. For each row
returned by the SQL Select, we perform or “DO” another section using the
RECNAME value. Using the DO Select statement type tells Application Engine to
call a “specified” subordinate section to process each returned row. Our new section
uses this RECNAME value to dynamically select the number of rows, assign the
number of rows to the cache field COUNTER, and once again display a message
with the results.

Click on the Statements Folder tab. Figure 39.5 shows the statement type along
with the SQL statement text we’re going to use.

 Let’s examine our SQL statement closer:

&SELECT(RECNAME)
SELECT A.RECNAME
 FROM PSRECFIELD A,
 PSRECDEFN B
 WHERE A.RECNAME = B.RECNAME
 AND A.FIELDNAME = &BIND(FIELDNAME)
 AND B.RECTYPE = 0
 ORDER BY A.RECNAME

Figure 39.5 Entering DO Select statement text

Licensed to James M White <jwhite@maine.edu>

834 CHAPTER 39 SELECTING MULTIPLE ROWS

First of all, we are using two PeopleTools tables. PSRECFIELD stores all the record
definitions created in Application Designer. We are selecting all RECNAME values
that have the FIELDNAME value we’ve input on the Process Request screen. We’re
joining the PSRECFIELD table to another PeopleTools table called PSRECDEFN.
This table is used to hold information about the record itself. The RECTYPE indica-
tor is set to 0 if it is a physical SQL table. If it’s not zero, it could be a type of view,
work record or subrecord definition. Since the ultimate goal of our program is to
determine the number of rows in each table, we need to make sure we’re only select-
ing SQL table record definitions.

The &BIND function retrieves the cache field FIELDNAME. Remember, we’re
using the field PAY_END_DT in our example. We’re using the FIELDNAME value as
part of our selection criteria. The SQL criteria using &BIND is translated to:

AND A.FIELDNAME = 'PAY_END_DT'
Click back on the steps folder tab to return to the step definition panel

(figure 39.6).

Notice the DO section radio button has been set. We controlled this by assigning
the DO Select statement. Let’s see what happens when we try to save our work
(figure 39.7).

Figure 39.6 Using the DO section radio button

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 835

An error message is produced. We click on the Explain button for further infor-
mation (figure 39.8).

Because we’ve used a statement type of DO
Select, a DO section is required. This presents a
problem because we haven’t created the new section
yet. We have to temporarily set the radio button back
to SQL statement instead of Do Section. We can also
set the statement type to Comments by clicking on
the Edit push button (next to SQL statement) or by
clicking on the Statements folder tab. The Statement
panel has a drop-down box for statement types. Let’s
set the statement type to Comments for now.

You can use this statement type to add descrip-
tions to your program. In our case, we use it to allevi-
ate the problem we’re having. We can now save our
record. Once we create our new section, we can go
back and change the statement type to Do Select. At
that point, we’ll link our new section to our program.

Figure 39.7

Error message—

DO section is required

Figure 39.8

Same error message with explanation

Figure 39.9 Statement type

drop-down list box

Licensed to James M White <jwhite@maine.edu>

836 CHAPTER 39 SELECTING MULTIPLE ROWS

Please note that PeopleSoft will allow you to save the record without setting the state-
ment type to Comments. In this particular case, it’s a good practice to de-activate the
DO Select since a DO section is not yet attached. Let’s create the new section now.

39.1.3 Creating and using additional sections

When the Add edit box appears, we use the same product and application (figure 39.10).
This is the first time we are adding a section name. Up until now, the first section has
always been filled in for us. Remember the first section is always MAIN. We call our new
section COUNT. It’s an appropriate name since we’ll determine the count of each REC-
NAME passed to this section and display the results to the message log.

On the section definition screen, we enter a simple description.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Section → Add

Figure 39.10

Adding a new section

Figure 39.11 Defining section COUNT

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 837

Since we are in a new section, we can once again call our step STEP1. After all, this
is the first step of the COUNT section. Now let’s move to the statement definition panel.

Figure 39.12 Defining STEP1 of COUNT section

Figure 39.13 Adding Select statement text

Licensed to James M White <jwhite@maine.edu>

838 CHAPTER 39 SELECTING MULTIPLE ROWS

You may have noticed this statement is identical to STEP1 in exercise 3. The rea-
son is simple: We have a table determined by retrieving the value in the cache field
RECNAME. The purpose of this step is to select the number of rows from that table.
That purpose hasn’t changed. In exercise 3, the cache field RECNAME was assigned
through the Process Request Panel. In this exercise, the RECNAME value is assigned
by the calling step MAIN.STEP1. We’ll demonstrate the reuseability of applications/
sections at the end of this exercise.

We’ll now enter the second step of the COUNT section which produces our mes-
sage log entry (figure 39.15).

Figure 39.14 Defining STEP2 of section COUNT

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 839

As in step1, the STEP2 portion is identical to that of our prior exercise. Once we
save the new section, we’re ready to link it to our MAIN section.

We go back to the MAIN section using Correction Mode. Enter the product we’re
using (PS/AE), and click on the Search push button. You can see all of the applications
and sections we’ve defined in our exercises. Select the MAIN section of the USER004
application (figure 39.16). Once we link our new section, we are ready to test.

Figure 39.15 Adding &MSG statement text

Licensed to James M White <jwhite@maine.edu>

840 CHAPTER 39 SELECTING MULTIPLE ROWS

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Correction

Figure 39.16 Application/section list box for all of our PS/AE exercises to date

Figure 39.17 Resetting the DO section radio button

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 841

Return to the statement definition by clicking on
the Statements folder tab. Once we change our statement
type back to DO Select (figure 39.18), we can proceed
with linking our new section COUNT. Remember we de-
activated the step by assigning a Comment statement type.

The DO section radio button should now be set.
Click on the Edit button to link our new section.

Set the product and application and then click on
the section drop-down box.

You’ll see the valid choices for the AE.USER004 program. Our new section
COUNT is in the drop-down list. Select the COUNT section (figure 39.20).

Figure 39.18 Statement

type drop-down list box

Figure 39.19

DO Section Properties dialog box

Figure 39.20 Selecting the DO section

Licensed to James M White <jwhite@maine.edu>

842 CHAPTER 39 SELECTING MULTIPLE ROWS

Once selected, we return to the DO Section Properties box with our section
COUNT filled in. Click the OK button.

When we return to the Step Definition screen, we see the COUNT section dis-
played to the right of the DO section radio button. For each row returned by the
STEP1 DO Select statement, the COUNT section will be executed. Save your work.
Let’s test our new program.

Return to the Process Request Panel and add the Run Control ID #USER004
(figure 39.23). Now, click the OK button.

Figure 39.21

The completed DO Section

Properties dialog box

Figure 39.22 The DO Section has been completed

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 843

When the Process Request panel appears, click on the Fields edit box and high-
light the FIELDNAME cache field. Click OK to proceed (figure 39.24).

We assign the value PAY_END_DT to our cache field (figure 39.25). Our Appli-
cation Engine program now displays the number of rows in every table that has the
field PAY_END_DT.

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 39.23

Assign the Run Control ID

Figure 39.24 The cache field drop-down list box

Licensed to James M White <jwhite@maine.edu>

844 CHAPTER 39 SELECTING MULTIPLE ROWS

Once again, highlight the AEADHOC process and click OK.

Figure 39.25 Assigning an initial value to the cache field

Figure 39.26 Submitting a Process Scheduler request

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 845

When running on the client, you may notice an MS-DOS box appear
(figure 39.27). You may have missed it in earlier exercises since they processed much
quicker. This screen shows the steps as they execute along with any messages gener-
ated. You can see our process seems to be working. The records are being displayed
with the row counts. When the process ends, we’ll look at the Message Log panel.

Figure 39.27 AEADHOC MS-DOS box

Figure 39.28 Reviewing Process Request messages

Licensed to James M White <jwhite@maine.edu>

846 CHAPTER 39 SELECTING MULTIPLE ROWS

Another successful run! The message log output matches that of our SQR version.
Before we end this exercise, let’s talk about reuseability. During the creation of the
COUNT section, we noticed it was identical to the USER003 program we created in
exercise 3. Instead of creating a new section, we could routinely have called the
USER003.MAIN section to accomplish the same task.

Let’s give it a try.

39.1.4 Section reusability

Return to the Step Definition panel in our MAIN Section for STEP1. Click on the
Edit button next to the DO section radio button. Instead of linking to Application
USER004 section COUNT, link to Application USER003 Section MAIN
(figure 39.29). Click the OK button.

We are now linked to a different DO section (figure 39.30). AE.USER003.MAIN
will now be performed instead of COUNT. Notice the fully qualified section name
indicating product, application, and section. This allows you to borrow routines from
other Application Engine programs. Let’s test our changes.

Figure 39.29

DO Section Properties reassignment

Licensed to James M White <jwhite@maine.edu>

EXERCISE 4: PROCESSING MULTIPLE ROWS 847

Use the Process Request panel to execute the program. We can now examine the
results on the Messages panel (figure 39.31).

Figure 39.30 Revised DO section

Figure 39.31 Review Process Request messages

Licensed to James M White <jwhite@maine.edu>

848 CHAPTER 39 SELECTING MULTIPLE ROWS

Our results are the same as before. This demonstrates the reuseabilty of Applica-
tion Engine sections.

39.2 SQR/APPLICATION ENGINE COMPARISON

Once again, let’s take a look at the logical structure of both our programs:

SQR: Application Engine:

The structure is identical. The Main Step selects the record names that have the
field name entered by the user. For each record selected, the COUNT section is proc-
essed. Step 1 selects the number of rows, and step 2 generates a message showing
the results.

Begin-Program
 User prompted
 Main-Step1

Count-Step1
Count-Step2

USER003
 Cache assignment
 MAIN.STEP1

COUNT.STEP1
COUNT.STEP2

KEY POINTS

1 Multiple Rows may be processed one at a time using a DO Select statement.

2 Create and use additional sections to process each row.

3 Application Engine sections are reuseable. This means a section that exists in
one application engine program can be called from another. Sections which
perform common tasks can be created and used by multiple programs.

Licensed to James M White <jwhite@maine.edu>

849

C H A P T E R 4 0

Incorporating decision logic

40.1 Exercise 5: Only process tables with rows 849
40.2 SQR/Application Engine comparison 870

In any programming language, the most vital function is the ability to make decisions
and act accordingly. The purpose of this next chapter is to demonstrate the decision-
making capability within Application Engine.

40.1 EXERCISE 5: ONLY PROCESS TABLES
WITH ROWS

Exercise 4 selected a group of records, determined the number of rows in each, and
displayed a message with the results. If you look at the message log, you’ll notice many
tables have zero rows. To demonstrate the decision-making capability of Application
Engine, we’re going to produce the messages only for tables that have rows of data.

Licensed to James M White <jwhite@maine.edu>

850 CHAPTER 40 INCORPORATING DECISION LOGIC

40.1.1 Creating an SQR version

We’ll begin this exercise by displaying the SQR version of this program:

USER005.sqr

! USER005.SQR

begin-program

input $fieldname 'Enter FIELDNAME' maxlen=15

do Main-Step1

end-program

begin-procedure Main-Step1

begin-select

a.recname

 let $recname = &a.recname

 do Count-Step1

 from psrecfield a,
 psrecdefn b
where a.recname = b.recname
 and a.fieldname = $fieldname
 and b.rectype = 0
order by a.recname

end-select

end-procedure

begin-procedure Count-Step1

let $table = 'ps_' || $recname
let #counter = 0

begin-select

count(*) &counter

 let #counter = &counter

 if #counter > 0
 do Msg-Step1
 end-if

Listing 40.1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 851

 from [$table]

end-select

end-procedure

begin-procedure Msg-Step1

show ' '
show $recname ' Record Count: ' #counter

end-procedure

Once more the user is prompted for a fieldname using the Input statement again.
For each table containing the fieldname, a record count is determined. If the record
count is greater than zero, a message is produced.

Below is a portion of the SQR.log produced by the run:

Enter FIELDNAME: PAY_END_DT

BOND_LOG Record Count: 471.000000
DED_CALC Record Count: 90.000000
DED_LINE Record Count: 29.000000
ESPP_RUNCTL Record Count: 2.000000
PAY_CALENDAR Record Count: 1170.000000
PAY_CALENDR_NLD Record Count: 241.000000
PAY_CAL_BAL_ID Record Count: 911.000000
PAY_CBLD_RUNCTL Record Count: 1.000000
PAY_CHECK Record Count: 7385.000000
PAY_DEDUCTION Record Count: 45710.000000
PAY_DISTRIBUTN Record Count: 975.000000
PAY_EARNINGS Record Count: 13943.000000
PAY_GARNISH Record Count: 262.000000
PAY_GARN_OVRD Record Count: 2.000000
PAY_INS_EARNS Record Count: 8331.000000
PAY_LINE Record Count: 5104.000000
PAY_MESSAGE Record Count: 1.000000

Etc…

Notice, no tables are displayed with zero rows.
Now, let’s duplicate this functionality in our Application Engine program.

Licensed to James M White <jwhite@maine.edu>

852 CHAPTER 40 INCORPORATING DECISION LOGIC

We begin by adding the USER005 application name and the section MAIN
(figure 40.1).

Set the description, cache record, version and message set number for our appli-
cation (figure 40.2).

Now, set the description on the section MAIN panel.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Add

Figure 40.1

Naming the application

Figure 40.2 Defining the application

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 853

Figure 40.3 Defining section MAIN

Figure 40.4 Defining STEP1

Licensed to James M White <jwhite@maine.edu>

854 CHAPTER 40 INCORPORATING DECISION LOGIC

Step1 of our MAIN section in this exercise is identical to Step1 of the MAIN sec-
tion of exercise 4. We did learn a small lesson in the last exercise. When using a DO
Select statement type, a DO section needs to be defined in order to save the record.
We need to create the new section. For now, let’s change the statement type to Com-
ment (figure 40.5). Now, save your work.

NOTE The MAIN section does not have to be created first. If you carefully plan
the structure of your program before you actually begin building it, you can
start with the subordinate sections and work your way backward. We’ll
demonstrate this approach in exercise #7 found in chapter 42 (Using Run
Controls).

Once again, we add a section called COUNT to our application (figure 40.6).

Figure 40.5 DO Select statement with Comment statement type

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 855

Enter a brief description for the section COUNT.

We call the first step in our COUNT section STEP1.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine → Section
→ Add

Figure 40.6

Adding a new section

Figure 40.7 Defining section COUNT

Licensed to James M White <jwhite@maine.edu>

856 CHAPTER 40 INCORPORATING DECISION LOGIC

Our Select statement hasn’t changed since our last exercise. The cache field
COUNTER is assigned the number of rows in the table. We’ll revisit this after we cre-
ate another section to display a message.

Figure 40.8 Defining STEP1 of section COUNT

Figure 40.9 Adding Select statement text

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 857

We create a new section called MSG. The purpose of this routine is simply to dis-
play the table and number of rows in the table (figure 40.10).

Once again a brief description would be appropriate (figure 40.11).

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine → Section
→ Add

Figure 40.10

Adding another section

Figure 40.11 Defining section MSG

Licensed to James M White <jwhite@maine.edu>

858 CHAPTER 40 INCORPORATING DECISION LOGIC

Figure 40.12 Defining STEP1 of section MSG

Figure 40.13 Adding the &MSG statement text

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 859

The &MSG function hasn’t changed from the last exercise either. One main dif-
ference exists between this exercise and the last. In exercise 4, the message was included
in a step immediately following the first step. The message step was executed uncon-
ditionally. In this exercise, we’ve place the message step in an entirely new section
called MSG. The MSG section will only be performed if the row count is greater than
zero. We now return to our MAIN section to link the COUNT section to our appli-
cation (figure 40.14).

NOTE Remember the &MSG function only works if the statement type is set to “U”.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Correction

Figure 40.14 Application/section list box for all of our PS/AE exercises to date

Licensed to James M White <jwhite@maine.edu>

860 CHAPTER 40 INCORPORATING DECISION LOGIC

Return to the MAIN section of our application
(USER005) in Correction mode. Remember to enter
the product we’re using (PS/AE), and click on the
Search push button. You’ll see all of the applications
and sections we’ve defined in our exercises. Select
the MAIN section of the USER005 application.

Return to the statement definition by clicking
on the Statements folder tab. Once we change our
statement type back to DO Select, we can proceed
with linking our section COUNT (figure 40.15).

The SQL statement type is set to DO Select.
Now click on the DO section edit button
(figure 40.16).

Figure 40.15 Statement type

drop-down list box

Figure 40.16 Setting the DO section radio button

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 861

Set the product and application and then click on the section drop-down box
(figure 40.17).

Along with our MAIN section, you can see the other two sections we’ve created. We
need to link the COUNT section to our MAIN Select. Click on the COUNT section.

Figure 40.17

DO Section Properties dialog box

Figure 40.18 Selecting the DO section

Licensed to James M White <jwhite@maine.edu>

862 CHAPTER 40 INCORPORATING DECISION LOGIC

Once selected, we return to the DO Section Properties Box with our section
COUNT filled in. Click the OK button.

When we return to the Step Definition screen we see the COUNT section dis-
played to the right of the DO section radio button (figure 40.20). For each row
returned by the STEP1 DO Select statement the COUNT section will be executed.
We’ll now return to the COUNT section.

Return to the COUNT Section of our Application (USER005) in Correction
Mode. Once again set the Product to PS/AE and click on the Search push button.
Select the COUNT section of our USER005 application.

Figure 40.19

The completed DO Section dialog box

Figure 40.20 The DO Section has been completed

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 863

Add a second step called STEP2 to our COUNT section (figure 40.22). You can
use the F7 Key to insert a new row.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Correction

Figure 40.21 Application/section list box again

Figure 40.22 Creating STEP2 in section COUNT

Licensed to James M White <jwhite@maine.edu>

864 CHAPTER 40 INCORPORATING DECISION LOGIC

40.1.2 Introducing the DO When statement type

Use the Statements folder tab to define the state-
ment. Click on the Statement Type edit box.
Select the DO When statement type in the drop-
down list box shown in figure 40.23.

We’re using a new statement type called DO
When (figure 40.24). A DO section will be performed
based on the results of a True or False Select
statement. In our case we are evaluating the cache
field COUNTER.

40.1.3 PSLOCK and decision making

We are using a PeopleSoft-delivered table called PSLOCK which consists of one row.
We’re going to use the PSLOCK table as a placeholder instead of actually selecting
data from the table itself. If you are an Oracle user, you may be familiar with this
technique against the DUAL table. Although the main function of the PSLOCK table

Figure 40.23 Select the DO

When statement type

Figure 40.24 DO When statement text

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 865

has little to do with Application Engine, it is ideal for decision-making functions such
as this. You will find this frequently in PeopleSoft A/E processes. Let’s take a closer
look at our statement text:

&SELECT(AE_DECIDE)
SELECT ‘X’
 FROM PSLOCK
 WHERE &BIND(COUNTER) > 0

First, let’s look at the SQL Select statement. If the cache field COUNTER has a
value greater than zero, a single row with the character 'X' will be returned. This
value will then be assigned to the cache field AE_DECIDE using the &SELECT func-
tion. If the COUNTER value is not greater than zero, the AE_DECIDE cache field will
have a default value of blank, and no rows will be returned by the Select statement.

If a DO When Select statement returns rows, the DO section will be performed.
This is a simple but effective decision-making tool. Now, we need to link our MSG
Section to this step.

Click on the DO section edit box.. You may have noticed the DO Edit group box
on the lower right side of the panel. Because we’re using the DO When statement type,
the Exists checkbox is automatically filled in next to the DO When push button. Press-

Figure 40.25 Setting the DO section for our DO When statement type

Licensed to James M White <jwhite@maine.edu>

866 CHAPTER 40 INCORPORATING DECISION LOGIC

ing the DO When push button has the same affect as clicking on the Statements folder
tab. It’s simply an alternate method of navigation.

Set the product and application and then click on the section drop-down box
(figure 40.26).

Highlight and click on the MSG section (figure 40.27).

Once selected, we return to the DO Section Properties box with our section MSG
filled in (figure 40.28). Click the OK button.

Figure 40.26

DO section properties dialog box

Figure 40.27 Selecting the DO section

Figure 40.28

The completed DO Section

Properties dialog box

Licensed to James M White <jwhite@maine.edu>

EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 867

When we return to the Step Definition screen, we see the MSG section displayed
to the right of the DO section radio button. For each row returned by the STEP2 DO
When statement, the MSG section will be executed. This means only tables with a
row count greater than zero will be displayed in the message log. We’re ready to test
our program.

Return to the Process Request panel and add the Run Control ID #USER005.
Click the OK button.

Figure 40.29 The DO section has been completed

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 40.30

Adding the Run Control ID

Licensed to James M White <jwhite@maine.edu>

868 CHAPTER 40 INCORPORATING DECISION LOGIC

When the Process Request panel appears, click on the Field edit box and enter
the cache field FIELDNAME. Now, enter the value PAY_END_DT (figure 40.31). Save
the record and click on the Traffic Signal to initiate the process request.

Once again, highlight the AEADHOC process (figure 40.32) and click OK.

Figure 40.31 Assigning an initial value to the cache field

Licensed to James M White <jwhite@maine.edu>

