
EXERCISE 5: ONLY PROCESS TABLES WITH ROWS 869

Figure 40.32 Submitting a Process Scheduler request

Figure 40.33 Reviewing Process Request messages

Licensed to James M White <jwhite@maine.edu>

870 CHAPTER 40 INCORPORATING DECISION LOGIC

We are once again successful! The message log output matches that of our SQR
version. Only tables that contain rows of data are displaying. Using the DO When con-
struct, we’ve filtered out all tables with a zero row count. Two additional statement
types—the DO Until and DO While statement types—control section execution in
a similar fashion.

40.2 SQR/APPLICATION ENGINE COMPARISON

Once again, let’s take a look at the logical structure of both our programs:

SQR: Application Engine:

This time the structures are slightly different. The SQR program doesn’t need an
additional step to perform a decision. A simple IF statement is used to determine if the
Msg-Step1 procedure should be performed. Application Engine requires the additional
step to build a DO When condition. Based on the results, the MSG section is performed.

Begin-Program
 User prompted
 Main-Step1
 Count-Step1
 Msg-Step1

USER003
 Cache assignment
 MAIN.STEP1
 COUNT.STEP1
 COUNT.STEP2
 MSG.STEP1

KEY POINTS

1 You can control the processing logic using a DO When, DO While, or DO
Until statement. This adds decision-making capability to your program
and can regulate which sections are performed.

2 The PSLOCK table is often used as a dummy table to evaluate &BIND data
values. It can be used in the same manner as the DUAL table is used in Oracle.

Licensed to James M White <jwhite@maine.edu>

871

C H A P T E R 4 1

Dynamic sections

41.1 Exercise 6: Calling dynamic sections 871
41.2 SQR/Application Engine comparison 886
41.3 Dynamic sections in PeopleSoft 886

An Application Engine program has the ability to call a section dynamically. This is a
very powerful feature. Sections may be created and, based on certain conditions, a
particular section may be executed. Let’s begin.

41.1 EXERCISE 6: CALLING DYNAMIC SECTIONS

Our exercise is simple. We are going to dynamically call a section that either writes
the message “Hello World” or “Goodbye.” Dynamic sections are called based on the
contents of the cache field AE_SECTION. This field must exist in the cache record
we’ve designated for our application. We’ll populate this field on the Process Request
panel with the name of the section we’d like to perform. We begin by displaying a
simple SQR that prompts the user for their choice of messages to display. Keep in
mind the SQR version isn’t dynamic—it simply performs the routine based on user
selection—but it will demonstrate the logic flow as if it were dynamic.

Licensed to James M White <jwhite@maine.edu>

872 CHAPTER 41 DYNAMIC SECTIONS

41.1.1 Creating an SQR version

! USER006.SQR

begin-program

input $choice 'Enter Section# (1=Hello 2=Goodbye)' maxlen=1

evaluate $choice
 when = '1'
 do Hello-Step1
 when = '2'
 do Goodbye-Step1
end-evaluate

end-program

begin-procedure Hello-Step1
show 'Hello World'
end-procedure

begin-procedure Goodbye-Step1
show 'Goodbye'
end-procedure

If the user enters a '1', the SQR.log looks like this:

Hello World

If the user enters a '2', the SQR.log looks like this:

Goodbye

Let’s create a version of the program using Application Engine.
We begin by adding the USER006 application name and section MAIN

(figure 41.1).

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Add

Figure 41.1

Naming the application

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 873

Fill in the description, version, and message set number as we’ve done in the past
exercises. We’re going to use a different cache record called AE_TESTAPPL_AET. This
is a delivered PeopleSoft record. The field AE_SECTION is contained in this record
so it’s perfectly suited for our dynamic section exercise. We could have added this
field to our USER_AET cache record, but I wanted to demonstrate the cache record
assignment. There is no need to create additional cache records if one exists that
meets your requirements.

We add our section MAIN description (figure 41.3).

Figure 41.2 Defining the application

Licensed to James M White <jwhite@maine.edu>

874 CHAPTER 41 DYNAMIC SECTIONS

We call our step STEP1 and click on the DO section radio button. Next, you click
on the Edit button to indicate the section to perform.

Figure 41.3 Defining section MAIN

Figure 41.4 Defining STEP1

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 875

41.1.2 The &SECTION symbolic

When the DO Section Properties box appears, click on the dynamic DO checkbox
(figure 41.5). Notice the &SECTION symbolic appears. You can also notice the prod-
uct, application, and section edit boxes have been grayed out. This means the section
you want to perform must exist within your Application Engine program. You can-
not dynamically call a section from another Application Engine program.

When you return to the Step Definition panel, you’ll notice the section being
called is set to (DYNAMIC). When this step is executed, the DO section is determined
by substituting the contents of the AE_SECTION cache field.

Figure 41.5

Designating dynamic section

on DO Section Properties

Figure 41.6 The DO section has been completed

Licensed to James M White <jwhite@maine.edu>

876 CHAPTER 41 DYNAMIC SECTIONS

We’ll now add another section, called HELLO, to our application (figure 41.7).

Fill in the description for the HELLO section (figure 41.8).

We call the first step of the HELLO section STEP1 (figure 41.9).

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Section → Add

Figure 41.7

Adding another section

called HELLO

Figure 41.8 Defining section HELLO

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 877

We use the &MSG function to display “Hello World” on the message log
(figure 41.10).

Figure 41.9 Defining STEP1 of section HELLO

Figure 41.10 Adding the &MSG statement text

Licensed to James M White <jwhite@maine.edu>

878 CHAPTER 41 DYNAMIC SECTIONS

We’ll now add another section to our application called GOODBYE
(figure 41.11).

Fill in the description for the GOODBYE section (figure 41.12).

We call the first step of the GOODBYE section STEP1 (figure 41.13).

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Section → Add

Figure 41.11 Adding

another section called

GOODBYE

Figure 41.12 Defining section GOODBYE

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 879

We use the &MSG function to display “Goodbye” on the message log (figure 41.14).

Figure 41.13 Defining STEP1 of section GOODBYE

Figure 41.14 Adding the &MSG statement text

Licensed to James M White <jwhite@maine.edu>

880 CHAPTER 41 DYNAMIC SECTIONS

We’re ready to test the USER006 application.
Return to the Process Request panel and add the Run Control ID #USER006.

Click the OK button.

41.1.3 The AE_SECTION cache field

When the Process Request panel appears, click on the Field edit box. and scroll
through the field list (figure 41.16). Select the cache field AE_SECTION.

We can now enter the name of the section which we’d like to perform. For the
AE_SECTION cache field, we assign a value of HELLO. Our USER006 Application
Engine program substitutes the section HELLO when it processes the &SECTION sym-
bolic. Once the Process Request panel is populated correctly, click on the Traffic Sig-
nal to initiate a Process Scheduler request.

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 41.15

Adding the Run Control ID

Figure 41.16 The cache field drop-down list box

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 881

Figure 41.17 Assigning the dynamic section field the section HELLO

Figure 41.18 Reviewing process request messages

Licensed to James M White <jwhite@maine.edu>

882 CHAPTER 41 DYNAMIC SECTIONS

After examining the message log, you can see the HELLO section was performed.
This was caused by populating the AE_SECTION cache field with the section which
you’d like to perform.

Let’s test our program again using another section. Return to the Process Request
panel and assign the value GOODBYE to the AE_SECTION cache field (figure 41.19).
Execute the program again and go to the message log to view the results.

This time the GOODBYE section was performed (figure 41.20).

Figure 41.19 Assigning the dynamic section field the section GOODBYE

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 883

41.1.4 Multiple process requests

Let’s try another quick experiment. We can use the Process Request panel to run mul-
tiple requests at once. We could have easily run the HELLO and GOODBYE versions
of our exercise one after the other in the same run request.

Let’s start by creating a new process request under a new Run Control ID.
Since we’re running multiple requests, we use the Run Control ID ‘MULTIPLE’

(figure 41.21). Now we need to populate the Process Request panel.

So far nothing seems different (figure 41.22). The dynamic section HELLO will
be executed. Take a look at the outermost scroll bar on the right. Each process request
we enter can be viewed using the outer scroll bar. We can add another process request
by placing the cursor in one of the outer scroll fields (process frequency, product, or
application) then pressing the F7 key to insert a new row.

Figure 41.20 Reviewing process request messages

Navigation: Go → PeopleTools → Application Engine → Process → Request → Request → Add

Figure 41.21

Adding the Run Control ID

Licensed to James M White <jwhite@maine.edu>

884 CHAPTER 41 DYNAMIC SECTIONS

After pressing the F7 key, a new row can be filled in with our second set of run
parameters. In figure 41.23, we have selected the dynamic section GOODBYE. Notice
the request number for the GOODBYE section is incremented to 2. When we submit
our request, the HELLO request will be executed followed by the GOODBYE request.
Let’s run the request and look at the message log.

Figure 41.24 displays the Messages panel. The first line shows that two requests
were found for our run. The first request is executed (1 of 2) and displays the “Hello
World” message. The second request is then executed (2 of 2) and displays the “Good-
bye” message (though not visible in the screen shot). We could have executed all of
our exercises consecutively in one process request run.

Figure 41.22 Adding Request Number 1 using the HELLO dynamic section

Licensed to James M White <jwhite@maine.edu>

EXERCISE 6: CALLING DYNAMIC SECTIONS 885

Figure 41.23 Adding Request Number 2 using the GOODBYE dynamic section

Figure 41.24 Examining the message log for the multiple request run

Licensed to James M White <jwhite@maine.edu>

886 CHAPTER 41 DYNAMIC SECTIONS

41.2 SQR/APPLICATION ENGINE COMPARISON

If we look at the logical structure of both our programs now

SQR: Application Engine:

We can see the Application Engine program is much more streamlined. The section
is assigned on the Process Request panel and used in place of the &SECTION symbolic.

41.3 DYNAMIC SECTIONS IN PEOPLESOFT

You may be wondering where you can find an example of dynamic sections in an
existing PeopleSoft application. A perfect example would be the payment predictor
process, called PREDICT, found in Accounts Receivable. Its purpose is to match
incoming payments with the associated items (or invoices). Several delivered sections
or algorithms exist that can be selected to match payments based on certain criteria. A
special payment predictor setup table is used to store the algorithm name to be used.
When PREDICT is run, the setup information is retrieved. The algorithm is assigned
to the AE_SECTION cache field and substituted for the &SECTION symbolic. Using
dynamic sections in this manner provides a great deal of flexibility.

Begin-Program
 User prompted
 Main-Step1
 When 1
 Hello-Step1
 When 2
 Goodbye-Step1

USER001
 Cache assignment
 MAIN.STEP1
 MAIN.&SECTION

KEY POINTS

1 Sections are called dynamically when the value found in the
AE_SECTION bind variable is substituted as the section represented by
the &SECTION symbolic.

2 Dynamic sections can be found in several PeopleSoft Applications such as
Payment Predictor. The use of dynamic sections allows the user to tailor
programs to meet their own business requirements.

3 Multiple process requests can be submitted in one execution run. This is
useful when you would like processes to run consecutively.

Licensed to James M White <jwhite@maine.edu>

887

C H A P T E R 4 2

Using Run Controls—
part A

42.1 Exercise 7: Delete process
definitions 888

42.2 Build a new Run Control record 889
42.3 Building the Run Control panel 893
42.4 Create a new panel group 897

42.5 Attaching the panel group to a
menu 899

42.6 Assigning operator security 900
42.7 Testing the new panel 902
42.8 Creating our process definition 903

The exercises we have completed thus far were designed to demonstrate the capabilities
of Application Engine. You may not have a need to display a message saying “Hello
World.” You may not need any of the programs we’ve created! The important thing is
that you’ve learned the concepts behind Application Engine development. We’re now
ready to produce something of value. In chapter 28, we mentioned that PeopleSoft
does not provide a tool to delete obsolete process definitions. You can only delete these
outside of PeopleSoft using your native SQL tools. Let’s create a utility to accomplish
this using Application Engine. This is the perfect opportunity to introduce Run Con-
trol records in Application Engine. In order to implement this utility, we’re going to go
through the complete cycle of program development. Let’s get started.

Licensed to James M White <jwhite@maine.edu>

888 CHAPTER 42 USING RUN CONTROLS—PART A

42.1 EXERCISE 7: DELETE PROCESS DEFINITIONS

Let’s refresh our memory first. In chapter 28, we listed the SQL statements necessary
to clean up the process definition tables.

Let’s look at the SQL statements used to remove the MYPROB01 SQR Report
process definition from all associated tables:

DELETE
 FROM PS_PRCSDEFN
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

DELETE
 FROM PS_PRCSDEFNGRP
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

DELETE
 FROM PS_PRCSDEFNPNL
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

DELETE
 FROM PS_PRCSDEFNXFER
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

DELETE
 FROM PSPRCSRQST
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

DELETE
 FROM PSPNLFIELD
 WHERE PRCSNAME = ‘MYPROB01’
 AND PRCSTYPE = ‘SQR Report’;

In our new process, we’ll allow the user to enter the PRCSNAME and PRCSTYPE on a
new Run Control panel. The Application Engine process we develop will remove the
process definition from the six tables listed. Notice the first four tables use the stan-
dard prefix 'PS_' while the last two tables do not. We’ll make our program interest-
ing by accounting for this in our program.

Before we proceed, let’s take a look at the development requirements. When
developing applications, this is a critical and often overlooked step. Let’s go over the
steps we need to take to produce our application:

Licensed to James M White <jwhite@maine.edu>

BUILD A NEW RUN CONTROL RECORD 889

42.1.1 Application development steps

• create a custom Run Control record
• add PeopleCode to the Run Control record
• create a custom panel
• create a custom panel group
• attach the panel group to a menu
• assign operator security to the menu item
• create a process definition for our Application Engine program
• create the Application Engine program
• test our new application

We have a lot of work ahead of us. Fortunately, this will be a fairly easy task using
PeopleTools.

One thing I’d like to resolve now is the name of our Application Engine program.
This means the combination of product and application ID. We will use the product
A/E (as we’ve done in all our exercises) and the name of the application is going to be
MYPRCSDL.

Let’s start by building a new Run Control record.

42.2 BUILD A NEW RUN CONTROL RECORD

Application Engine programs use a primary Run Control record called
AE_REQUEST. You may not have realized it at the time, but this is the underlying
Run Control record we’ve been using when testing our applications in exercises 1
through 6. We’re going to create a new custom Run Control record that will be
linked (as a child record) to the AE_REQUEST record. We start by cloning the
AE_REQUEST record (figure 42.1).

Our Run Control record only needs five fields. Of course, the record needs the
standard AE_REQUEST keys, which are OPRID, RUN_CNTL_ID, and
REQUEST_NBR. In addition, we want the user to enter the process type and process
name. We’ll now clone the AE_REQUEST record for our purposes. Open the record
AE_REQUEST and remove all fields except OPRID, RUN_CNTL_ID and
REQUEST_NBR. Next, add the fields PRCSTYPE and PRCSNAME. The result
should look like figure 42.1. Be careful not to save the record using the
AE_REQUEST name! We save it under a new name: MY_RUN_CNTL_AE.

Licensed to James M White <jwhite@maine.edu>

890 CHAPTER 42 USING RUN CONTROLS—PART A

Use File → Save As to save the record under a
new name. Figure 42.2 shows the prompt box filled
in with our new name. Let’s add some underlying edit
prompts for our two new fields.

Figure 42.3 displays the record in Edit View.
We’ve added the PRCSTYPE_VW and PRCSDEFN
records as edit tables for the PRCSTYPE and PRCS-
NAME fields. This allows the user to select the process

type and process name on the Run Control panel using drop-down lists.
Also, note the record keys for our new Run Control record are OPRID,

RUN_CNTL_ID, and REQUEST_NBR. The key attributes were copied when we saved
the AE_REQUEST record under our new record name.

Because we plan to integrate our Run Control record with the AE_REQUEST
record, we have to resolve a couple of issues. This will become clearer when we create
the panel. For now, let’s look at the required fields on the AE_REQUEST record.

Navigation: Go → PeopleTools → Application Designer → File → Open →
Record → AE_REQUEST

Figure 42.1 Cloning the AE_REQUEST Run Control record

Figure 42.2 Saving our Run

Control record

Licensed to James M White <jwhite@maine.edu>

BUILD A NEW RUN CONTROL RECORD 891

Figure 42.4 displays the required fields on the AE_REQUEST record. The first
three are the record keys and will be filled in with the OPRID, RUN_CNTL_ID, and
REQUEST_NBR. The last two fields, AE_PRODUCT and AE_APPL_ID, are also
required. We plan to use the AE_REQUEST record as the primary record on our panel
with our new custom record placed in the panel as a child record. We will not be able
to save the record without a product or application ID. This is an easy customization
using PeopleCode. We’ll simply initialize these two fields with the product and appli-
cation ID we’re going to use. We’ve already decided to use AE.MYPRCSDL as the
product and application ID. Let’s add some PeopleCode.

Figure 42.5 shows the PeopleCode to populate the required fields AE_PRODUCT
and AE_APPL_ID in the AE_REQUEST record.

Figure 42.3 Adding edit prompts to the process type and process name fields

Licensed to James M White <jwhite@maine.edu>

892 CHAPTER 42 USING RUN CONTROLS—PART A

Figure 42.4 Looking at the AE_REQUEST required fields

Figure 42.5 Updating AE_REQUEST record with our product and application ID

Licensed to James M White <jwhite@maine.edu>

BUILDING THE RUN CONTROL PANEL 893

Build the current object using SQL create. This will create the table at the data-
base level. We’ll now make some modifications to our cache record, USER_AET.

42.2.1 Modify our existing cache record

The cache record USER_AET is the same record we’ve used for most of our exercises.
We can re-use this by adding the additional fields we need for our application. We
need to add the process type and process name fields passed from the Run Control
record. We’ll also add the AE_SECTION field to allow us to execute sections dynami-
cally. We’ll explain this as we develop the application.

Figure 42.6 shows the modifications we’ve made to the USER_AET cache record.
As you can see, the three fields have been added. Now, we need to build the current
record object using SQL create. We can now build the Run Control panel.

42.3 BUILDING THE RUN CONTROL PANEL

We can clone an existing panel used specifically for Application Engine. The panel
name is AE_REQUEST. We used this panel when testing our applications from previ-
ous exercises. We’re going to remove most of the fields on the panel, then add the new
ones from our custom Run Control record.

Figure 42.6 Modifying the USER_AET cache record

Licensed to James M White <jwhite@maine.edu>

894 CHAPTER 42 USING RUN CONTROLS—PART A

Figure 42.7 shows the AE_REQUEST panel with all the fields intact. Let’s remove
all fields except operator ID, Run Control ID, and request number. We also will keep
the rightmost scroll bar. Then we’ll add the Process Type and Process Name fields
from our custom Run Control record. We’ll make a few slight adjustments that may
seem a bit odd at first, but we’ll explain as we go.

Let’s save the panel using the name
MY_RUN_CNTL_AE (figure 42.8).

Our panel is now complete.

NOTE When cloning, make sure you don’t inadvertently save the object under its
original name. This is true for all cloned objects—records, panels, and so on.

Navigation: Go → PeopleTools → Application Designer → File → Open → Panel
→ AE_REQUEST

Figure 42.7 Cloning the AE_REQUEST panel

Figure 42.8 Saving the panel

with our new name

Licensed to James M White <jwhite@maine.edu>

BUILDING THE RUN CONTROL PANEL 895

Figure 42.9 shows the completed panel named MY_RUN_CNTL_AE. We’ve
made some cosmetic adjustments as well. We moved the process request number into
the top frame. We also surrounded the user fields Process Type and Process Name
with a group box and labeled it “Processing Parameters.” Also, notice the inner scroll
bar. This contains the fields for our custom record. We had no choice in this matter.
PeopleSoft does not allow you to place multiple records under the same scroll bar. We
are going to change the inner scroll bar properties so it is not visible to the user.

In our previous exercise, we demonstrated the ability to submit multiple process
requests. This is one of the features of the AE_REQUEST panel (which we cloned). For
our purposes, we do not want to allow multiple process requests. Deleting process def-
initions can be considered a dangerous function. Restricting this function to delete
one process definition at a time is a wise decision.

Because the only remaining fields within the outer scroll are “Display Only,” we
cannot insert an additional process request. This is the desired effect. We could have
set the outer scroll properties to restrict rows from being inserted and to also make the
scroll bar invisible. We’ll leave the outer scroll bar properties as they are. Because the
inner scroll bar has data entry fields, we have to modify the inner scroll bar properties.

Figure 42.9 Our new Run Control panel is complete

Licensed to James M White <jwhite@maine.edu>

896 CHAPTER 42 USING RUN CONTROLS—PART A

Figure 42.10 displays the inner scroll bar properties we’ve set. The Occurs count
is 1 so only one row may exist as a child of the AE_REQUEST record. The scroll bar
will be invisible. The user will not be able to insert or delete rows within the inner
scroll bar (via F7 and F8).

Figure 42.11 shows the panel elements that make up the entire panel. You can
access this screen by selecting Layout → Order on the Application Designer menu bar.
Make sure your panel entries match those in figure 42.11.

Figure 42.10

Inner scroll bar properties

Figure 42.11 The MY_RUN_CNTL_AE panel elements

Licensed to James M White <jwhite@maine.edu>

CREATE A NEW PANEL GROUP 897

42.4 CREATE A NEW PANEL GROUP

Now, let’s create a panel group for our new Application Engine process.
Figure 42.12 shows the panels we’ve added to our new panel group. Of course,

the custom Run Control panel has been added. We’ve also added the panel
AE_MESSAGE_LOG. You’ve seen this panel during our exercises to look at Applica-
tion Engine messages. We’ll attach it to our panel group so we have a convenient
means of viewing messages. We’ve also entered a descriptive label for each panel in the
Item Label column.

NOTE Much of the synchronization between the AE_REQUEST record and our
MY_RUN_CNTL_AE record was made in anticipation of adding the
AE_MESSAGE_LOG panel to our new panel group. It’s always a nice
touch to give the user access to Application Engine messages from the
same panel group.

Navigation: Go → PeopleTools → Application Designer → File → New → PanelGroup

Figure 42.12 Creating the new panel group

Licensed to James M White <jwhite@maine.edu>

898 CHAPTER 42 USING RUN CONTROLS—PART A

Before we can save the panel group, we need to enter the panel group properties.
You can access the properties by clicking the right mouse button or pressing ALT-
ENTER. Figure 42.13 shows the description added for our panel group.

We’ve added AE_REQUEST as the search record in figure 42.14. We’ve also
checked the Add and Update/Display actions. We’re ready to save our panel group.

Figure 42.13

Adding a description to the

Panel Group Properties

Figure 42.14

Adding a search record to the

Panel Group Properties

Licensed to James M White <jwhite@maine.edu>

ATTACHING THE PANEL GROUP TO A MENU 899

Figure 42.15 shows the panel group as it’s being
saved. We’ll use the name MY_RUN_AE.

Our next step is to add the panel group to an exist-
ing menu. Let’s take a step back and review what our
process actually does. When the user enters a process
type and process name, the application will physically
remove all references to it without a trace. If the wrong
process type/name is entered it will be deleted! A menu

with limited authorization would be suitable. Only a select few should be running this
process. Since this can be considered a PeopleTools utility, it seems logical to add this
to the delivered PeopleTools utility menu.

42.5 ATTACHING THE PANEL GROUP TO A MENU

Let’s attach the panel group to the PeopleTools utility menu.
Figure 42.16 shows the utilities menu. The column labeled “Process” is a perfect

place for our new panel group. Let’s update the menu item properties for the next
available menu item position (the open rectangle).

Figure 42.15 Saving our

new panel group

Navigation: Go → PeopleTools → Application Designer → File → Open → Menu → UTILITIES

Figure 42.16 Adding the panel group to the Utilities menu

Licensed to James M White <jwhite@maine.edu>

900 CHAPTER 42 USING RUN CONTROLS—PART A

Enter the menu item properties as shown in figure 42.17 using the new panel
group MY_RUN_AE. Use descriptive text for the menu item label. “Delete Process
Definition” is a good choice.

Now, click OK and save the utilities menu. Our next step is to assign security to
the new menu item.

42.6 ASSIGNING OPERATOR SECURITY

We’ll assign access to the operator class ALLPANLS. Remember, this process should be
limited to a small group of people.

Figure 42.18 shows the security administrator panel. The UTILITIES menu is
highlighted for the ALLPANLS operator class. Double-click the UTILITIES Menu to
access our new menu item.

Figure 42.17

Entering the menu item properties

Licensed to James M White <jwhite@maine.edu>

ASSIGNING OPERATOR SECURITY 901

You can see our new menu item in figure 42.19. To assign security access to the
ALLPANLS class, simply click on the associated MY_RUN_AE items. These are the last
four items that appear. Once all four items are highlighted, click on the OK button.

Navigation: Go → PeopleTools → Security Administrator → File → Open → ALLPANLS →
Menu Items → UTILITIES

Figure 42.18 Assigning security to the ALLPANLS operator class

Figure 42.19

Our new menu item

(MY_RUN_AE) as it ap-

pears in the menu

Licensed to James M White <jwhite@maine.edu>

902 CHAPTER 42 USING RUN CONTROLS—PART A

Now, save the new operator class settings (File → Save).
Let’s sign off PeopleSoft and log back on so that our new security goes into effect.

42.7 TESTING THE NEW PANEL

Let’s test the modifications we’ve made. We haven’t actually created the Application
Engine program yet, but we can see if our Run Control panel is behaving correctly.

We can immediately tell that our operator security changes were successful: the
panel does appear in the menu. Using a test Run Control ID (MYTEST), we can suc-
cessfully select any process type and process name from the drop-down lists
(figure 42.20). An important test would be saving the Run Control record. In our
case, the record was saved without a problem. Part of the reason for our successful
result was due to the PeopleCode we put in place to populate the AE_PRODUCT and
AE_APPL_ID fields in the AE_REQUEST record. This alleviated the required field con-
straint found on the AE_REQUEST record.

We can verify that the rows in both tables are being saved correctly using the data-
base’s query tool. Figure 42.21 shows the results of queries made against both tables.

Navigation: Go → PeopleTools → Utilities → Process → Delete Process Definition →
Add → MYTEST

Figure 42.20 Our new menu item (MY_RUN_AE) as it appears in the menu

Licensed to James M White <jwhite@maine.edu>

CREATING OUR PROCESS DEFINITION 903

Notice the second query has the product and application ID populated correctly. This
was assigned by the PeopleCode we placed in the MY_RUN_CNTL_AE record. Every-
thing seems to be working as planned.

Our next step is to create a process definition for our application.

42.8 CREATING OUR PROCESS DEFINITION

We’ll now create the process definition for our application. The process type is Appli-
cation Engine. The name of our application is MYPRCSDL.

We’ve added the process type and process name (figure 42.22). Let’s enter the
process definition information into Process Scheduler.

Figure 42.21 Looking at the resulting rows using SQL*Talk

Navigation: Go → PeopleTools → Process Scheduler → Use → Process Definitions →
Process Definitions → Add

Figure 42.22

Adding our process

definition

Licensed to James M White <jwhite@maine.edu>

904 CHAPTER 42 USING RUN CONTROLS—PART A

Figure 42.23 shows the process definition information we need to add. We’ve
added our new MY_RUN_AE panel group to the definition screen along with addi-
tional items such as descriptive text and process security groups. The process class of
Application Engine programs is COBOL SQL.

Our process definition is complete.

42.8.1 Create a DUMMY process definition for testing

While we’re in Process Scheduler, let’s create a dummy process definition that we’ll
use to test our application. We don’t want to delete any existing process definitions.
Let’s add the dummy definition. We’ll load random information since it’s going to be
deleted by our process.

Figure 42.24 shows a sample definition of a DUMMY process. We added a ran-
dom panel group and process security groups. We’d like to see if our new application
will delete process definition entries from a variety of tables. This panel will now
contain DUMMY entries for the tables PRCSDEFN, PRCSDEFNPNL, and
PRCSDEFNGRP.

We’ve also added some random panel transfer information for our DUMMY pro-
cess definition. This will create a DUMMY entry in the table PRCSDEFNXFER.

Now, all that’s left to do is create the actual Application Engine program!

Figure 42.23 Adding process definition details

Licensed to James M White <jwhite@maine.edu>

CREATING OUR PROCESS DEFINITION 905

Figure 42.24 Adding a dummy process definition to test our application

Figure 42.25 Adding a DUMMY process definition (Transfers)

Licensed to James M White <jwhite@maine.edu>

906 CHAPTER 42 USING RUN CONTROLS—PART A

.

KEY POINTS

1 The development life cycle for Application Engine programs is identical to
that of SQR or COBOL development. The only difference is the Applica-
tion Engine program itself.

2 When creating a Run Control record for Application Engine programs, use
the AE_REQUEST record as a shell. Application Engine always uses the
AE_REQUEST record so it’s a good idea to integrate your new Run Control
record with it. Use RowInit PeopleCode to assign your program name to
the AE_PRODUCT and AE_APPL_ID fields in the AE_REQUEST record.

3 Also clone the AE_REQUEST panel when creating a new Run Control
panel. The AE_REQUEST record will be the parent to your new Run Con-
trol record.

4 When creating the new panel group, add the AE_MESSAGE_LOG panel
after your new Run Control panel This gives the user easy access to the
message log entries for the completed run. The search record for your new
panel group will be AE_REQUEST.

Licensed to James M White <jwhite@maine.edu>

907

C H A P T E R 4 3

Using Run Controls—
part B

43.1 Create the Application Engine program 908
43.2 Testing the completed application 933

The Run Control panel for our new utility program is complete. We can access the
new panel on the menu and even enter Run Control parameters. That’s as far as we
can go at the moment. If we click on the Traffic Light to initiate the process, an error
will occur. That’s because we haven’t created the Application Engine program yet.
This chapter will concentrate on the development of the Application Engine pro-
gram. Once created, we can initiate the process through the Run Control panel.
Some careful planning must be made to structure our program properly. Once com-
plete, we can begin using our new tool to delete obsolete process definitions.

Licensed to James M White <jwhite@maine.edu>

908 CHAPTER 43 USING RUN CONTROLS—PART B

43.1 CREATE THE APPLICATION ENGINE PROGRAM

We’re ready to begin developing our Application Engine program. It may be helpful
to give a brief overview of our program structure:

MAIN.STEP1 Obtain Run Control Parameters
MAIN.STEP2 Display Run Control Parms on Message Log
MAIN.STEP3 Fetch Table One by One (DO Select)

DYNSECTN.STEP1 Dynamically call PROCESS1 or PROCESS2

PROCESS1.STEP1 Determine Number of Rows
PROCESS1.STEP2 Process if exists (DO When > 0)

DELETE1.STEP1 Delete Process Definition from table
PROCESS1.STEP3 Call Message Routine

MESSAGE.STEP1 Display Message

PROCESS2.STEP1 Determine Number of Rows
PROCESS2.STEP2 Process if exists (DO When > 0)

DELETE2.STEP1 Delete Process Definition from table
PROCESS2.STEP3 Call Message Routine

MESSAGE.STEP1 Display Message

We need to make two key points. Consider the structure of our Application Engine
program. The first key point has to do with the MAIN.STEP3 line. This step will
select each of the six tables and process them one by one. Early in this chapter, we
pointed out that four of the process definition tables are prefixed with “PS_”, and
two are not. We’ll use two separate processes (PROCESS1 and PROCESS2) to handle
both types. They will be called dynamically based on the table being processed. The
step DYNSECTN.STEP1 will call either PROCESS1 or PROCESS2.

The second point has to do with the processing steps we have chosen. Some read-
ers may think we have taken the long way in performing our task. This may be true
depending on the database you are using. For instance, if you’re an Oracle user, you
certainly don’t need to determine if the row exists before deleting it. This is not true
for all databases though. In DB2, you may receive an error if you try to delete a row
that doesn’t exist. We would then need to add additional error-handling steps. We
could also use the DB platform field to code individual routines based on your par-
ticular database. This would hardly seem practical for the purposes of this book. Let’s
move on now.

We’ll begin developing our program from the minor routines on up. Since we’ve
established the program hierarchy, we can work backward and not worry about step
dependencies we would encounter by going forward.

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 909

43.1.1 Building the MESSAGE section

We’ll create the section MESSAGE first.

First tab over to the application definition (figure 43.2). Fill in the description,
cache record, version, and message set number. We’ll be using our updated cache
record (USER_AET) and message set from prior exercises. Also, set the trace parameter
to SQL. After we test our application, we’ll examine the trace file.

Navigation: Go → PeopleTools → Application Engine → Use → Application Engine →
Application → Add

Figure 43.1

Creating the

MESSAGE section

Figure 43.2 Defining our application MYPRCSDL

Licensed to James M White <jwhite@maine.edu>

910 CHAPTER 43 USING RUN CONTROLS—PART B

Fill in the description of the MESSAGE section (figure 43.3). This section simply
writes a message to the message log.

The only parameter you need to fill in for the first (and only) step of the MES-
SAGE section is the step name. We call it STEP1 (figure 43.4).

Figure 43.5 shows the message statement we use. This is similar to prior exercises.
We pass the record name (RECNAME) and number of rows (COUNTER) to the mes-
sage log.

We’re done with the MESSAGE section.

Figure 43.3 Defining the MESSAGE section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 911

Figure 43.4 Defining STEP1 of the MESSAGE section

Figure 43.5 Adding our message statement

Licensed to James M White <jwhite@maine.edu>

912 CHAPTER 43 USING RUN CONTROLS—PART B

43.1.2 Building the DELETE1 section

We now add the DELETE1 section (figure 43.6), which performs the Delete against
the process definition tables that have the standard ‘PS_’ prefix.

The only thing we need to add is the description. 'Delete Table with PS_'
is a fairly accurate description (figure 43.7).

We call this first (and only) step of the DELETE1 section STEP1 (figure 43.8).
We’ve added the SQL statement to Delete a row from the table specified by the

RECNAME cache field (figure 43.9). Notice the table name is in the same dynamic for-
mat used in prior exercises. The DELETE1 section will be part of the process that han-
dles records with the PS_ prefix.

Figure 43.6

Adding the DELETE1

section

Figure 43.7 Defining the DELETE1 section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 913

The DELETE1 section is complete.

Figure 43.8 Defining STEP1 of the DELETE1 section

Figure 43.9 Defining STEP1 of the DELETE1 section

Licensed to James M White <jwhite@maine.edu>

914 CHAPTER 43 USING RUN CONTROLS—PART B

43.1.3 Building the DELETE2 section

We add the DELETE2 section (figure 43.10). This section performs the Delete
against the process definition tables that DO NOT utilize the standard PS_ prefix.

Once again, the only thing we need to add is the description. 'Delete Table
without PS_' is perfect for our section (figure 43.11).

TIP Existing sections can be “cloned” using the Save As button on the Section
Definition panel. We can then modify the new section as needed. In the
case of the DELETE1 and DELETE2 sections, the modifications are mini-
mal. For purposes of these exercises, we’ll create each section manually.

Figure 43.10

Adding the DELETE2

section

Figure 43.11 Defining the DELETE2 section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 915

Let’s call this first (and only) step of the DELETE2 section STEP1 (figure 43.12).

The delete statement in figure 43.13 is almost identical to the one in the
DELETE1 section. The only difference is the absence of the PS_ prefix.

The DELETE2 section is complete.

Figure 43.12 Defining STEP1 of the DELETE2 section

Licensed to James M White <jwhite@maine.edu>

916 CHAPTER 43 USING RUN CONTROLS—PART B

43.1.4 Building the PROCESS1 section

Next, let’s develop the PROCESS1 section. This section will handle all process defini-
tion tables that require the PS_ prefixed to the RECNAME. Add the PROCESS1 sec-
tion now (figure 43.14).

Fill in the description for the PROCESS1 section. 'Process Table with
PS_' is the description we’ll use for our section (figure 43.15).

Our first step in this section determines the number of rows in the particular
process definition table, which is stored in the RECNAME cache field. The only
parameter we need to enter in the Step Definition panel is the name of our step. We’ll
call it STEP1 (figure 43.16).

Figure 43.13 The Delete statement for DELETE2.STEP1

Figure 43.14

Adding the PROCESS1

section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 917

Figure 43.15 Defining the PROCESS1 section

Figure 43.16 Adding STEP1 to the PROCESS1 section

Licensed to James M White <jwhite@maine.edu>

918 CHAPTER 43 USING RUN CONTROLS—PART B

We add a simple Select statement to retrieve the number of rows in the table
(specified in RECNAME) and populate the COUNTER cache field.

Let’s add another step to the PROCESS1 section. Click on the Steps Folder tab
to return to the Step Definition panel. Place the cursor in the Step field and press the
F7 key to insert a new row. Our next step will be named STEP2 (figure 43.18). Click
on the DO section radio button then click on the corresponding edit button. Add the
DELETE1 section when the DO section dialog box appears. You can see the DELETE1
section name next to the DO section edit button when you return. Our next step is
to populate the statement panel with a DO When statement. The DELETE1 section is
performed only if there are rows in the table containing the process definition from
the Run Control record. Let’s add the DO When statement now.

This is the same statement we’ve used in previous exercises. If the COUNTER
cache field contains a value greater than zero, a True condition is returned, and the
section DELETE1 is performed. If the COUNTER cache field contains a value of zero,
a False condition is returned, and the DELETE1 section is not performed.

Figure 43.17 Adding the Select statement to PROCESS1.STEP1

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 919

Figure 43.18 Adding STEP2 to the PROCESS1 section

Figure 43.19 Adding the DO When statement to PROCESS1.STEP2

Licensed to James M White <jwhite@maine.edu>

920 CHAPTER 43 USING RUN CONTROLS—PART B

Use the F7 key again to insert a new step in the PROCESS1 section. Let’s call it
STEP3 (figure 43.20). Its function is to call the MESSAGE section we’ve created. Use
the DO section radio button and edit box to set the section to MESSAGE. The
MESSAGE section simply writes a message log entry containing the record name and
number of rows processed.

The PROCESS1 section is complete.

43.1.5 Building the PROCESS2 section

Next, let’s develop the PROCESS2 section. This section handles all process definition tables
that do not require the PS_ prefix to the RECNAME. The PROCESS2 section is almost
identical to the PROCESS1 section. Add the PROCESS2 section now (figure 43.21).

Figure 43.20 Adding STEP3 to the PROCESS1 section

Figure 43.21

Adding the PROCESS2

section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 921

Fill in the description for the PROCESS2 section. 'Process Table without
PS_' is the description we’ll use for our section (figure 43.22).

TIP You can try cloning the PROCESS1 section to produce the new section
PROCESS2 using the ‘Save As’ button. Make the alterations to the state-
ments as you would if you had created the PROCESS2 section manually.

Our first step in this section determines the number of rows in the particular
process definition table stored in the RECNAME cache field. The only parameter we
need to enter in the Step Definition panel is the name of our step. We’ll call it STEP1
(figure 43.23).

Next, we add a simple Select statement to retrieve the number of rows in the
table (specified in RECNAME) and populate the COUNTER cache field. It is nearly
identical to the Select statement found in STEP1 of the PROCESS1 section, the dif-
ference being the absence of the PS_ prefix preceding the table name.

Figure 43.22 Defining the PROCESS2 Section

Licensed to James M White <jwhite@maine.edu>

922 CHAPTER 43 USING RUN CONTROLS—PART B

Figure 43.23 Adding STEP1 to the PROCESS2 section

Figure 43.24 Adding the Select statement to PROCESS2.STEP1

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 923

Let’s add another step to the PROCESS2 section. Click on the Step Folder tab to
return to the Step Definition panel. Place the cursor in the Step field and press the F7
key to insert a new row. Our next step is named STEP2 (figure 43.25). Click on the
DO section radio button, then on the corresponding edit button. Add the DELETE2
section when the DO section dialog box appears. You can see the DELETE2 section
name next to the DO section edit button when you return. Our next step is to pop-
ulate the statement panel with a DO When statement. The DELETE2 section is per-
formed only if there are rows in the table containing the process definition from the
Run Control record. Let’s add the DO When statement now.

Our DO When statement (figure 43.26) is the same as before. If the COUNTER
cache field contains a value greater than zero, a True condition is returned, and the
section DELETE1 is performed. IF the COUNTER cache field contains a value of zero,
a False condition is returned, and the DELETE2 section is not performed.

Figure 43.25 Adding STEP2 to the PROCESS2 section

Licensed to James M White <jwhite@maine.edu>

924 CHAPTER 43 USING RUN CONTROLS—PART B

Use the F7 key again to insert a new step in the PROCESS2 section. Let’s call it
STEP3 (figure 43.27). Its function is to call the MESSAGE section we’ve created. Use
the DO section radio button and edit box to set the section to MESSAGE. As stated
in the creation of STEP3 in the PROCESS1 section, the MESSAGE section simply
writes a message log entry containing the record name and number of rows processed.

The PROCESS2 section is complete.

Figure 43.26 Adding the DO When statement to PROCESS2.STEP2

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 925

43.1.6 Building the DYNSECTN section

Add a new section called DYNSECTN (figure 43.28). The purpose of this routine is
to dynamically call either PROCESS1 or PROCESS2.

First, add the description for the DYNSECTN section (figure 43.29).

Figure 43.27 Adding STEP3 to the PROCESS2 section

Figure 43.28

Adding the DYNSECTN

section

Licensed to James M White <jwhite@maine.edu>

926 CHAPTER 43 USING RUN CONTROLS—PART B

On the Step Definition panel fill in the step name with STEP1 (figure 43.30).

Figure 43.29 Defining the DYNSECTN section

Figure 43.30 Adding STEP1 to the DYNSECTN section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 927

 Next, click on the DO section radio button and press the corresponding edit but-
ton. When the DO section dialog box appears, click on “Dynamic Section.” Notice
the literal DYNAMIC (in brackets) next to the DO section edit button (discussed in
chapter 41). The symbolic parameter &SECTION is placed in the AE_DO_SECTION
column in the AE_STEP_TBL. This is the table that’s populated by your Step Defini-
tion panel entries. When the step is executed, the value of the AE_SECTION cache
field will be used in place of the &SECTION symbolic. Our next and final section,
MAIN, populates the AE_SECTION cache field with the value PROCESS1 or
PROCESS2. The DYNSECTN section then performs PROCESS1 or PROCESS2.

The DYNSECTN section is complete.

43.1.7 Building the MAIN section

As we’ve discussed, all Application Engine programs must begin with a section called
MAIN. Let’s add the MAIN section now (figure 43.31).

The Section Definition panel is displayed in figure 43.32. We added a simple
description of the MAIN section: Delete Process Definitions.

We’ll call the first step of the MAIN section STEP1 (figure 43.33). The purpose
of this step is to obtain the processing parameters from our Run Control record.

Figure 43.31

Adding the MAIN section

Licensed to James M White <jwhite@maine.edu>

928 CHAPTER 43 USING RUN CONTROLS—PART B

Figure 43.32 Defining the MAIN section

Figure 43.33 Adding STEP1 To the MAIN section

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 929

Figure 43.34 shows the Select statement for MAIN.STEP1. To retrieve our run
parameters, we need to join our Run Control record (MY_RUN_CNTL_AE) to the
Application Engine Run Control record called AE_RUN_CONTROL. The
AE_RUN_CONTROL record discussed earlier in the book is used by Application
Engine to hold run information such as PROCESS_INSTANCE, OPRID,
RUN_CNTL_ID, and REQUEST_NBR. It also stores information about each run such
as the last step committed, used when restarting an Application Engine program that
may have terminated due to errors.

The records MY_RUN_CNTL_AE and AE_RUN_CONTROL are joined by the
OPRID and RUN_CNTL_ID fields. The AE_RUN_CONTROL record is selected for
the appropriate PROCESS_INSTANCE assigned by the Process Scheduler. The
&SELECT statement stores the PRCSTYPE and PRCSNAME Run Control parameters
in our cache record. We now have access to the process parameters entered on the Run
Control panel. We’ll display them on the message log in our next step.

Return to the Step Definition panel by clicking the Steps Folder tab. Place the
cursor in the step field and press F7 to insert a new row. We’ll call the new step STEP2
(figure 43.35). Now, click on the Statements Folder tab.

We write a simple message to the message log displaying the process type
(PRCSTYPE) and process name (PRCSNAME) taken from the Run Control record. You

Figure 43.34 Select statement to retrieve our Run Control parameters

Licensed to James M White <jwhite@maine.edu>

930 CHAPTER 43 USING RUN CONTROLS—PART B

can see the &MSG syntax in figure 43.36. Remember, the &MSG function only works
with a statement Type of “U” (Update/Insert/Delete).

Figure 43.35 Adding STEP2 to the MAIN section

Figure 43.36 Run Control parameters are written to the message log

Licensed to James M White <jwhite@maine.edu>

CREATE THE APPLICATION ENGINE PROGRAM 931

On the Step Definition panel, press F7 to insert another step. We’ll call it STEP3
(figure 43.37). Click on the DO section radio button and the corresponding edit but-
ton. When the DO section dialog box appears, enter the section DYNSECTN. This is
the section that handles the dynamic call of either PROCESS1 or PROCESS2. Let’s code
the DO Select statement for STEP3 in our MAIN section.

Figure 43.38 shows the DO Select statement that controls the processing of the six Proc-
ess Definition tables. Let’s take a closer look at the statement and describe what’s happening:

&SELECT(AE_SECTION,RECNAME)
SELECT 'PROCESS1', RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PRCSDEFN'
 OR RECNAME = 'PRCSDEFNGRP'
 OR RECNAME = 'PRCSDEFNPNL'
 OR RECNAME = 'PRCSDEFNXFER'

UNION

SELECT 'PROCESS2', RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PSPRCSRQST'
 OR RECNAME = 'PSPNLFIELD'
 ORDER BY 1,2

Figure 43.37 Adding STEP3 to the MAIN section

Assign cache field values

Select process definition tables that require the
PS_ prefix. Each row selected returns two columns
– ‘PROCESS1’ and RECNAME. ‘PROCESS1’
populates the AE_SECTION cache field.

Using a UNION, select process definition
tables that do not use the PS_ prefix. The
rows returned will have the columns
‘PROCESS2’ and RECNAME. ‘PROCESS2’ will
be stored in the AE_SECTION cache field.

Licensed to James M White <jwhite@maine.edu>

932 CHAPTER 43 USING RUN CONTROLS—PART B

The SQL DO Select statement above may appear strange at first. Let’s talk about
what we’re trying to accomplish. Our goal is to delete any process definitions that
match the process type and process name entered on the Run Control panel. There
are six process definition tables that may contain the process definition entered. We’re
going to produce a result set that contains the record name (RECNAME) for each of
the six tables along with the name of the dynamic section to use. Each row returned
will then be processed by the appropriate section. PROCESS1 handles the tables with
the PS_ prefix, and PROCESS2 handles the tables without the PS_ prefix. Let’s test
our statement using a database tool outside of PeopleSoft, SQL*Talk in this example.

Figure 43.39 shows the Select statement results using SQL*Talk. The first four
tables use the PROCESS1 section while the last two tables use the PROCESS2 section.
For each of these rows, the cache fields AE_SECTION and RECNAME are updated.
The section DYNSECTN is performed for each row, which in turn calls either the
PROCESS1 or PROCESS2 sections dynamically, based on the contents of the
AE_SECTION cache field.

Our Application Engine program is finally complete! We can test our new utility
to delete obsolete process definitions. It’s perfectly normal to feel a bit nervous or
excited before testing your work. We’ve put considerable effort into this application,
and now we’ll see if it has paid off. Let’s begin our test.

Figure 43.38 The DO Select statement to process the six process definition tables

Licensed to James M White <jwhite@maine.edu>

TESTING THE COMPLETED APPLICATION 933

43.2 TESTING THE COMPLETED APPLICATION

Figure 43.40 shows the navigation to our new utility panel. Add a new Run Control
ID. I’m going to use a Run Control ID called “DUMMY” since we’re going to delete
the DUMMY process definition we created earlier in this chapter.

Figure 43.39 Testing our statement using SQL*Talk

Navigation: Go → PeopleTools → Utilities → Process → Delete Process Definition →
Delete PRCSDEFN → Add

Figure 43.40 Accessing the Delete Process Definition panel

Licensed to James M White <jwhite@maine.edu>

934 CHAPTER 43 USING RUN CONTROLS—PART B

We’ve entered the process type and process name used for our DUMMY defini-
tion (figure 43.41). Remember, we created a DUMMY definition to test our process.
We don’t want to delete a “real” process definition.

Save the record and click on the Traffic Light to initiate a Process Scheduler request.
Figure 43.42 shows the Process Request panel. Our Application Engine program

(MYPRCSDL) appears in the panel. Our process definition for MYPRCSDL appears to
be functioning correctly, so click OK to initiate the process within Process Scheduler.

This is a good sign! You may notice the MS-DOS box appears when running on
the client (figure 43.43). The lines displayed may move very quickly on the screen.
Figure 43.43 shows some of the lines displayed in the MS-DOS box. Near the top of
the screen, I can see our processing parameters in the Run Control record. Near the
bottom, we see the first record (PRCSDEFN) had one row with our DUMMY process
definition. Also notice the dynamic section PROCESS1 was performed as planned.

Figure 43.41 Assigning parameter values on the Run Control panel

Licensed to James M White <jwhite@maine.edu>

TESTING THE COMPLETED APPLICATION 935

We still need to verify that the process functioned correctly, especially when a
Delete statement is being executed. When the process has completed, we’ll click on
the A/E Message Log Folder tab to view the message log.

Figure 43.42 Submitting the Process Scheduler request

Figure 43.43 The MS-DOS box appears for our process

Licensed to James M White <jwhite@maine.edu>

936 CHAPTER 43 USING RUN CONTROLS—PART B

Figure 43.44 shows the Message Log panel. Click on the flashlight to view the
messages from the latest run. We see the Run Control parameters (Crw Online
DUMMY) and each table with the number of rows processed. Let’s use our database
query tool again to see if the rows have been deleted.

43.2.1 Verifying our results

We verified that the DUMMY process definition rows were removed from the process
definition tables using SQL*Talk (figure 43.45). Each Select returned zero rows.
We can also examine the trace file for a more detailed look at the results.

You’ll find the trace file in the %TEMP%/ps/<databasename> directory. The
filename <process_instance>.aet will be used. In our particular case that translates to

C:\windows\temp\ps\hrdmo\68.aet

Figure 43.44 Reviewing the message log

Licensed to James M White <jwhite@maine.edu>

TESTING THE COMPLETED APPLICATION 937

43.2.2 Examining the trace file

Let’s take a look at the trace file contents:

The trace file

17.52.56 1999-09-04 PeopleTools 7.5 Application Engine
17.52.56 Tracing request PS.DUMMY
17.52.56 Starting application AE.MYPRCSDL Delete Process Definitions
/
INSERT INTO PS_USER_AET (PROCESS_INSTANCE,COUNTER,RECNAME,FIELDNAME,
AE_DECIDE,PRCSTYPE,PRCSNAME,AE_SECTION)
 VALUES (68,0,' ',' ',' ',' ',' ',' ')
/
COMMIT
/
17.52.56 .(AE.MYPRCSDL.MAIN.STEP1) (SELECT)
/
SELECT B.PRCSTYPE,B.PRCSNAME
 FROM PS_AE_RUN_CONTROL A, PS_MY_RUN_CNTL_AE B
 WHERE A.OPRID = B.OPRID
 AND A.RUN_CNTL_ID = B.RUN_CNTL_ID
 AND A.PROCESS_INSTANCE = 68

Figure 43.45 Verifying our test results using SQL*Talk

Listing 43.1

Licensed to James M White <jwhite@maine.edu>

938 CHAPTER 43 USING RUN CONTROLS—PART B

/
17.52.57 .(AE.MYPRCSDL.MAIN.STEP2) (UPDATE)
17.53.01 .(AE.MYPRCSDL.MAIN.STEP3) (DO AE.MYPRCSDL.DYNSECTN)
/
SELECT 'PROCESS1', RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PRCSDEFN'
 OR RECNAME = 'PRCSDEFNGRP'
 OR RECNAME = 'PRCSDEFNPNL'
 OR RECNAME = 'PRCSDEFNXFER'
 UNION
 SELECT 'PROCESS2', RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PSPRCSRQST'
 OR RECNAME = 'PSPNLFIELD'
 ORDER BY 1, 2
/
17.53.03 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.03 ...(AE.MYPRCSDL.PROCESS1.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_PRCSDEFN
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.04 ...(AE.MYPRCSDL.PROCESS1.STEP2) (DO AE.MYPRCSDL.DELETE1)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 1 > 0
/
17.53.07(AE.MYPRCSDL.DELETE1.STEP1) (UPDATE)
/
DELETE
 FROM PS_PRCSDEFN
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.08 ...(AE.MYPRCSDL.PROCESS1.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.09(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.11 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
17.53.11 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.12 ...(AE.MYPRCSDL.PROCESS1.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_PRCSDEFNGRP

 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.14 ...(AE.MYPRCSDL.PROCESS1.STEP2) (DO AE.MYPRCSDL.DELETE1)
/
SELECT 'X'
 FROM PSLOCK

Licensed to James M White <jwhite@maine.edu>

TESTING THE COMPLETED APPLICATION 939

 WHERE 2 > 0
/
17.53.15(AE.MYPRCSDL.DELETE1.STEP1) (UPDATE)
/
DELETE
 FROM PS_PRCSDEFNGRP
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.17 ...(AE.MYPRCSDL.PROCESS1.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.17(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.19 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
17.53.19 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.19 ...(AE.MYPRCSDL.PROCESS1.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_PRCSDEFNPNL
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.21 ...(AE.MYPRCSDL.PROCESS1.STEP2) (DO AE.MYPRCSDL.DELETE1)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 1 > 0
/
17.53.22(AE.MYPRCSDL.DELETE1.STEP1) (UPDATE)
/
DELETE
 FROM PS_PRCSDEFNPNL
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.23 ...(AE.MYPRCSDL.PROCESS1.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.23(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.25 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
17.53.25 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.26 ...(AE.MYPRCSDL.PROCESS1.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_PRCSDEFNXFER
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.27 ...(AE.MYPRCSDL.PROCESS1.STEP2) (DO AE.MYPRCSDL.DELETE1)
/

SELECT 'X'
 FROM PSLOCK
 WHERE 1 > 0
/
17.53.28(AE.MYPRCSDL.DELETE1.STEP1) (UPDATE)
/

Licensed to James M White <jwhite@maine.edu>

940 CHAPTER 43 USING RUN CONTROLS—PART B

DELETE
 FROM PS_PRCSDEFNXFER
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.29 ...(AE.MYPRCSDL.PROCESS1.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.30(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.31 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
17.53.31 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.32 ...(AE.MYPRCSDL.PROCESS2.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PSPNLFIELD
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.42 ...(AE.MYPRCSDL.PROCESS2.STEP2) (DO AE.MYPRCSDL.DELETE2)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 0 > 0
/
17.53.43 ...(AE.MYPRCSDL.PROCESS2.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.44(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.45 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
17.53.45 ..(AE.MYPRCSDL.DYNSECTN.STEP1) (DO AE.MYPRCSDL.&SECTION)
17.53.46 ...(AE.MYPRCSDL.PROCESS2.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PSPRCSRQST
 WHERE PRCSTYPE = 'Crw Online'
 AND PRCSNAME = 'DUMMY'
/
17.53.47 ...(AE.MYPRCSDL.PROCESS2.STEP2) (DO AE.MYPRCSDL.DELETE2)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 0 > 0
/
17.53.48 ...(AE.MYPRCSDL.PROCESS2.STEP3) (DO AE.MYPRCSDL.MESSAGE)
17.53.48(AE.MYPRCSDL.MESSAGE.STEP1) (UPDATE)
17.53.49 .(AE.MYPRCSDL.MAIN.STEP3) (DO FETCH)
/
DELETE
 FROM PS_USER_AET
 WHERE PROCESS_INSTANCE = 0000000068
/
17.53.50 Application AE.MYPRCSDL ended normally
/
COMMIT
/
17.53.50 Application Engine ended normally

Licensed to James M White <jwhite@maine.edu>

TESTING THE COMPLETED APPLICATION 941

In this entire trace file for the run, you can see each section and step as it was executed
as well as the compiled SQL statements. Take special note of the dynamic sections
PROCESS1 and PROCESS2. Also, notice the resolved bind variables used in the run.

Our Application Engine development is complete. There is always a great feeling
of accomplishment that accompanies the successful completion of an application. I
would suggest taking a nice long break before moving on to chapter 44 (Additional
topics). You deserve some relaxation after a job well done!

KEY POINTS

1 You should always determine the program structure before creating your
program. Building the lower (subordinate) sections first and working back-
ward will alleviate any step dependencies you may encounter.

2 Validate your program results thoroughly using your database query tool
and the trace file output. Pay close attention to the resolved bind variables.

3 You may not have realized it, but you’ve taken some huge strides in learning
one of PeopleSofts’ up-and-coming tools, Expand your knowledge and
experience by creating custom Application Engine programs to perform a
variety of different tasks.

Licensed to James M White <jwhite@maine.edu>

942

C H A P T E R 4 4

Additional topics

44.1 Using trace files 943
44.2 Restarting an A/E process 946
44.3 Analyzing A/E programs 947
44.4 Application Engine analyzer 948

So far, we’ve covered the basics of Application Engine, and we can surely begin devel-
oping batch processes. But what if your program does not yield the desired results?
Or, worse yet, what if the process aborts unexpectedly. In this chapter, we’ll discuss
the use of trace files and learn how to restart an aborted process. In addition, we’ll
provide tips on tackling large, often cumbersome Application Engine programs. An
SQR utility to help analyze A/E programs will be covered as well.

Licensed to James M White <jwhite@maine.edu>

USING TRACE FILES 943

44.1 USING TRACE FILES

In chapter 35, we discussed the options available on the Application Definition
panel. One of the options controls the creation of a trace file. The option indicates
levels of detail to be included in the trace file. NO trace file is generated when the
Trace option is set to Off. The trace filename is set to <process_instance>.AET and is
placed in the current working directory. The trace file is simply an ASCII text file that
displays each step as it is executed. Generated SQL may be written to the trace file.

Figure 44.1 shows the Application Definition panel. The Trace file option is turned
OFF. The other trace options available are SQL and Steps Only. SQL displays all the
steps executed along with the associated SQL statements. The Steps Only option only
displays the steps executed. (No SQL statements are written to the trace file.)

44.1.1 Sample trace file

This sample trace file was generated during an execution of our exercise 5 application
(called AE.USER005). The trace option was set to SQL, which displays all the steps
and SQL statements processed. You can see some of the SQL statements are con-
trolled by the PTPEMAIN process:

08.28.54 1999-01-13 PeopleTools 7.5 Application Engine
08.28.54 Tracing request PS.#USER005
08.28.54 Starting application AE.USER005 User Application 005

Figure 44.1 Trace options on Application Definition panel

Licensed to James M White <jwhite@maine.edu>

944 CHAPTER 44 ADDITIONAL TOPICS

/
INSERT INTO PS_USER_AET (PROCESS_INSTANCE,COUNTER,RECNAME,FIELDNAME,
AE_DECIDE)
 VALUES (10,0,' ',' ',' ')
/

The Insert statement immediately preceding is an example of a PTPEMAIN-
controlled statement. It initializes the cache record we specified on the Application
Definition panel. Fields are initialized depending on their datatype.
PROCESS_INSTANCE is always set to the process instance of our program. The field,
COUNTER, is initialized to zero since it is numeric. The remaining fields in the cache
record are initialized to blank since they are character datatypes.

UPDATE PS_USER_AET
 SET FIELDNAME = 'PAY_END_DT'
 WHERE PROCESS_INSTANCE = 0000000010
/
COMMIT
/

The statement above is also generated by PTPEMAIN. Remember, we initialized the
cache field FIELDNAME to a value of 'PAY_END_DT' on the Process Request panel.
The value is then loaded into our cache record. This is how process request parame-
ters are passed to the program.

The step in the code below selects RECNAME values and for each row returned (or
fetched) executes a section called COUNT. The resolved bind variable for FIELD-
NAME is displayed in the trace file, and the value is set to 'PAY_END_DT'.

08.28.55 .(AE.USER005.MAIN.STEP1) (DO AE.USER005.COUNT)
/
SELECT A.RECNAME
 FROM PSRECFIELD A,
 PSRECDEFN B
 WHERE A.RECNAME = B.RECNAME
 AND A.FIELDNAME = 'PAY_END_DT'
 AND B.RECTYPE = 0
 ORDER BY A.RECNAME
/

The RECNAME passed to COUNT.STEP1 (in this instance) is BEN_PLAN_DATA:

08.28.58 ..(AE.USER005.COUNT.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_BEN_PLAN_DATA
/
08.29.00 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
/
SELECT 'X'

Licensed to James M White <jwhite@maine.edu>

USING TRACE FILES 945

 FROM PSLOCK
 WHERE 0 > 0
/

Notice all &BIND() variables have been resolved in the SQL. STEP1 selects the row
count for the BEN_PLAN_DATA table. COUNT.STEP2, as you may recall, performs
a DO When statement. If the number of rows is greater than zero, the section MSG is
performed. The WHERE clause against the PSLOCK table may look odd at first. In our
statement definition, the WHERE clause was defined as WHERE &BIND(COUNTER) >
0. Since the cache field COUNTER contains a value of zero, the statement was com-
piled as WHERE 0 > 0. This returns NO rows, and the MSG section is not executed.
Control once again is passed to MAIN.STEP1, and another row is fetched:

08.29.02 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.29.03 ..(AE.USER005.COUNT.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_BOND_LOG
/
08.29.05 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 471 > 0
/
08.29.07 ...(AE.USER005.MSG.STEP1) (UPDATE)

This time a RECNAME value of BOND_LOG is passed to the COUNT section. There
were 471 rows in the table. The DO When criteria once resolved reads as WHERE 471
> 0. This returns a row from PSLOCK, which designates a TRUE condition. The sec-
tion MSG is then executed:

08.29.09 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.29.10 ..(AE.USER005.COUNT.STEP1) (SELECT)
/
SELECT COUNT(*)
 FROM PS_DED_CALC
/
08.29.13 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
/
SELECT 'X'
 FROM PSLOCK
 WHERE 90 > 0
/
08.29.15 ...(AE.USER005.MSG.STEP1) (UPDATE)
/

This process continues until no rows remain. We’ll skip the rest and proceed to the
end of the trace file:

Licensed to James M White <jwhite@maine.edu>

946 CHAPTER 44 ADDITIONAL TOPICS

/
08.38.24 .(AE.USER005.MAIN.STEP1) (DO FETCH)
/
DELETE
 FROM PS_USER_AET
 WHERE PROCESS_INSTANCE = 0000000010
/
08.38.24 Application AE.USER005 ended normally
/
COMMIT
/
08.38.25 Application Engine ended normally

The last DO FETCH returned no rows, so the COUNT section was no longer executed.
Our defined program has completed, and PTPEMAIN does some final cleanup by
deleting the cache record row we’ve been using.

44.2 RESTARTING AN A/E PROCESS

During the execution of your A/E program, an unexpected error may cause it to abort.
There are numerous reasons why this may occur: for example, an SQL error, system
resource problem, or syntax errors in your A/E statement. A critical process could be
near completion when the error occurs, and starting the process over from the begin-
ning may not be a feasible solution. Application Engine maintains an entry in the
AE_RUN_CONTROL table, which holds restart information in the event of an abend.
This restart information is refreshed at every commit point. When restarting, the proc-
ess takes over from the last commit point and continues. You cannot submit an
aborted process from the beginning using the same OPRID and RUN_CNTL_ID. The
AE_RUN_CONTROL holds it in a suspended status so it may be restarted properly.

Only applications run on the server through Process Scheduler can be restarted
using Process Monitor by highlighting the failed process and clicking on Action →
Restart. All other applications must execute PTPEMAIN.exe manually on the client
or server when restarting. PTPEMAIN.exe should reside in the CBLBIN subdirectory
attached to the PSVER directory (PSVER standing for the PeopleSoft version assigned
as the high-level directory name). Simply type PTPEMAIN on the command line. You
will then be prompted for the database type, database name, username (OPRID),
password, Run Control ID, and process instance. The process will then resume where
it left off.

There are times when you may wish to start the process from the beginning. If
so, you’ll have to delete the AE_RUN_CONTROL row for the OPRID and
RUN_CNTL_ID you’re using. You may also have to delete the cache record for the
process instance. Only then can you restart the process from the beginning. You may
also disable the restart capability on the Application Definition panel. Please make cer-
tain that no data corruption can occur as a result of not restarting properly.

Licensed to James M White <jwhite@maine.edu>

ANALYZING A/E PROGRAMS 947

44.3 ANALYZING A/E PROGRAMS

Analyzing large Application Engine programs can be tedious. One section can call a
multitude of other sections. Since all components are stored within the database,
you’ll have to toggle back and forth between sections using the online panels. You
can, however, take several steps that will make your analysis a little easier:

• Read any documentation on the process beforehand.
• Print a listing of the cache record used by the A/E program. This identifies all

fields used to pass values from one step to another.
• Start with the section MAIN. Identify all steps within the MAIN section and treat

each step as a separate process. Breaking the process down into smaller logical
sections will help put things in perspective.

• Keep track of everything that’s happening, not just the relationship between sec-
tions but also the tables being affected. Make a list of permanent tables and tem-
porary tables. The temp tables can pass large amounts of data to subsequent
sections or steps.

• After running the process, look at the trace file produced. One method of trace
execution I’ve seen used allows you to sort the lines in the trace file using an
ASCII editor (or import the lines into Excel or Access and then sort them). To do
so, you remove any lines that don’t have the time-stamp on it. You are then left
with the time and name of all the steps performed in execution order. Be wary of
processes that run beyond midnight. You’ll have to manipulate the file in your
editor to correct the sequencing. The resulting data will look like this:

08.28.54 1999-01-13 PeopleTools 7.5 Application Engine
08.28.54 Starting application AE.USER005 User Application 005
08.28.54 Tracing request PS.#USER005
08.28.55 .(AE.USER005.MAIN.STEP1) (DO AE.USER005.COUNT)
08.28.58 ..(AE.USER005.COUNT.STEP1) (SELECT)
08.29.00 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
08.29.02 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.29.03 ..(AE.USER005.COUNT.STEP1) (SELECT)
08.29.05 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
08.29.07 ...(AE.USER005.MSG.STEP1) (UPDATE)
08.29.09 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.29.10 ..(AE.USER005.COUNT.STEP1) (SELECT)
08.29.13 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
08.29.15 ...(AE.USER005.MSG.STEP1) (UPDATE)

We’ll skip the middle part of the trace and go to the end.

08.38.19 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.38.20 ..(AE.USER005.COUNT.STEP1) (SELECT)
08.38.22 ..(AE.USER005.COUNT.STEP2) (DO AE.USER005.MSG)
08.38.24 .(AE.USER005.MAIN.STEP1) (DO FETCH)
08.38.24 Application AE.USER005 ended normally
08.38.25 Application Engine ended normally

Licensed to James M White <jwhite@maine.edu>

948 CHAPTER 44 ADDITIONAL TOPICS

This method gives you a good idea of the execution flow of the program but it’s
not one hundred percent accurate. The first three lines were all processed at
08.28.54, but they are not in execution order. The third line, “Tracing request
PS.#USER005,” should come before the “Starting application….” line. Any
lines with the same time-stamp will then sort alphabetically. When analyzing a
specific portion of the program, this may not be a factor.

• A simple SQR program can be written to extract the time-stamped lines from the
trace file. This would be more effective than manipulating the file in Excel or
Access. Basic SQR skills would be required.

• When using a trace file, remember a trace file only displays the steps based on
certain conditions met at the time. Running the process two different times
could follow two different execution paths. The trace files are simply “after the
fact.” PeopleSoft does not provide a mechanism to produce an indented “tree-
formatted” flowchart of an entire A/E process. The next portion of this chapter
deals with a custom SQR utility I developed to analyze an Application Engine
program. The cache record is listed; each step is listed with all of its defined
attributes; and, finally, an indented process flowchart is produced which illus-
trates the full execution flow of the process. I have named this utility (appropri-
ately) “Application Engine Analyzer.”

44.4 APPLICATION ENGINE ANALYZER

I developed this SQR utility to extract all the required information to analyze an A/E
program. Once the program is identified through user-entered prompts, several func-
tions are performed. The cache record is listed; the steps are printed with their
attributes; and an indented process flowchart is produced.

When running the SQR utility, make sure the communication box is visible by
using the –CB option (figure 44.2). This displays additional information before
each prompt.

Figure 44.2

Running the SQR utility

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE ANALYZER 949

The basic prompts are product, application ID and database platform.
Figure 44.3 shows an example of the prompts issued when running the Application
Analyzer utility. The product entered is AR, which is the product ID for Accounts
Receivable. The application ID is PREDICT, the Payment Predictor process found in
Accounts Receivable. This example was run under SQLBASE, so I entered the SQL-
BASE code of “1” for the database platform prompt. When a step has a SQLBASE-spe-
cific version, the utility substitutes that in place of the generic one. This is how
Application Engine processes steps as well. An additional prompt creates an A/E state-
ment file, which produces a temporary file that can be imported into Word, format-
ted, and printed. It includes extracted A/E statements also in execution order. This is
extremely valuable information put in an organized fashion. Only use this feature
when absolutely necessary—the output can be very large, slowing the process down.

The user is also prompted when a dynamic DO section (&SECTION) is encoun-
tered. By entering the section #DETAIL, the dynamic DO is resolved and included in
the process. #DETAIL is a payment predictor matching algorithm that may be called
dynamically when running the payment predictor process. You may substitute any
valid algorithm for the &SECTION substitution variable.

Let’s now examine some sample output which has been condensed for the book:

Figure 44.3 SQR utility prompts for user information

Licensed to James M White <jwhite@maine.edu>

950 CHAPTER 44 ADDITIONAL TOPICS

The AR.PREDICT Application Engine program (known as Payment Predictor)
uses a cache record called PP_AET. The first portion of the utility prints each field in
PP_AET along with the field attributes.

The second portion lists each step in the A/E program with the MAIN section
listed first. Additional attributes, such as DO section, Step Information, DO types, DB
Platform, and so forth, are listed:

Let’s look at steps that execute a COBOL process and a dynamic DO section.
Notice the &SECTION has been resolved with the user-entered section #DETAIL.

Report ID: TD_AE75 APPLICATION ENGINE ANALYZER
 Phase: 1
 Program: AR/PREDICT Cache Record: PP_AET
==
Fieldname Key Type Len Dec LongName
==

PROCESS_INSTANCE Y Nbr 10 Process Instance
OPRID N Char 8 Operator Id
RUN_CNTL_ID N Char 30 Run Control ID
SETID N Char 5 SetID
PP_METHOD N Char 15 Payment Predictor Method
EFFDT N Date 10 Effective Date
PP_SEQ_NUM N Nbr 3 Sequence
PP_USAGE N Char 1 Usage
PP_SORT_SEQ_NUM N Nbr 3 Sorting Sequence number

Report ID: TD_AE75 APPLICATION ENGINE ANALYZER
 Phase: 2
 Program: AR/PREDICT
==
Section Step Do Activity Type Update Select DO_When
==

MAIN INIT INIT (DO INIT) D N N N
MAIN PREP PREP (DO PREP) D N N Y
MAIN SBLD SBLD (DO SBLD) D N N Y
MAIN UPDM UPDM (DO UPDM) D N N Y
MAIN DOC_SEQ DOCSEQ (DO DOCSEQ) D N N N
MAIN REALGAIN REALGAIN (DO REALGAIN) D N N N
MAIN PGEN PGEN (DO PGEN) D N N Y
MAIN PUPD PUPD (DO PUPD) D N N Y
MAIN TERMINAT TERMINAT (DO TERMINAT) D N N N

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE ANALYZER 951

DOC-CBL FTPDOCAE (COBOL: FTPDOCAE) C N N N

STEP ALGR #DETAIL (DO &SECTION:#DETAIL) D N N Y

The process flow portion of the SQR utility begins with the section MAIN and flow-
charts all steps in execution order. If a section has already been analyzed, the literal
<Repeated Section> appears after it. There is no need to drill-down a second time:

Report ID: TD_AE75 APPLICATION ENGINE ANALYZER
 Phase: 3
 Program: AR/PREDICT
==
Process Flowchart
==

(MAIN.INIT) (DO INIT)
(INIT.STARTMSG) (UPDATE)
(INIT.ROUNDSET) (SELECT)
(INIT.ROUNDIN3) (DO ROUNDIN3)
(ROUNDIN3.DECIMAL3) (SELECT)
(INIT.REQUESTS) (UPDATE)
(INIT.CNT) (SELECT)
(INIT.MSG) (UPDATE)
(INIT.NONE) (DO MSG_NONE)
(MSG_NONE.MESSAGE) (UPDATE)
(MAIN.PREP) (DO PREP)
(PREP.CLEARTMP) (DO CLEARTMP)
(CLEARTMP.PAYMENT) (UPDATE)
(CLEARTMP.CUST) (UPDATE)
(CLEARTMP.ITEM) (UPDATE)
(CLEARTMP.ITEM2) (UPDATE)
(CLEARTMP.MATCH) (UPDATE)
(PREP.MESSAGE) (UPDATE)
(PREP.PAYMENTS) (UPDATE)
(PREP.DOC_SEQ) (UPDATE)
(PREP.SET_REF) (UPDATE)
(PREP.ID_ITEM) (DO ID_ITEM)
(ID_ITEM.CUSTMP1) (UPDATE)
(ID_ITEM.DUPE1) (DO DUPECUST)
(DUPECUST.DEL_DUPE) (UPDATE)
(DUPECUST.COPYTMP2) (UPDATE)
(DUPECUST.CLEANUP) (UPDATE)
(ID_ITEM.CUSTMP2) (UPDATE)
(ID_ITEM.DUPE2) (DO DUPECUST) <Repeated Section>

Licensed to James M White <jwhite@maine.edu>

952 CHAPTER 44 ADDITIONAL TOPICS

Here is the portion of the process flowchart where the dynamic DO is encoun-
tered. The #DETAIL section entered by the user has been substituted and included in
the listing:

(STEP.ALGR) (DO &SECTION:#DETAIL)
(#DETAIL.ALGO_1) (SELECT)
(#DETAIL.ADJUST) (DO ADJUST)
(ADJUST.INIT) (UPDATE)
(ADJUST.ADJ_OVER) (UPDATE)
(ADJUST.ADJ_UNDR) (UPDATE)
(ADJUST.NAMEOVER) (DO AUTO_ADJ) <Repeated Section>
(ADJUST.NAMEUNDR) (DO AUTO_ADJ) <Repeated Section>
(ADJUST.COPYTMP2) (DO COPYTMP2) <Repeated Section>
(#DETAIL.MATCHTMP) (UPDATE)
(#DETAIL.ALGR_B1) (DO DUPES)
(DUPES.DUPES) (DO ALGR_DUP)
(ALGR_DUP.GET_ONE) (SELECT)
(ALGR_DUP.DEL_REST) (UPDATE)
(#DETAIL.ALGR_C1) (DO PYSTATUS)

Let’s look at how the COBOL section appears in the process flowchart. The developer
can easily identify any COBOL or Mass Change sections:

(MAIN.DOC_SEQ) (DO DOCSEQ)
(DOCSEQ.DOC_SEQ) (DO DOC_SEQ)
(DOC_SEQ.CHK_SEQ) (DO DOC-CBL)
(DOC-CBL.FTPDOCAE) (COBOL: FTPDOCAE)
(DOC_SEQ.SETID) (SELECT)
(DOC_SEQ.GET_TYPE) (SELECT)
(DOC_SEQ.UPD_BU) (UPDATE)
(DOC_SEQ.GET_SEQ) (DO DOC-CBL) <Repeated Section>
(MAIN.REALGAIN) (DO REALGAIN)

44.4.1 Application Engine Analyzer source code—TD_AE75.SQR

The Application Engine Analyzer program processes sections and steps in the same
manner as the PTPEMAIN process. The complete source code may be downloaded
from the website http://www.sqrtools.com (under Utilities).

This process has been tested under Oracle, SQLBase, and DB2, but it may work
with other databases as well. Additional updates may be posted to SQRTOOLS.COM,
which may include compatibility with non-compliant databases.

Versions prior to Application Engine 7.5 are supported as well. Simply de-
activate the substitution variable AE_75. This will bypass all references to the columns
AE_DO_PRODUCT and AE_DO_APPLID. A major (and quite useful) enhancement
in version 7.5 was the ability to call sections outside of the current application. The
two aforementioned columns allow a called section to be qualified with the product
and application ID, if necessary.

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE ANALYZER 953

KEY POINTS

1 Use the Trace option to generate trace files for the Application Engine pro-
gram. The trace file will show you the steps performed along with the SQL

statements and resolved bind variables.

2 You can restart an Application Engine program so it picks up at the last
commit point before it failed. This helps maintain system integrity when a
process aborts.

Licensed to James M White <jwhite@maine.edu>

954

C H A P T E R 4 5

Application Engine—
PeopleSoft 8

45.1 Application Engine “wish list” 955
45.2 PeopleSoft release 8 955

As we have proceeded through each Application Engine chapter, we’ve covered more
concepts of Application Engine development. As an SQL processing tool, A/E can be
used to create efficient batch processes. A/E’s many useful features include decision
capability and loop control, dynamic section calling, and messaging functionality.
Other nice features in the current release are the trace file generation and the Com-
mit/Restart logic (when a process terminates abnormally). All said, A/E is an
extremely useful and well-conceived tool.

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 955

45.1 APPLICATION ENGINE “WISH LIST”

Although Application Engine is undeniably a tribute to creativity and resourceful-
ness, one can’t help but think of enhancements that might still be made to the exist-
ing product. For instance, Application Engine exclusively acts on data that resides in
the database itself. Imagine if Application Engine had the capability to read or write
external files. This would make Application Engine an ideal choice for interface and
conversion applications.

The Application Engine Definition panels are adequate for developing your pro-
grams, but a more intuitive graphical interface would be more suitable. The ability to
view your program as a tree structure with each section and step in execution order
would be a tremendous help.

There are times when updating a simple cache field value may seem cumbersome.
Using the &SELECT function against the PSLOCK table (or any other single row table)
is an ingenious solution, but is a bit convoluted. It also requires an additional call to
the database where an alternative method may not need to do so. Application Engine
could also use a mechanism to handle complex IF-THEN-ELSE expressions.

The ability to add Application Engine components to a project would be a wel-
come enhancement. Customizations could then be managed the same as other
PeopleTool objects. Also, having Change Control in effect to lock your Application
Engine programs would prevent other users from concurrently updating your program.

The types of enhancements I’ve mentioned here would elevate Application
Engine to a much higher level, making it difficult to ignore the batch-processing capa-
bility that Application Engine provides. Let’s now take a look at some of the great fea-
tures implemented in release 8, some of which are nothing short of spectacular.

45.2 PEOPLESOFT RELEASE 8

Release 8 of PeopleSoft contains all of our “wish list” enhancements plus many addi-
tional features that can make Application Engine the tool of choice for many business
processes. The single most important feature is Application Engines’ complete inte-
gration with Application Designer. All Application Engine components are now
objects. This means they can be placed into projects just as a record or panel defini-
tion would. You can also utilize the Change Control functionality to lock and unlock
the Application Engine objects you’re working on. Application Engine is now written
entirely in C++. COBOL is no longer used to execute A/E programs.

When creating or modifying Application Engine objects, you will encounter a
new graphical interface. It is much more intuitive than prior versions and behaves in
a fashion similar to PeopleTool object interfaces. The Application Engine program is
displayed in Definition or Program Flow view. The Program Flow view allows you to
view your Application Engine program as a tree structure with each section and step
displayed as a tree node. You can click on the “+” or “-” to expand or collapse a node.
Any object type actions within a step are also displayed. Object types include SQL

Licensed to James M White <jwhite@maine.edu>

956 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

Selects (DO types), SQL objects, other A/E sections, Message Log, and PeopleCode
objects. Yes, that’s correct—PeopleCode! Application Engine can now invoke People-
Code and share many common business functions with online PeopleCode. A/E can
be used to update fields in a state record (formerly referred to as a cache record). Any
complex IF-THEN-ELSE expressions can be written in PeopleCode as well.

A new set of PeopleCode functions and classes have been added to support
Application Engine. Some allow the reading and writing of external files. A new
PeopleCode File class has been created that allows a variety of file handling operations
to take place. You can even define a file layout with the new file layout definition in
Application Designer and utilize it in your program.

Application Engine functions and macros have been replaced with Meta-SQL and
a new set of macros. The Meta-SQL set has been expanded for greater functionality. For
example, system (Meta) variables, which serve as text substitution variables, have been
introduced. An example of a Meta-Variable would be %ProcessInstance, which
contains the process instance of the run. %RunControl contains the Run Control ID
used for the run. Prior versions of Application Engine required a database call against
the A/E Run Control table to retrieve these values.

Temporary tables used in Application Engine programs have also increased func-
tionality. Application Designer allows you to specify if a table is temporary. If so, you
may designate the number of temporary table instances. For example, if you have a
record called MY_TEMP, defined as a temporary table with three instances, the fol-
lowing physical SQL tables are created: PS_MY_TEMP, PS_MY_TEMP01,
PS_MY_TEMP02, and PS_MY_TEMP03. During the execution of the Application
Engine program, a specific instance of the temporary table can be utilized. This can
greatly improve efficiency when running parallel processes.

Another interesting feature added is the Access checkbox on the section proper-
ties. If the section is designated as Public, all external Application Engine programs
may call the section. If it is not Public, then the section is not available to any other
programs. This is an excellent security measure that will prevent sensitive and poten-
tially destructive SQL statements from being executed inadvertently.

The Application Engine debugger is also introduced in PeopleSoft release 8.
While using the debugger, you can set break points, step through the code, view and
edit state record fields, and even switch to the PeopleCode debugger when executing
PeopleCode actions. This is a great feature that will make testing and debugging your
Application Engine programs much easier than in the past.

Let’s take a quick tour of some of the Application Engine features in PeopleSoft
release 8.

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 957

45.2.1 Application Designer—Creating

As mentioned previously, the Application
Engine Designer Interface is accessed through
Application Designer. You can create an Appli-
cation Engine program by selecting File →
New… and then selecting the Application
Engine Program object in the drop down list
(figure 45.1).

Once you select the new or existing Appli-
cation Engine program, you can view or modify

the program properties. Figure 45.2 shows the Program Properties panel. You can add
a description and comments on the General folder tab.

The State Record folder tab allows you to enter the State record(s) used by your
Application Engine program. Multiple state records may be utilized by the program.
You set the default state record by clicking on the Default State Record checkbox (fig-
ure 45.3). Note that the state record was formerly known as a cache record. The state
record must still end with the suffix _AET as in prior versions.

Figure 45.1 Creating a new Applica-

tion Engine program

Figure 45.2

Program Properties—General

Licensed to James M White <jwhite@maine.edu>

958 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

State records have much more functionality in release 8. They can now be used
globally. The same state record can be used by both the calling and called program.
Parameters can easily be passed from one program to another when sharing the same
state record.

The Advanced folder tab (figure 45.4) lets you specify the default Message Set,
Disable Restart, and designate Upgrade Only programs. In addition, your program
can be defined as an Application Library. An Application Library is not an executable
Application Engine program but a collection of sections that can be called by other
Application Engine programs.

You make your actual program modifications using the Application Engine Def-
inition interface. Two tabs allow you to view your program components: the defini-
tion view and the program flow view. The definition view (figure 45.5) allows you to
create sections, steps, and actions, which are displayed as nodes. You can collapse and
expand the nodes to drill down into each section. The sections in the definition view
are not displayed in the order they are executed. You need to click on the Program
Flow tab to view the execution order of the program.

Pay close attention to the Project Workspace window in figure 45.5. The Appli-
cation Engine object has been inserted into the project. As you can see, Application
Engine is fully integrated with PeopleTools in release 8.

Figure 45.3

Program Properties—State Record

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 959

You can access the section properties by clicking on the section node and then
clicking the right mouse button. Notice the Access checkbox in the section properties
(figure 45.6). You can make the section Public by clicking the checkbox. Another

Figure 45.4

Program Properties—Advanced

Figure 45.5 Application Engine Definition view

Licensed to James M White <jwhite@maine.edu>

960 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

new feature is the Market designation. You can define your section as Global (GBL)
or use a market code such as USA or JPN to make your section market specific.

The Application Engine Program Flow View (figure 45.7) displays the program
as a tree structure with each node in its logical execution sequence. This feature
should aid developers by providing a graphical representation of their Application
Engine program.

Notice the PeopleCode node under Step01 (figure 45.7). You can insert People-
Code actions (in Definition view) within a step. You use the PeopleCode Editor to
write the PeopleCode program.

You can invoke the PeopleCode Editor by double-clicking on the PeopleCode
node (Figure 45.8). SQL actions can be inserted the same way within a step and mod-
ified using something called the SQL Editor. Each Action Type, viewed as a node, will
have a particular set of action type properties.

Figure 45.6 Viewing section properties

Figure 45.7 Application Engine Program Flow view

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 961

Figure 45.9 shows two action type nodes. The Do Select action type displays
the description, Reuse statement, and Do Select type properties. The Call
Section action type displays the description, section name, program ID, and
dynamic section properties.

45.2.2 Action types

Table 45.1 shows the possible action types along with the object type, the available
properties, and the corresponding editor used to create the code behind the action.
COBOL and Mass Change programs can no longer be called through the action prop-
erties. You can still call a COBOL program, but it must be invoked using PeopleCode
and the RemoteCall() function. Mass Change programs are no longer sup-
ported—alternatives, such as the Application Engine Mass Change program, can be
used instead. The message action is used in place of the &MSG function. The Message
properties contain the same parameters as the &MSG function.

Figure 45.8 Accessing a PeopleCode program in Definition view

Figure 45.9 Action types and action type properties

Table 45.1 Action types and associated properties

Action Type Object Type Properties Editor

DO When SQL Select ReUse Statement SQL Editor

DO While SQL Select ReUse Statement SQL Editor

DO Until SQL Select ReUse Statement SQL Editor

DO Select SQL Select ReUse Statement
DO Select Type

SQL Editor

PeopleCode PeopleCode On Return PeopleCode Editor

SQL SQL Statement ReUse Statement
No Rows

SQL Editor

Licensed to James M White <jwhite@maine.edu>

962 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

45.2.3 Meta-SQL

Application Engine now supports Meta-SQL such as %DateIn and %DateOut.
Application Engine Meta-SQL constructs have been added.

Call Section A/E Section Section Name
Program ID
Dynamic Section

N/A

Message Message Log Message Set
Message Set Num-
ber
Message Parame-
ters

N/A

Table 45.1 Action types and associated properties (continued)

Action Type Object Type Properties Editor

Table 45.2

Function Description

%Bind Retrieves a value from the State record.

%ExecuteEdits Supports data dictionary edits in batch mode. This includes any field defined
with edit types of Required, Yes/No, DateRange, Prompt Table, or Trans-
late Table.
Meta-Variables %Edit_Required, %Edit_YesNo, %Edit_DateRange,
%Edit_PromptTable, and %Edit_TranslateTable are used to specify the
particular Edit(s) required. These Meta-Variables can be added together to
produce combination edits on a field.

%Select Selects fields and updates State Record values. If the SQL Select returns no
rows, the state record fields are untouched.

%SelectInit Selects fields and updates state record values. If no rows are returned, the
state record fields are initialized.

%SQL Allows an SQL object to be utilized in Application Engine SQL statements or
PeopleCode regardless of differences in bind variable syntax between the
two.

%Table Returns the SQL table name for the record name specified. This eliminates
the need to prefix certain tables with PS_ before accessing them. If the table
is defined as a temporary table, the appropriate temporary table instance
number is appended to the returned SQL table name (i.e., PS_MY_TEMPnn
where nn is the instance number).

%TruncateTable Depending on the database, either a TRUNCATE TABLE or DELETE FROM (with-
out a WHERE clause) is generated.

%UpdateStats Generates a platform-specific statement to update the system catalog tables
for use in optimization procedures.

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 963

45.2.4 Application Engine macros

Some macros in release 8 look familiar. Some of the differences are in syntax only.
The &&RECORD macro is no longer used.

45.2.5 System Meta-Variables

Application Engine now provides useful Meta-Variables that eliminate unnecessary
calls to the database to retrieve fields such as the Run Control ID and process
instance. The SQL syntax is also simpler when using the Meta-Variables. %Bind is
not needed to retrieve the values from the state record.

45.2.6 Application Engine PeopleCode

The use of PeopleCode is one of the most powerful enhancements to Application
Engine. You can update state records directly, perform complex IF-THEN-ELSE
expressions, and process file input/output records. When you attach a PeopleCode

Table 45.3 Application Engine macros

Macro Description

%ClearCursor recompiles re-used statements. Resets any STATIC %Bind variables

%Execute execute database-specific commands such as PL/SQL Blocks

%Next increments a sequence value

%Previous decrements a sequence value

%RoundCurrency rounds an amount to proper currency precision when using the
Multi-Currency option

Table 45.4 Application Engine System Variables

Meta-Variable Description

%AeProgram current Application Engine program name (in quotes)

%AeSection current Application Engine section name (in quotes)

%AeStep current Application Engine step name (in quotes)

%JobInstance Process Scheduler job instance number

%ProcessInstance Process Instance

%ReturnCode return code of last SQL statement

%RunControl current Run Control ID (in quotes)

%AsOfDate As-Of-Date of the current process (in quotes)

%Comma character substitution— comma

%LeftParen character substitution—left parenthesis

%RightParen character substitution—right parenthesis

%Space character substitution—space

%SQLRows number of rows affected by SQL statement.
Select statements return a value of 0 or 1 (to represent no
rows or some rows, respectively).

Licensed to James M White <jwhite@maine.edu>

964 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

Action to a step, you may also specify the On-Return property, which is either
Abort, Break, or Skip Step. The On-Return property is initiated when the
PeopleCode program issues a Non-Zero or True return code. If no return code is
assigned by the PeopleCode program, then zero is used as the default. Abort halts
processing of the entire program. Break exits the entire section currently executing.
Skip Step processes no additional actions attached to the current step—the next
step is processed immediately.

Let’s examine a few examples, drawing comparisons with PeopleSoft 7.5 when
possible.

You can see that a database call is required in PeopleSoft 7.5 to update a single
cache field value:

&SELECT(AE_SECTION)
SELECT 'PROCESS1'
 FROM PSLOCK

In the direct updating of the state record field using PeopleCode (PeopleSoft 8.0), no
additional database call is required. Also, note the absence of a return code assign-
ment which defaults to zero:

AE_SECTION = "PROCESS1";

Let’s consider IF-THEN-ELSE logic now. Imagine that we need to execute a Mass
SQL Insert only if the table into which we’re inserting is empty. For this example,
we assume the row count of our table into which has been determined and is con-
tained in the field COUNTER (either in the cache or state record).

In PeopleSoft 7.5, a DO When statement type is used to execute an additional sec-
tion, depending on the “SQL Select” results. If the COUNTER cache field is zero (mean-
ing the table is empty), the DO When section specified (which performs the SQL Insert)
is executed. If the COUNTER is not zero, the DO When section is not performed:

&SELECT(AE_DECIDE)
SELECT ‘X’
 FROM PSLOCK
 WHERE &BIND(COUNTER) = 0

Look at the PeopleSoft 8 version using PeopleCode:

If USER_AET.COUNTER > 0
 Exit(1)

End-if;

The state record field COUNTER is interrogated directly. If the COUNTER field is
greater than zero, the return code is set to 1 (or TRUE), and the On Return property
of the PeopleCode action becomes effective. Let’s assume the On Return property is
set to Skip Step. Any additional actions for the current step are now bypassed

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 965

including the SQL action for our Insert statement. If the COUNTER is zero, the
subsequent SQL action for the step is executed. (The Return Code defaults to zero in
our PeopleCode action.)

PeopleSoft 8 enables file operations within Application Engine through
PeopleCode. This is made possible by the new object classes now available. We’ll dem-
onstrate how PeopleCode actions can use these object classes to write records to a flat
file. The output file will be created using a file layout definition. By changing the File-
Layout property of our file object, we can switch file layouts whenever necessary.

We can now perform a simple demonstration for a typical outbound interface
program. The sample PeopleCode program creates a flat file based on the contents of
the table MY_TABLE. Let’s assume this table was created during preceding steps of the
Application. The columns are selected using a temporary SQL object created dynam-
ically at run time. A Meta-SQL function (%Selectall) is used to build the Select
statement. The SQL Object uses the Fetch method to retrieve each row one at a time.
The file object (our output file) uses the file layout definition MY_LAYOUT:

Ln# PeopleCode
--- --
 1 Local Record &MY_REC;
 2 Local File &MY_FILE;
 3 Local SQL &MY_SQL;
 4
 5 &MY_FILE = GetFile("myoutput.txt", "W");
 6
 7 if &MY_FILE.IsOpen Then
 8 if &MY_FILE.SetFileLayout(FILELAYOUT.MY_LAYOUT) Then
 9 &MY_REC = CreateRecord(RECORD.MY_TABLE);
10 &MY_SQL = CreateSQL("%Selectall(:1)", &MY_REC);
11 While &MY_SQL.Fetch(&MY_REC)
12 &MY_FILE.WriteRecord(&MY_REC);
13 End-While;
14 End-If;
15 End-If;
16
17 &MY_FILE.Close();
18

Our program is displayed above with line numbers (for reference only). Let’s take a
closer look at each line in the PeopleCode program.

Lines 1 through 3 create temporary object variables: &MY_REC is a record object;
&MY_FILE is a file object; and &MY_SQL is an SQL object. Each of these temporary
variables has a set of properties unique to its own object type. We can now perform
some simple manipulations to accomplish our task.

Line 5 uses the GetFile function to associate a file to our file object &MY_FILE.
The GetFile function also opens “myoutput.txt” in Write Mode.

Licensed to James M White <jwhite@maine.edu>

966 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

Line 7 tests to see if the file associated with &MY_FILE was opened successfully
(evaluating the IsOpen property using dot notation).

Line 8 sets the FileLayout property of the &MY_FILE file object to our file layout
definition (MY_LAYOUT).

Line 9 uses the CreateRecord function to pass the MY_TABLE attributes to the
&MY_REC record object. Now MY_TABLE and &MY_REC have equivalent attributes.

Line 10 dynamically creates the SQL for the &MY_SQL object using the
CreateSQL function. %Selectall(:1) is a Meta-SQL construct that creates the
Select statement based on the record passed as a parameter. Since we passed the
&MY_REC record object as the parameter, the record MY_TABLE is used. (Remember,
&MY_REC now has the same attributes as MY_TABLE.)

Lines 11 through 13 perform a Do While loop. A Fetch method is performed
using the SQL object we created (&MY_SQL). This selects each row one by one. The
WriteRecord method for the &MY_FILE object is used with the &MY_REC object
to write lines to the output file. The records are then written as directed by the file lay-
out definition currently used.

The operations being performed may be considered complex, but the
PeopleCode that is actually produced by the developer couldn’t be much simpler.
Also, note any changes to the original record or file layout definitions do not affect the
PeopleCode program.

45.2.7 Application Engine debugger

Another exciting enhancement in release 8 is the Application Engine debugger. You
must enable the debugger through Configuration Manager or as a command line
option. You must also enable the PeopleCode debugger if you want to debug any
PeopleCode actions in the Application Engine program. Debug mode is easy to use.
Here’s a glimpse of the Application Engine debugger Help menu:

PeopleTools 8.0 - Application Engine
Copyright (c) 1988-1999 PeopleSoft, Inc.
All Rights Reserved

Application Engine Debugger - enter command or type ? for help.

AEMYPRCSDL.MAIN.STEP1> ?
Debug Commands:

 (Q)uit Rollback work and end program
 E(X)it Commit work and end program (valid between steps)

 (C)ommit Commit work (valid between steps)
 (B)reak Set or remove a break point
 (L)ook Examine state record fields
 (M)odify Change a state record field
 (W)atch Set or remove a watch field
 (S)tep over Execute current step or action and stop
 Step (I)nto Go inside current step or called section and stop

Licensed to James M White <jwhite@maine.edu>

PEOPLESOFT RELEASE 8 967

 Step (O)ut of Execute rest of step or called section and stop
 (G)o Resume execution
 (R)un to commit Resume execution and stop after next commit

As you can see, the Application Engine debugger contains an extensive set of debug
commands. The descriptions of the commands on the Help menu do not need much
more elaboration, but I’d like to review a couple of commands.

The BREAK command allows you to set, and subsequently unset, breakpoints in
your program. There is also an option to list the currently active breakpoints.

Let’s consider how to set a breakpoint with the Set option. The user is prompted
for the program, section, and step to which the breakpoint should be set:

AEMYPRCSDL.MAIN.STEP1> b
(S)et, (U)nset, or (L)ist? s
Program [AEMYPRCSDL]:
Section [MAIN]: DYNSECTN
Step [STEP1]: STEP1

Breakpoint set at AEMYPRCSDL.DYNSECTN.STEP1

Now, let’s look at the use of the Unset option. A list of active breakpoints is displayed
along with a corresponding sequence number. The user must enter the sequence
number of the breakpoint to remove it from the active breakpoint list. The List
option displays the active breakpoint list without any additional options.

AEMYPRCSDL.MAIN.STEP1> b
(S)et, (U)nset, or (L)ist? u

Active Breakpoints:
(1) AEMYPRCSDL.MAIN.STEP2
(2) AEMYPRCSDL.DYNSECTN.STEP1

Remove which breakpoint? 1

The LOOK, MODIFY, and WATCH commands allow you to view and modify state
record fields and designate watch fields. Once you set a watch field, the program
stops when the value of the field changes.

Record Name [USER_AET]:
Field Name [*]:
USER_AET:
 PROCESS_INSTANCE = 50
 COUNTER = 1685
 RECNAME = 'JOB'
 FIELDNAME = ' '
 AE_DECIDE = ' '

Licensed to James M White <jwhite@maine.edu>

968 CHAPTER 45 APPLICATION ENGINE—PEOPLESOFT 8

In our LOOK command, the record name selected was USER_AET (the default for this
Application Engine program). All the fields in USER_AET are listed with their cur-
rent values.

Consider now the results of our MODIFY command. We selected the COUNTER
state record field and changed the value from 1685 to 0. The MODIFY command is a
useful tool when testing conditions in your Application Engine program:

AEUSER003.MAIN.STEP2> m
Record Name [USER_AET]:
Field Name [none]: COUNTER

Current value: USER_AET.COUNTER = 1685

Enter new value (do not use quotes around text strings):
0

The field RECNAME is selected as a watch field using the Set option of the WATCH

command. The program will stop each time the value of this field changes. You can
Unset and List watch fields in a similar manner as breakpoints.

Set or remove a watch field
AEUSER004.MAIN.STEP1> w
(S)et, (U)nset, or (L)ist? s
Record Name [USER_AET]:
Field Name [none]: RECNAME

If enabled, the PeopleCode debugger is invoked when a PeopleCode action is
encountered. Many new features exist in the PeopleCode debugger such as Hover
Inspect, where a pop-up displays the value of simple variables and fields simply by
hovering over it with the mouse. The variable display window allows you to drill
down on the properties of each object by expanding/collapsing the corresponding
node. As you can see, the PeopleTools development team has been busy. The fea-
tures I’ve mentioned in this chapter are just a small sampling of the next generation
of PeopleTools!

Some readers may have come directly to this chapter to read about some of the
great new Application Engine features in the PeopleSoft 8 release. If you have no
familiarity with the PeopleSoft 7.5 version of Application Engine, I would suggest
going through the tutorial in the preceeding chapters. The examples there will give you
the opportunity to develop a good understanding of Application Engine concepts
without being bombarded with terminology such as object classes, meta-this, meta-
that, and such. The PeopleSoft 8 version of Application Engine builds and improves
upon the concepts previously discussed. In this ever-changing world of technology, it’s
a good idea to take advantage of every learning opportunity you can.

Licensed to James M White <jwhite@maine.edu>

969

A P P E N D I X A

Problem Tracking
application

All objects used to build our Problem Tracking application are listed in this appendix.
The readers can develop these objects as they read this book. The readers should not
be limited to the objects in the appendix. They can further enhance the application
and develop other objects by using the techniques described in this book.

Licensed to James M White <jwhite@maine.edu>

970 APPENDIX A

Let us look at an ERD diagram of all the record definitions used to develop the
Problem Tracking application. All columns which are in bold and underlined are part
of the primary key. All columns in bold alone are alternate keys.

Let us list all the record definitions showing the different views. New fields start
with a prefix of MY_. These fields have to be created in the system before the record
definitions are built.

MY_USER_TABLE

 MY_USER_ID
 NAME
 EMPLID
 PHONE
 MY_USER_TYPE

MY_PROBLEM_TRKG

 MY_PROBLEM_ID
 INCIDENT_DT
 MY_PROJECT_ID
 MY_PROBLEM_STATUS
 PRIORITY
 MY_USER_ID
 MY_PROBLEM_TRACKER
 CLOSE_DT
 MY_DOCUMENT_ATTACH
 DESCRLONG
 MY_PROBLEM_RESOLTN
 MY_PROBLEM_DTTIM
 FILENAME

MY_DERIVED

 MY_DOCUMENT
 MY_USER_ID
 TOTAL_COUNT

Problem Tracking—Record Definitions

MY_TRKG_STATUS

 MY_PROBLEM_STATUS
 TOTAL_COUNT

MY_PROJECT_TBL

 MY_PROJECT_ID
 DESCR
 MY_APPLICATION_ID
 START_DATE
 END_DATE
 CONTACT_NAME
 CONTACT_PHONE

MY_APPLCTN_TBL

 MY_APPLICATION_ID
 DESCR
 DESCRSHORT

FigureA.1

Problem Tracking Application—

record definitions

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 971

MY_USER_TABLE stores all the users reporting problems in our application.

Figure A.4 MY_USER_TABLE Table—Edits Display

Figure A.2 MY_USER_TABLE Table—Field Display

Figure A.3 MY_USER_TABLE Table—Use Display

Licensed to James M White <jwhite@maine.edu>

972 APPENDIX A

MY_APPLCTN_TBL stores all applications that are tracked in our system.

Figure A.5 MY_APPLCTN_TBL Table—Field Display

Figure A.6 MY_APPLCTN_TBL Table—Use Display

Figure A.7 MY_APPLCTN_TBL Table—Edits Display

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 973

MY_PROJECT_TBL stores all projects that are tracked in our application.

Figure A.8 MY_PROJECT_TBL Table—Field Display

Figure A.9 MY_PROJECT_TBL Table—Use Display

Figure A.10 MY_PROJECT_TBL Table—Edits Display

Licensed to James M White <jwhite@maine.edu>

974 APPENDIX A

MY_PROBLEM_TRKG stores all incidents tracked in our application.

Figure A.11 MY_PROBLEM_TRKG Table—Field Display

Figure A.12 MY_PROBLEM_TRKG Table—Use Display

Figure A.13 MY_PROBLEM_TRKG Table—Edits Display

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 975

MY_TRKG_STATUS is an SQL view that represents data from MY_PROBLEM_
TRKG table.

Figure A.14 MY_TRKG_STATUS View—Field Display

Figure A.15 MY_TRKG_STATUS View—Use Display

Figure A.16 MY_TRKG_STATUS View—Edits Display

Licensed to James M White <jwhite@maine.edu>

976 APPENDIX A

Figure A.17 MY_TRKG_STATUS View—SQL Select Statement

Figure A.18 MY_DERIVED Work Record—Field Display

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 977

MY_DERIVED is a derived record that holds three fields which are used as work
fields in our application.

Figure A.19 MY_DERIVED Work Record—Use Display

Figure A.20 MY_DERIVED Work Record—Edits Display

Licensed to James M White <jwhite@maine.edu>

978 APPENDIX A

The first PeopleCode program automatically increments the MY_PROBLEM_ID
field to the next one. The second PeopleCode program performs an edit to ensure that
the CLOSE_DT field is entered when incidents are resolved or voided.

Figure A.21 MY_PROBLEM_TRKG.MY_PROBLEM_ID.FieldDefault

Figure A.22 MY_PROBLEM_TRKG.CLOSE_DT.SaveEdit

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 979

The first PeopleCode program prevents the user from assigning a value to the
MY_PROBLEM_ID field when new incidents are added using our application. The
second PeopleCode program opens a Microsoft Word document explaining an inci-
dent in our application.

Figure A.23 MY_PROBLEM_TRKG.MY_PROBLEM_ID.SearchSave

Figure A.24 MY_DERIVED.MY_DOCUMENT.FieldChange

Licensed to James M White <jwhite@maine.edu>

980 APPENDIX A

MY_USER_TBL panel is used to enter user information on our application.

Figure A.25 MY_USER_TBL panel

Figure A.26 MY_USER_TBL panel layout

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 981

MY_USER_GRID panel is used to enter user information in a grid format.

Figure A.27 MY_USER_GRID panel

Figure A.28 MY_USER_GRID panel layout

Licensed to James M White <jwhite@maine.edu>

982 APPENDIX A

MY_APPLCTN_TBL panel is used to set up applications that are tracked through
our Problem Tracking application.

Figure A.29 MY_APPLCTN_TBL panel

Figure A.30 MY_APPLCTN_TBL panel layout

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 983

MY_PROJECT_TBL panel is used to enter project information in our application.

Figure A.31 MY_PROJECT_TBL panel

Figure A.32 MY_PROJECT_TBL panel layout

Licensed to James M White <jwhite@maine.edu>

984 APPENDIX A

MY_PROBLEM_TRKG panel is used to enter incidents and resolutions through
our Problem Tracking application.

Figure A.33 MY_PROBLEM_TRKG panel

Figure A.34 MY_PROBLEM_TRKG panel layout

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 985

MY_TRKG_STATUS panel is used to view totals of all incidents/problems tracked
using our application.

Figure A.35 MY_TRKG_STATUS panel

Figure A.36 MY_TRKG_STATUS panel layout

Licensed to James M White <jwhite@maine.edu>

986 APPENDIX A

Figure A.37 MY_USERS panel group

Figure A.38 MY_USERS panel group properties

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 987

Figure A.39 MY_USER_GRID panel group

Figure A.40 MY_USER_GRID panel group properties

Licensed to James M White <jwhite@maine.edu>

988 APPENDIX A

Figure A.41 MY_APPLICATIONS panel group

Figure A.42 MY_APPLICATIONS panel group properties

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 989

Figure A.43 MY_PROJECTS panel group

Figure A.44 MY_PROJECTS panel group properties

Licensed to James M White <jwhite@maine.edu>

990 APPENDIX A

Figure A.45 M_PROBLEM_TRKG panel group

Figure A.46 M_PROBLEM_TRKG panel group properties

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 991

Figure A.47 MY_TRKG_STATUS panel group

Figure A.48 MY_TRKG_STATUS panel group properties

Licensed to James M White <jwhite@maine.edu>

992 APPENDIX A

Figure A.49 Problem Tracking menu—setup bar items

Figure A.50 Problem Tracking menu—tracking bar items

Licensed to James M White <jwhite@maine.edu>

PROBLEM TRACKING APPLICATION 993

Figure A.50 Problem Tracking menu properties

Licensed to James M White <jwhite@maine.edu>

994

A P P E N D I X B

Operator Class/Locations

The Operator Class and Employee Locations application links PeopleSoft operator
classes to office locations. Employees currently working out of these office locations
can be linked to the Operator Class/Location for security and reporting purposes.

The application is comprised of three main records, two views, and a Derived/
Work record which stores the PeopleCode statements. The application is used prima-
rily to demonstrate the use of scroll-related functions.

The records are:
MY_LOCATION_HDR
MY_LOCATIONS
MY_LOCATION_EMP

The two Views are:
MY_LOC_OPR_VW
MY_LOC_EMPL_VW

The Derived/Work record is:
MY_DERIVED

Licensed to James M White <jwhite@maine.edu>

OPERATOR CLASS/LOCATIONS 995

Figure B.1 graphically illustrated the records, the views, and the Derived/Work
record for this Applet.

MY_LOCATION_HDR

 SETID
 OPRCLASS

MY_LOCATIONS

 SETID
 OPRCLASS
 LOCATION
 EFFDT

MY_LOCATION_EMP

MY_DERIVED

 SETID
 OPRCLASS
 LOCATION
 EMPLID

MY_LOC_OPR_VW

 SETID
 OPRCLASS
 LOCATION

MY_LOC_EMPL_VW

 SETID
 OPRCLASS
 LOCATION
 EMPLID

Tables used to
create the View:
LOCATION_TBL,
PSOPRDEFN

Tables used to
create the View:
LOCATION_TBL,
PSOPRDEFN,
JOB

 COUNTER
 DELETE_ROW
 REMOVE_ALL_EMPL
 REMOVE_ALL_LOC_EMP
 REMOVE_EMP_LOC
 LOAD_EMP_LOCATION
 LOAD_LOCATIONS
 EFFDT

Derived Record
contains Scroll
related
PeopleCode
programs

Figure B.1 Operator Classes linked to Employee Locations. Records, Views and Derived/Work

Figure B.2 MY_LOCATION_HDR record

Licensed to James M White <jwhite@maine.edu>

996 APPENDIX B

Figure B.3 MY_LOCATIONS record

Figure B.4 MY_LOCATION_EMP record

Figure B.5 MY_LOC_OPR_VW view

Figure B.6 MY_LOC_EMPL_VW view

Licensed to James M White <jwhite@maine.edu>

OPERATOR CLASS/LOCATIONS 997

The PeopleCode associated with this application resides primarily in the Derived/
Work record MY_DERIVED as illustrated in figure B.7. Refer to part 3 for
PeopleCode illustrations related to scroll processing.

Panels used include those shown in figure B.8 through B.16.

Figure B.7 MY_DERIVED Derived/Work record

Figure B.8 MY_LOCATIONS Panel

Licensed to James M White <jwhite@maine.edu>

998 APPENDIX B

Figure B.9 MY_LOCATIONS order of Panel

Figure B.10 MY_LOCATIONS_EMP Panel

Licensed to James M White <jwhite@maine.edu>

OPERATOR CLASS/LOCATIONS 999

Figure B.11 MY_LOCATIONS_EMP Order of Panel

Figure B.12 Operator/Class & Employee Locations Panel Group

Figure B.13 Operator/Class & Employee Locations Menu

Licensed to James M White <jwhite@maine.edu>

1000 APPENDIX B

Figure B.14

Operator/Class & Employee

Locations Menu Properties

Figure B.15

Operator/Class Employee Location

Project Workspace

Licensed to James M White <jwhite@maine.edu>

OPERATOR CLASS/LOCATIONS 1001

Figure B.16 Operator/Class & Employee Locations Applet as implemented

Licensed to James M White <jwhite@maine.edu>

1002

A P P E N D I X C

PeopleTool system tables

In this appendix you can find names and descriptions of the underlying PSTOOLS
System tables. Some system tables have been omitted such as those that support
Workflow and EDI Manager. The most common tables are listed by Tools Category.

Application Engine

 AE_APPL_TBL Application Definitions
 AE_REQUEST AE Request
 AE_RUN_CONTROL AE Run Control
 AE_SECTION_TBL Application Sections
 AE_STEP_TBL Section Steps
 AE_STMT_B_TBL AE Statement Chunk Table
 AE_STMT_TBL AE Statement Table

Change Control

 PSCHGCTLHIST Change Control History Table
 PSCHGCTLLOCK Change Control Locked Objects

Field Definition

 PSDBFIELD Database Field

Record Definition

 PSDDLDEFPARMS DDL Model Parameter

Licensed to James M White <jwhite@maine.edu>

PEOPLETOOL SYSTEM TABLES 1003

 PSDDLMODEL DDL Model Statement
 PSIDXDDLPARM Index DDL Parameters
 PSINDEXDEFN Index Definition
 PSKEYDEFN Key in Index Definition
 PSPROGNAME Record Field PeopleCode
 PSRECDDLPARM Record DDL Parameter
 PSRECDEFN Record Definition
 PSRECFIELD Record Field
 PSSPCDDLPARM Space DDL Parameters
 PSVIEWTEXT SQL View Text
 XLATTABLE Translate Value

Panel Definition

 PSCOLORDEFN Color Definition
 PSPNLDEFN Panel Definition
 PSPNLFIELD Panel Field
 PSPNLTREECTRL Panel Tree Control
 PSSTYLEDEFN Style Definition
 PSTOOLBARDEFN Toolbar Definition
 PSTOOLBARITEM Toolbar Item

Panel Group

 PSPNLGROUP Panel Group
 PSPNLGRPDEFN Panel Group Definition

Menu Definition

 PSMENUDEFN Menu Definition
 PSMENUITEM Menu Item
 PSXFERITEM Pop-up Menu Item Transfer Defns

Operator Definition

 ACCESS_GRP_TBL Tree Access Groups
 PSACCESSPRFL Access Profile
 PSAUTHITEM Authorized Menu Item
 PSAUTHPRCS Authorized Process
 PSAUTHSIGNON Authorized Signon Period
 PSOBJGROUP Object Group
 PSOPRALIAS Operator Alias
 PSOPRALIASTYPE Operator Alias Types
 PSOPRCLS Operator classes per operator
 PSOPRDEFN Operator Definition

Licensed to James M White <jwhite@maine.edu>

1004 APPENDIX C

 PSOPROBJ Operator Object Group
 PSPRCSPRFL Process Profile
 PSPRCSRUNCNTL Process Run Control
 SCRTY_ACC_GRP Access Group Security
 SCRTY_QUERY PS/Query Profile

Tree Definition

 PSTREEDEFN Tree Definition
 PSTREELEAF Tree Leaf
 PSTREELEVEL Tree Level
 PSTREENODE Tree Node
 PSTREESTRCT Tree Structure
 TREE_LEVEL_TBL Sample/Default Tree Level Tbl
 TREE_NODE_TBL Tree Nodes

Query Definition

 PSQRYBIND Query Prompt
 PSQRYCRITERIA Query Criteria
 PSQRYDEFN Query Definition
 PSQRYDEL Query Definition
 PSQRYEXPR Query Expression
 PSQRYFIELD Query Field
 PSQRYRECORD Query Record
 PSQRYSELECT Query Select

NVision Definition

 NVS_REPORT PS/nVision Report Requests
 NVS_SCOPE PS/nVision Scope
 NVS_SCOPE_FIELD PS/nVision Scope Field
 NVS_SCOPE_VALUE PS/nVision Scope Values
 PSTREESELCTL Tree Selection Control
 PSTREESELNUM Tree Select Control Number
 PSTREESELECTxx Tree Select Work-Size (01 thru 30)

PeopleCode Definition

 PSPCMNAME PeopleCode Reference
 PSPCMPROG PeopleCode Program

Utilities (Messages/Tablesets)

 MESSAGE_CATALOG Message Catalog
 MESSAGE_SET_TBL Message Sets

Licensed to James M White <jwhite@maine.edu>

PEOPLETOOL SYSTEM TABLES 1005

 REC_GROUP_REC Record Group Records
 REC_GROUP_TBL Record Groups
 SETID_TBL TableSet IDs
 SET_CNTRL_GROUP TableSet Record Groups
 SET_CNTRL_REC TableSet Record Detail
 SET_CNTRL_TBL TableSet Controls
 SET_CNTRL_TREE TableSet Tree Controls

Import Definitions

 PSIMPFIELD Import Field
 PSIMPDEFN Import Definition

Upgrader Definition

 PSOBJCHNG Object Change
 PSPROJECTDEFN Project Definition Table
 PSPROJECTITEM Project Item Table
 PSPROJECTMSG Project Messages
 PSRELEASE Release Table
 PST_PNLFIELDS Upgrader Panel Work

Process Scheduler

 PRCSDEFN Process Definitions
 PRCSDEFNGRP Process Definition Groups
 PRCSDEFNPNL Process Definition Panelgroups
 PRCSDEFNXFER Process Definition Transfers
 PRCSJOBDEFN Process Job Definitions
 PRCSJOBGRP Process Job Groups
 PRCSJOBITEM Process Job Items
 PRCSJOBPNL Process Job Panel Groups
 PRCSRUNCNTL Process Run Control Template
 PRCSSAMPLER Process Scheduler Example
 PRCSSYSTEM Process System Table
 PRCSTYPEDEFN Process Type Definitions
 PSPRCSLOCK Process Scheduler Lock Table
 PSPRCSRQST Process Request
 PSPRCSRQSTXFER Process Request Transfer
 PSRECURDEFN Process Recurrence Definition
 PSSERVERSTAT Process Server Statistics
 SERVERCLASS Server Classes
 SERVERDEFN Process Server Definition

Licensed to James M White <jwhite@maine.edu>

1006 APPENDIX C

COBOL Definition

 MESSAGE_LOG Message Log Table
 MESSAGE_LOGPARM Message Parameter Log
 SQLSTMT_TBL Stored SQL Statements

Mass Change

 MC_DATA_TBL Mass Change SQR Datatypes
 MC_DEFN Mass Change Definition
 MC_DEFN_CRIT Mass Change Defn Criteria
 MC_DEFN_CRIT_VL Mass Change Defn Crit Values
 MC_DEFN_DEFAULT Mass Change Defn Defaults
 MC_DEFN_DESCR Mass Change Defn Description
 MC_DEFN_PT Mass Change Defn PeopleTools
 MC_DEFN_SQL Mass Change Defn SQL
 MC_DEFN_SQL_LN Mass Change Defn SQL Line
 MC_DEFN_STMNT Mass Change Defn Statement
 MC_DTTM_PARMS Mass Change Datetime Parms
 MC_GROUP Mass Change Defn Group
 MC_GROUP_LN Mass Change Defn Group Line
 MC_HIST_CRIT Mass Change History Criteria
 MC_HIST_CRIT_VL Mass Change History Crit Value
 MC_HIST_DEFAULT Mass Change History Defaults
 MC_HIST_STMNT Mass Change History Statement
 MC_OPRID Mass Change Operator Security
 MC_OPR_SECURITY Mass Change Operator Security
 MC_PROMPTS Mass Change Prompt Table Setup
 MC_RUN_CNTL Mass Change Run Control
 MC_TEMPLATE Mass Change Template
 MC_TEM_CRITERIA Mass Change Template Criteria
 MC_TEM_DEFAULTS Mass Change Template Defaults
 MC_TEM_DESCR Mass Change Template Descr
 MC_TEM_STMNT Mass Change Template Statement
 MC_TYPE Mass Change Type
 MC_TYPE_DESCR Mass Change Type Description
 MC_TYPE_FIELD Mass Change Type Field
 MC_TYPE_JOIN Mass Change Type Join Table
 MC_TYPE_RECORD Mass Change Type Record
 MC_TYPE_SQL Mass Change Type SQL Statement
 MC_TYPE_STMNT Mass Change Type Statement
 MC_TYPE_WHERE Mass Change Type Where Clause

Licensed to James M White <jwhite@maine.edu>

PEOPLETOOL SYSTEM TABLES 1007

International Tables

 COUNTRY_TBL Countries
 CURRENCY_CD_TBL Currency Codes

System Tables

 PSASOFDATE SQR Request Dates
 PSCLOCK Database Clock Access
 PSCOLORDEFN Color Definition
 PSFMTDEFN Format Definition Table
 PSFMTITEM Format Item Table
 PSLOCK PeopleTools System Control
 PSOPTIONS PeopleTools System Options
 PSSTYLEDEFN Style Definition
 RUN_CNTL_SYSAUD SysAudit Control Table
 STRINGS_TBL Strings Table

Licensed to James M White <jwhite@maine.edu>

1008

A P P E N D I X D

Application Engine
examples

In this appendix you can find the Application Engine source code used in our exer-
cises. Each section/step is listed along with the statement type and the statement text
used (if any). Any called sections appear next to the statement type (in the case of DO
Select, DO When, or DO section types).

Exercise #1—Application USER001

Section/Step MAIN.STEP1
Statement Type Update
Statement Text &MSG(,1,'Hello World')

Exercise #2—Application USER002

Section/Step MAIN.STEP1
Statement Type Select
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM PS_PERSONAL_DATA

Section/Step MAIN.STEP2
Statement Type Update
Statement Text &MSG(,2,'PERSONAL_DATA Record Count ',

 &BIND(COUNTER))

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE EXAMPLES 1009

Exercise #3—Application USER003

Section/Step MAIN.STEP1
Statement Type Select
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)

Section/Step MAIN.STEP2
Statement Type Update
Statement Text &MSG(,3,

 &BIND(RECNAME,NOQUOTES),&BIND(COUNTER))

Exercise #4—Application USER004

Section/Step MAIN.STEP1
Statement Type DO Select (Calls Section COUNT)
Statement Text &SELECT(RECNAME)

SELECT A.RECNAME
 FROM PSRECFIELD A,
 PSRECDEFN B
 WHERE A.RECNAME = B.RECNAME
 AND A.FIELDNAME = &BIND(FIELDNAME)
 AND B.RECTYPE = 0
 ORDER BY A.RECNAME

Section/Step COUNT.STEP1
Statement Type Select
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)

Section/Step COUNT.STEP2
Statement Type Update
Statement Text &MSG(,3,

 &BIND(RECNAME,NOQUOTES),&BIND(COUNTER))

Exercise #5—Application USER005

Section/Step MAIN.STEP1
Statement Type DO Select (Calls Section COUNT)
Statement Text &SELECT(RECNAME)

SELECT A.RECNAME
 FROM PSRECFIELD A,
 PSRECDEFN B
 WHERE A.RECNAME = B.RECNAME

Licensed to James M White <jwhite@maine.edu>

1010 APPENDIX D

 AND A.FIELDNAME = &BIND(FIELDNAME)
 AND B.RECTYPE = 0
 ORDER BY A.RECNAME

Section/Step COUNT.STEP1
Statement Type Select
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)

Section/Step COUNT.STEP2
Statement Type Do When (Calls Section MSG)
Statement Text &SELECT(AE_DECIDE)

SELECT 'X'
 FROM PSLOCK
 WHERE &BIND(COUNTER) > 0

Section/Step MSG.STEP1
Statement Type Update
Statement Text &MSG(,3,

 &BIND(RECNAME,NOQUOTES),&BIND(COUNTER))

Exercise #6—Application USER006

Section/Step MAIN.STEP1
Statement Type DO Section (Calls Dynamic Section

 —HELLO or GOODBYE)
Statement Text No Statement Text

Section/Step HELLO.STEP1
Statement Type Update
Statement Text &MSG(,1,'Hello World')

Section/Step GOODBYE.STEP1
Statement Type Update
Statement Text &MSG(,1,’Goodbye’)

Exercise #7—Application MYPRCSDL

Section/Step MAIN.STEP1
Statement Type Select
Statement Text &SELECT(PRCSTYPE,PRCSNAME)

SELECT B.PRCSTYPE,B.PRCSNAME
 FROM PS_AE_RUN_CONTROL A,
 PS_MY_RUN_CNTL_AE B
 WHERE A.OPRID = B.OPRID

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE EXAMPLES 1011

 AND A.RUN_CNTL_ID = B.RUN_CNTL_ID
 AND A.PROCESS_INSTANCE =
 &BIND(PROCESS_INSTANCE)

Section/Step MAIN.STEP2
Statement Type Update
Statement Text &MSG(,2,&BIND(PRCSTYPE,NOQUOTES),

 &BIND(PRCSNAME,NOQUOTES))

Section/Step MAIN.STEP3
Statement Type DO Select (Calls Section DYNSECTN)
Statement Text &SELECT(AE_SECTION,RECNAME)

SELECT 'PROCESS1, RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PRCSDEFN'
 OR RECNAME = 'PRCSDEFNGRP'
 OR RECNAME = 'PRCSDEFNPNL'
 OR RECNAME = 'PRCSDEFNXFER'
 UNION
SELECT 'PROCESS2', RECNAME
 FROM PSRECDEFN
 WHERE RECNAME = 'PSPRCSRQST'
 OR RECNAME = 'PSPNLFIELD'
 ORDER BY 1,2

Section/Step DYNSECTN.STEP1
Statement Type DO Section (Calls Dynamic Section

 —PROCESS1 or PROCESS2)
Statement Text No Statement Text

Section/Step PROCESS1.STEP1
Statement Type Update
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)
 WHERE PRCSTYPE = &BIND(PRCSTYPE)
 AND PRCSNAME = &BIND(PRCSNAME)

Section/Step PROCESS1.STEP2
Statement Type DO When (Calls Section DELETE1)
Statement Text &SELECT(AE_DECIDE)

SELECT 'X'
 FROM PSLOCK
 WHERE &BIND(COUNTER) > 0

Licensed to James M White <jwhite@maine.edu>

1012 APPENDIX D

Section/Step PROCESS1.STEP3
Statement Type DO Section (Calls Section MESSAGE)
Statement Text No Statement Text

Section/Step DELETE1.STEP1
Statement Type Update
Statement Text DELETE

 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)
 WHERE PRCSTYPE = &BIND(PRCSTYPE)
 AND PRCSNAME = &BIND(PRCSNAME)

Section/Step PROCESS2.STEP1
Statement Type Update
Statement Text &SELECT(COUNTER)

SELECT COUNT(*)
 FROM &BIND(RECNAME,NOQUOTES,STATIC)
 WHERE PRCSTYPE = &BIND(PRCSTYPE)
 AND PRCSNAME = &BIND(PRCSNAME)

Section/Step PROCESS2.STEP2
Statement Type DO When (Calls Section DELETE2)
Statement Text &SELECT(AE_DECIDE)

SELECT 'X'
 FROM PSLOCK
 WHERE &BIND(COUNTER) > 0

Section/Step PROCESS2.STEP3
Statement Type DO Section (Calls Section MESSAGE)
Statement Text No Statement Text

Section/Step DELETE2.STEP1
Statement Type Update
Statement Text DELETE

 FROM &BIND(RECNAME,NOQUOTES,STATIC)
 WHERE PRCSTYPE = &BIND(PRCSTYPE)
 AND PRCSNAME = &BIND(PRCSNAME)

Section/Step MESSAGE.STEP1
Statement Type Update
Statement Text &MSG(,3,&BIND(RECNAME,NOQUOTES),

 &BIND(COUNTER))

Licensed to James M White <jwhite@maine.edu>

1013

A P P E N D I X E

Built-in functions

FREQUENTLY USED BUILT-IN FUNCTIONS

The following section lists frequently used built-in functions. Examples of these func-
tions are also illustrated throughout the book.

PeopleCode built-in functions can be grouped into functional categories. Some
of the more frequently used categories are:

• Conversion
• Date/Time
• Effective Date/Sequence
• Logical
• Math
• Message Catalog/Display
• Panel Buffer
• Panel Control
• Process Scheduler
• Save/Cancel
• Scroll functions
• SQL
• String
• Trace control
• Transfers

Licensed to James M White <jwhite@maine.edu>

1014 APPENDIX E

Conversion functions

Char

Description Converts a numeric value to a character based on the character set in
use

Syntax
Char (n)

Rules Accepts one byte value only and not multiple values.

Returns Returns a string value based on the corresponding number passed to the
function statement.

Example
&CHAR_VALUE = Char(70);

Code

Description Examines the first character passed in a text string and returns the cor-
responding numeric code

Syntax
Code(str)

Rules Double-byte characters are returned as numeric codes representing both
bytes

Returns A number equal to the character set in use

Example
&NUMERIC_CODE = Code(&MY_STRING);

ConvertChar

Description Converts the characters identified in the source string to the target
character code

Syntax
ConvertChar(source_str, source_str_category, output_str, target_char_code)

where:
source_str identifies the source string to be converted
source_str_category the language classification of the source string
output_str represents the converted string
target_char_code numeric value identifying the conversion character type

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1015

Rules Allows for conversion between character sets such as Japanese Hankaku Kata-
kana, Zenkaku Katakana, and Hiragana. These character sets can also be converted to
ASCII single-byte representation.

Source and target character code sets not supported by ConvertChar are pro-
cessed by the function without alteration. The 0 and 1 characters are processed with-
out conversion. A value of -1 is returned when ConvertChar cannot determine the
placement of source and target characters. A -2 is returned when the characters in the
source string can be partially converted. The characters that can be converted and the
characters that cannot be converted are sent to the target string as they appear in the
source string.

Returns A return code of 1 indicates the string was converted successfully and a 0
indicates the string was not converted. A –1 indicates an unknown condition.

Example
&RETURN_CODE = ConvertChar(&KANJI_STRING, 5, ASCII_STRING, 0);

String

Description Takes a value stored in a non-string type and converts it to a string

Syntax
String(val)

Rules String can be used when field comparisons require the specific use of string
data. Object data types cannot be converted using the String function.

Returns A string representation of the value passed to the function

Example
&MY_STRING = String(&NUMBER_FIELD);

Date/Time functions

Date

Description Converts a number formatted as YYYYMMDD and returns a DATE
value

Syntax
Date (date_number)

Rules The input format must be a number.

Returns A DATE data type value

Example
&DATE_FIELD = Date(20000101);

Licensed to James M White <jwhite@maine.edu>

1016 APPENDIX E

DatePart

Description Returns part of an input DateTime value

Syntax
DatePart(datetime_value)

Rules The input value is a DateTime data type.

Returns Returns the date value portion

Example
&DATE_PORTION = DateTimeValue("01/01/00 06:30:25 AM");
&DATE_PORTION = DatePart(&DATE_PORTION);

DateValue

Description Converts a date string that is in the Windows standard date setting
and returns a date type

Syntax
DateValue(date_str)

Rules When the input date value is in the YY/MM/DD format and Windows
regional date setting is MM/DD/YY, the panel processor returns an invalid date func-
tion error message.

Returns Returns values based on the Windows regional date setting

Example
/* Date format is mm/dd/yy */
&DATE_FIELD = DateValue("01/01/00");
/* Date format is yy/mm/dd */
&DATE_FIELD = DateValue("00/12/31");

AddToDate

Description Accepts a date and three additional parameters representing number of
years, months, and days. The specified values are added to the date.

Syntax
AddToDate (date, num_years, num_months, num_days)

Rules The function accounts for leap years and will subtract from the specified date
when negative values are passed.

Returns A date representing the date passed and +/- the number of years, months
and days.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1017

/* Subtracts five years from current date, then adds six months and two days
*/

Example
&CALCULATED_DATE = AddToDate(%Date, -5, 6, 2);

Effective Date/Sequence functions

CurrEffdt

Description Identifies and returns a value representing the current effective date for
the record at the current scroll level

Syntax
CurrEffDt(level_number)

Rules When a level is not specified, the effective date of the current scroll level is
returned.

Returns The return value is a Date type. When used in a scroll area that does not
contain an effective dated record in the primary scroll, the function returns a number.

Example
&EFFDT = CurrEffDt(2);

CurrEffSeq

Description Returns the effective sequence of a specified scroll area

Syntax
CurrEffSeq(level_num)

Rules When a level is not specified, the effective sequence returned is that of the
current scroll level.

Returns A number data type representing the effective sequence of the scroll area

Example
If CurrEffSeq(CurrentLevelNumber()) <> &PREVIOUS_EFFSEQ Then
 SetDefault(JOB.ACTION);
 SetDefault(JOB.ACTION_REASON);
End-If;

CurrEffRowNum

Description Returns the effective row number of the current specified scroll area

Syntax
CurrEffRowNum(level_number)

Licensed to James M White <jwhite@maine.edu>

1018 APPENDIX E

Rules When a level is not specified, the effective row number returned is that of the
current scroll level.

Returns A number data type representing the effective row number of the scroll area

Example
&ROW_NUMBER = CurrEffRowNum(2);

NextEffDt

Description Returns the value of the specified record field that exists in the next
effective-dated row

Syntax
NextEffDt(record_field)

Rules Works only with effective dated records. When a next record does not exist,
the statement is bypassed.

Returns An Any data type containing the field in the next effective-dated record

Example
If JOB.DEPTID = NextEffdt(JOB.DEPTID) Then

 Gray(JOB.PAYGROUP);
End-If;

PriorEffDt

Description Works with effective-dated records and is a contrast to NextEffDt. It
returns the contents of the field passed to the function statement that appear in the
prior effective-dated row

Syntax
PriorEffdt(record_field)

Rules Works only with effective dated records. When there is no prior record, the
statement is bypassed by the Application Processor.

Returns An Any data type containing the field from the prior effective-dated
record

Example
If JOB.COMPRATE < PriorEffdt(JOB.COMPRATE) Then
 Error ("New Compensation Rate cannot be < previous rate");
End-If;

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1019

Logic functions

All

Description Determines whether one or more fields contain a value. The All
function is useful in the SaveEdit PeopleCode event if we wish to verify that one or
more fields have been entered.

Syntax
All(fieldlist)

Rules fieldlist represents one or more field names. They can be specified as
[recordname.] fieldname1 [, [recordname.] fieldname2]

Returns A Boolean. If all the fields contain a value, then the function returns
True. If one or more fields do not contain a value, the function returns False.

Example
If All(MY_PROBLEM_RESOLTN, CLOSE_DT) Then

 Gray(MY_PROBLEM_STATUS);
 End-If;

AllOrNone

Description This function is a combination of the All and None functions. The
function returns a Boolean True when all the fields contain values or if none of the
fields contain values. False is returned when there is a combination of fields con-
taining values and fields that do not contain values.

Syntax
AllOrNone(FieldList)

Rules A character field containing blanks or a numeric field containing a zero is
categorized as a null field value.

Returns True when all fields contain values or none of the fields contain values.

Example
If AllOrNone(CLOSE_DT, MY_PROBLEM_RESOLTN) Then
 &RETURN = MyAuditFunction();
End-If;

None

Description Verifies a character field contains blanks or a numeric field contains zero

Syntax
None(FieldList)

Licensed to James M White <jwhite@maine.edu>

1020 APPENDIX E

Rules A character field containing blanks or a numeric field containing a zero is
categorized as a null field value.

Returns Returns True if the field or list of fields do not contain a value. A False
is returned if one or more fields contain a value.

Example
If MY_PROBLEM_STATUS = "5" Then
 If None(CLOSE_DT) Then
 Error ("Close date is required for resolved issues");
 End-If;
End-If;

Math functions

Round

Description Rounds up the number passed to the specified number of decimal
positions.

Syntax
Round (decimal, precision)

Rules The value represented by a decimal must be of a number data type.

Returns Returns a decimal number rounded up to the number of decimal positions
in precision.

Example
&ANNUAL_RT = Round(JOB.COMPRATE, 3);

Int

Description Removes the decimal positions from a number and returns an integer
value.

Syntax
Int(decimal_number)

Rules Int does not round the input value; it only truncates the decimal positions.

Returns Returns a whole number value.

Example
&HOURLY_RATE = 12.675;
&NEW_RATE = Int(&HOURLY_RATE);

/* Value of &New_rate is now 12 */

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1021

Truncate

Description Removes the specified number of digits from a decimal value.

Syntax
Truncate (decimal_number, digits)

Rules Does not perform any rounding. When the parameter identified by digits
contains a zero, all numbers to the right of the decimal point are removed.

Returns Returns a number value.

Example
&COMPENSATION_RATE = 2375.67895;
&NEW_RATE = Truncate(&COMPENSATION_RATE, 3);

/* Value of &New_Rate is 2375.678 */
&COMPENSATION_RATE = 2375.67895;
&NEW_RATE = Truncate(&COMPENSATION_RATE, 0);

/* Value of &New_Rate is 2375 */

Message Catalog/Display functions

MessageBox

Description Creates and displays a message box window.

Syntax
MessageBox(style, title, message_set, message_num,

default_txt [, paramlist])

where
style Enables the message box window to be tailored with a blend of icons
and push buttons.

title The message box title.

message_set message_set of the message catalog. Message sets 1 through
19,999 are reserved for PeopleSoft applications.

message_num The message number within the message set.

default_txt Text that is displayed in the message box when the cataloged
message set is not available or message set is represented by zero.

parmlist List of parameters that are displayed in the text string. They can be
represented as %1, %2 and so on.

Rules The function return value can be interpreted if necessary. With the style
parameter, two or more buttons can be included in the message box, but their use is
limited to certain PeopleCode events. When the style parameter is left out or style
contains more than one button, the function becomes user think-time, which

Licensed to James M White <jwhite@maine.edu>

1022 APPENDIX E

indicates the button action returns a value back to the function. As a result of await-
ing a reply, the Application Processor suspends the PeopleCode program until the
user clicks on one of the buttons contained in the message.

Returns A number value indicating which button was pressed. See table E.1 for a
list of return value descriptions. A return value of zero indicates there was insufficient
memory to construct the MessageBox.

Example
If MY_PROBLEM_STATUS = "2" Then
 MessageBox(289, "Incorrect Data", 20012, 1, "Project ID %1 is invalid",
MY_PROJECT_ID);
End-If;

WinMessage

Description WinMessage is used to display information in a message box.

Syntax
WinMessage (message [, style] [, title]

message A text string displayed in the message box. When WinMessage is
used as a debugging tool, a text string provides valuable information by includ-
ing field contents as parameters. Utilizing WinMessage to assist while debug-
ging does not require the use of MsgGet and MsgGetText functions.

style This parameter is optional.

title The message box title.

Rules From a debugging perspective, WinMessage can be used to display field
contents and allow us to “inch” through PeopleCode statements if necessary.

Returns When the style parameter is passed, WinMessage returns a number indi-
cating which button was pressed. See table E.1 for a list of return value descriptions.

Table E.1 Message return values

Returns Description

0 Insufficient memory

-1 Warning

1 OK button was pressed

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1023

A return value of zero indicates there is insufficient memory to construct the message
box.

When the style parameter is not included, a Boolean value is returned. True indi-
cates the OK button is pressed.

Example
/* This example does not use style or title */
WinMessage("A message with no style!");

/* This message has style and returns a value based on button pressed */
WinMessage("Close date cannot be less than the reported incident date", 289,
"Invalid Date");

Error

Description Is used to display an error message and stop processing of the active
panel. Error works with messages stored in the Message Catalog or with a text string
supplied to the function.

Syntax
Error (String)

Rules The value contained in string can be a literal text message or a message stored
in the message catalog. The stored message must be retrieved using the MsgGet or
MsgGetText functions. This is important when using translated text messages.
Error terminates the PeopleCode program and prevents further statements from
being executed. Error, however, produces varying results from one PeopleCode
event to another. The events in which Error is commonly used include FieldEdit
and SaveEdit. When executed in these events, the message is displayed and pro-
cessing is halted. In FieldEdit, the field that contains the PeopleCode event is
highlighted; in SaveEdit, no fields are highlighted. One manner in which to work
around this in the SaveEdit event is to use the SetCursorPos function for the
field, prior to calling Error. RowDelete is another PeopleCode event in which the
Error function is sometimes used. When Error is called in RowDelete, the mes-
sage is displayed and the row is not deleted.

Returns Does not return a value

Example
/* Implemented with a message string */

Error ("All field values are required");

/* Used with a cataloged message */
Error MsgGet(20010, 1, "All field values are required");

Licensed to James M White <jwhite@maine.edu>

1024 APPENDIX E

Warning

Description Warning is used to display a message. Warning differs from Error
because it does not halt processing. The user is presented with OK and Explain but-
tons, then has the opportunity to correct or change data.

Syntax
Warning (String)

Rules Warning works with messages stored in the message catalog or a text string
supplied to the function. The stored message must be retrieved using the MsgGet or
MsgGetText function. When executed, the Warning statement terminates the
PeopleCode program and prevents further statements from being executed. Warning
produces varying results from one PeopleCode event to another. The events in which
Warning is commonly used include FieldEdit and SaveEdit. When used in
FieldEdit, the message is displayed and the field that contains the PeopleCode is
highlighted. Placing Warning in SaveEdit displays the message but does not high-
light fields. One manner in which to work around this in the SaveEdit event is to
use the SetCursorPos function for the field prior to Warning. RowDelete is
another PeopleCode event in which Warning is sometimes used. When Warning is
called in RowDelete the message is displayed with OK and Cancel buttons. The
user then has the option to delete the row by pressing OK or to back out of the delete
by pressing Cancel.

Returns Does not return a value

Example
/* This message enables the user to continue after pressing OK */

Warning("Incident status has been assigned");

MsgGet

Description MsgGet retrieve messages from the message catalog and, when neces-
sary, substitutes the value of each parameter contained in the message text identified
by %1, %2, %3.

Syntax
MsgGet (message_set, message_num,
 default_msg_text [, paramlist])

Rules When a message set number less than 1 is passed, or if the message is not in
the catalog, the default message text is substituted.

MsgGet is not a separate function. It is used in conjunction with MessageBox,
WinMessage, Error, and Warning.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1025

Returns Retrieves stored message and substitutes parameter in a paramlist, but does
not return a value

Example
Warning (MsgGet(20011, 1, "Number of rows deleted is %1",
 &COUNT));

MsgGetText

Description MsgGetText retrieve messages from the Message Catalog and when
necessary substitutes the value of each parameter contained in the message text iden-
tified by %1, %2, %3.

Syntax
MsgGetText (message_set, message_num,
 default_msg_text [, paramlist])

Rules MsgGetText is almost identical to MsgGet except that the function dis-
plays the message without displaying a message set and message number.

Returns Retrieves stored message and substitutes parameter in a paramlist, but does
not return a value

Example
Error (MsgGetText(20012, 1, "Data cannot be saved until all fields are
entered"));

Panel Buffer functions

DeleteRecord

Description Works on a level zero scroll record and is used to remove the parent
and any corresponding child records from the database

Syntax
DeleteRecord (level_zero_recfield)

Rules Marks records to be deleted. During save processing, the row is deleted from
the database. The DeleteRecord function cannot be executed from a Save-
PostChange or WorkFlow PeopleCode event because database updates are per-
formed at the conclusion of the Workflow event.

Returns An optional Boolean value is returned following the completion of the
function

Example
&RETURN_VALUE = DeleteRecord(MY_PROJECT_ID);

Licensed to James M White <jwhite@maine.edu>

1026 APPENDIX E

FieldChanged

Description Is used to verify if one or more specified fields have been changed. A
field can be changed on a panel or by a PeopleCode program.

Syntax There are two methods of implementing FieldChanged, and they are
based on how the field is referenced. When the field is referenced in a scroll path, the
syntax is
FieldChanged(scrollpath, target_row,

[recordname.] fieldname)

When the field is referenced by context:
FieldChanged([recordname.] fieldname)

Rules When performed from a record definition that is not the same as the record
name, then the recordname prefix is required.

Returns Returns True when the contents of the Record.Fieldname have been
changed since being retrieved from the database

Example
If FieldChanged(PRIORITY) Then

 &RETURN = MyAuditFunction();
 End-If;

InsertRow

Description Inserts a new row of data into the scroll buffer. The operation is fol-
lowed by the RowInsert PeopleCode event.

Syntax
InsertRow (scrollpath, target_row [, turbo])

Rules This function performs the same steps as if the F7 key were pressed. The
InsertRow function is immediately followed by the RowInsert PeopleCode
event. The remaining PeopleCode events then follow RowInsert. For effective-
dated scrolls, the new row is inserted before the target row. When a non-effective-
dated record is inserted, the new row is inserted after the row identified in the func-
tion. For effective-dated rows, the Effdt field is set to the current date, and the values
that exist in the previous row are copied to the newly inserted row.

Returns An optional Boolean value is returned following the completion of the
function.

Example
InsertRow(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1027

PriorValue

Description Returns the prior value of a buffer field

Syntax
PriorValue(fieldname)

Rules To expect correct results, this function should be used in the FieldEdit
and FieldChange events for the buffer field where PriorValue is called. When
the value of a field is '1' during panel startup, and the value is then changed by the
user to a '2' and then to '3', the PriorValue function returns '2' when executed
after the second change. The value will not be the initial '1'.

Returns Returns an Any data type

Example
If PriorValue(DESCRLONG) = " " Then

 CLOSE_DT = %Date;
End-If;

RecordChanged

Description Indicates whether a row has been modified since being retrieved from
the database

Syntax
Contexual Reference: RecordChanged(RECORD.target_recname)

When the PeopleCode program executing is on the same record, we can use
 RecordChanged(recordname.fieldname)

Rules Can be used during save processing to identify updates based on changes
made during a panel session

Returns Returns True if the record was changed by a user panel or changed from
within a PeopleCode program

Example
If RecordChanged(MY_USER_TABLE.NAME) Then

 &RETURN = MyAuditFunction();
End-If;

RecordDeleted

Description Can be used to identify rows marked for deletion as a result of an
operator F8 delete or a program DeleteRow function call

Licensed to James M White <jwhite@maine.edu>

1028 APPENDIX E

Syntax There are two methods of implementing the RecordDeleted function,
and they are based on how the row is referenced. When the row is referenced in a
scroll path, the syntax is
RecordDeleted(scrollpath, target_row)

When the row is referenced by context
RecordDeleted(RECORD.target_recordname)

Rules Deleted rows are removed from the buffer during save processing, which
enables the RecordDeleted function to be used in most events up to and including
SavePostChg.

Returns Returns a Boolean True when a row has been marked for deletion

Example
If RecordDeleted(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATIONS_EMP) Then

MY_DERIVED.COUNTER = ActiveRowCount(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

End-If;

RecordNew

Description Used during save processing to determine if a row is new to the
database

Syntax Can be used in two ways based on how the row is referenced. When the
row is referenced in a scroll path, the syntax is

RecordNew(scrollpath, target_row)

When the row is referenced by context
RecordNew(RECORD.target_recordname)

Rules In previous releases of PeopleCode this could be written as Record-
New(Recordname.Fieldname)

Returns Returns a Boolean True when the record is new to the panel buffer.

Example
/* Using scrollpath */
If RecordNew(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP) Then
 &RETURN = MyAuditFunction();
End-If;
/* Using contextual reference) */
If RecordNew(RECORD.MY_LOCATIONS) Then
 &RETURN = MyAuditFunction();
End-If;

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1029

Panel Control functions

Gray

Description Sets a field on a panel so that it is display only and cannot be changed

Syntax
Gray(fieldname)

Rules The Gray function is commonly used in the RowInit event and can appear
in other events such as FieldChange.

Returns Returns a Boolean that can be used to determine if the function was suc-
cessful

Example
If MY_PROBLEM_STATUS = "5" Then

 Gray(CLOSE_DT);
 End-If;

Hide

Description Hides a field on a panel making it invisible to the user

Syntax
Hide (fieldname)

Rules Hide can be used in a RowInit event, but can also appear in events such as
FieldChange when fields are hidden based on changes made to corresponding data
elements.

Returns Returns a Boolean, which can be used to determine if the function was
successful

Example
If MY_PROBLEM_STATUS <> "5" Then

Hide(MY_PROBLEM_RESOLTN);
End-If;

UnHide

Description UnHide makes a panel field visible again.

Syntax
UnHide(fieldname)

Rules Fields that are hidden based on the Panel Field Properties-Use-Invisible tab
are not made visible because UnHide has no impact on these fields.

Licensed to James M White <jwhite@maine.edu>

1030 APPENDIX E

Returns Returns a Boolean, which can be used to determine if the function was
successful

Example
If PERSONAL_DATA.BIRTHCOUNTRY <> "USA" Then
 UnHide(PERSONAL_DATA.BIRTHSTATE);
End-If;

Ungray

Description Allows a previously non-editable field to be editable

Syntax
Ungray (fieldname)

Rules Used in events such as RowInit. Can also appear in FieldChange after
the status of a field is impacted by changes to its value or other corresponding fields.

Returns Returns a Boolean, which can be used to determine if the function was
successful

Example
If COMPANY = DEPT_TBL.COMPANY Then
 Hide(COMPANY, PAYGROUP);
End-If;

Process Scheduler functions

ScheduleProcess

Description The ScheduleProcess function stores a row in the Process Request
table enabling the system to schedule a process or job.

Syntax
ScheduleProcess(process_type, process_name
[, run_location] [, run_cntl_id] [, process_instance]
[, run_dttm] [, recurrence_name] [, server_name])

where
process_type A case-sensitive string that identifies the type of process to be
run. SQR Report and Application Engine are examples of process types.

process_name An eight-character string used to identify the process

run_location A one character string that identifies if the process is run on
the client ('1') or the server ('2')

run_cntl_id Identifies the Run Control ID that links operator IDs to Run
Controls

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1031

process_instance The ScheduleProcess function receives this as a
variable and assigns a unique number to identify each process requested.

run_dttm A process or job can be scheduled for some future time by passing
a DateTime value in this parameter. The %DateTime system variable can also
be passed for immediate scheduling.

recurrence_name Identifies the name of a recurring job or process

server_name Identifies the server on which the process or job will be run

Rules process_type and process_name are the only required parameters necessary to
schedule a process.

When a call to ScheduleProcess is made from a program running on an
application server, the run_location parameter cannot be passed as '1' (client).
Doing so generates an error and subsequent cancellation of the request.

Any process involving COBOL or SQR scheduled from a program on an appli-
cation server must also be run on the server. When the PeopleCode program contain-
ing ScheduleProcess is run on a client, the COBOL or SQR process is not
restricted and can run on either the client or server.

The parameter list can accept strings in the form of bind variables or a Meta-
SQL string.

Returns A successful process returns zero. A non-zero return indicates an error was
encountered.

Example
If ScheduleProcess("SQR Report", &REPORT_NAME,
 &RUN_LOCATION, &RUN_CNTL_ID) = 0 Then
 WinMessage("SQR Report successfully scheduled");
End-If;

Save/Cancel functions

DoCancel

Description Used to cancel activity on a panel. The function mimics the ESC key
and the Cancel toolbar icon.

Syntax
DoCancel()

Rules For the current panel group, all PeopleCode programs are terminated except
for those executing in the following events:

SaveEdit
SavePreChg
SavePostChg

Licensed to James M White <jwhite@maine.edu>

1032 APPENDIX E

Returns Does not return a value

Example
If &RETURN_CODE <> 0 Then
 DoCancel();
End-If;

DoSave

Description Performs save processing at the conclusion of the current PeopleCode
program in the FieldEdit, FieldChange, and MenuItemSelect events.

Syntax
DoSave ()

Rules PeopleCode programs containing DoSave continue processing until the
remaining statements are executed. The panel is saved at the conclusion of the pro-
gram. Save processing includes the following events:

SaveEdit
SavePreChg
SavePostChg
WorkFlow

Returns Does not return a value

Example
If &RETURN_CODE = 0 Then
 DoSave();
End-If;

DoSaveNow

Description Works similar to DoSave, however, the panel is immediately saved
without waiting for the PeopleCode program to conclude.

Syntax
DoSaveNow ()

Rules After the panel is saved, any remaining PeopleCode statements that follow
DoSaveNow are executed.

DoSaveNow is only valid from the FieldEdit and FieldChange events.
A common use of DoSaveNow is when remote calls are involved. When using

RemoteCall, DoSaveNow can be used to save information to the database before a
remote process is called.

Returns Does not return a value

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1033

Example
If &RETURN_CODE = 0 Then

DoSaveNow();
If ScheduleProcess("SQR Report", &REPORT_NAME,

&RUN_LOCATION, &RUN_CNTL_ID) = 0 Then
&RETURN = MyAuditFunction();

End-If;
End-If;

WinEscape

Description Used to cancel activity on a panel. WinEscape mimics the ESC key.

Syntax
WinEscape ()

Rules Changes made to the panel since the previous save are revoked

Returns An optional Boolean value is returned if required.

Example
/* This example cancels the panel when fields are missing */
If None(MY_PROBLEM_STATUS, PRIORITY, MY_USER_ID) Then
 WinEscape();
End-If;

Scroll functions

ScrollSelect

Description Selects records from a table and loads them into the scroll buffer area
of a panel. Inserts child rows under the next higher level row.

Syntax
ScrollSelect (levelnum, [RECORD.level1_recname,
[RECORD.level2_recname,]] RECORD.target_recname,
RECORD.sel_recname
[, sqlstr [, bindvars]]
[, turbo])

where
levelnum The level number of the target scroll area. This value can be 1, 2, or 3.

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede target_
recordname.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by RECORD.level1_recname and RECORD.level2_recname.

Licensed to James M White <jwhite@maine.edu>

1034 APPENDIX E

RECORD.target recordname The target scroll area where the selected
data are loaded. When the target scroll is on level 3, specify the level 1 and level
2 records first followed by the level 3 target scroll.

RECORD.sel_recordname Specifies the record or view to retrieve data
from. The sel_recordname can be the same as target_recordname. One charac-
teristic of this parameter is that it enables target rows to be loaded into a buffer
with only those fields used in the scroll area, in addition to key fields. When
selecting rows from a large table such as JOB (in HRMS) and the target scroll area
only uses five fields, specifying a smaller target reduces the amount of data
loaded into system buffers.

sqlstr [, bindvars] The optional SQL string parameter can contain an
SQL WHERE and ORDER BY clause. One or both can be specified. The WHERE
clause enables us to limit the number of rows loaded into the scroll area. The
ORDER BY clause can be used to sort the rows before being loaded into the target
scroll area. The SQL string can accept bind variables that are used as part of the
WHERE or ORDER BY clause. Bind variables can be regular bind or inline bind
variables. SQL string can include Meta-SQL functions.

turbo When specified, improves performance of the ScrollSelect func-
tion. The parameter is passed as a Boolean True.

Rules Allows for the specification of the target scroll area, a source record from
which to select rows, and an optional SQL string. Keys on the select record must be
the same as on the target scroll record. A record can be used as both select and scroll
record. Select record must be defined and created using Application Designer. Select
record cannot be a Derived/Work record.

Returns Does not return a value

Example
/* Selects data into level 2 using a target record with limited fields */

ScrollSelect(2, RECORD.MY_LOCATIONS,
RECORD.MY_LOCATION_EMP, RECORD.MY_LOC_EMPL_VW, True);

ScrollSelectNew

Description Resembles ScrollSelect, except that ScrollSelectNew marks
records as new when they are loaded into the scroll area. During save processing,
these records are automatically added to the database.

Syntax
ScrollSelectNew (levelnum,
[RECORD.level1_recname, [RECORD.level2_recname,]]
RECORD.target_recname, RECORD.sel_recname
[, sqlstr [, bindvars]]
[, turbo])

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1035

where

levelnum Represents the level number of the target scroll area. This value
can be 1, 2, or 3.

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by RECORD.level1_recname and RECORD.level2_recname.

RECORD.target recordname The target scroll area where the selected
data are loaded. When the target scroll is on level 3, we need to specify the level
1 and level 2 records first, followed by the record at target scroll level 3.

RECORD.sel_recordname Specifies the record or view to retrieve data
from. The sel_recordname can be the same as target_recordname. One charac-
teristic of this parameter is that it allows target rows to be loaded into a record
with only those fields used in the scroll area in addition to key fields.

sqlstr [, bindvars] The optional SQL string parameter can contain an
SQL WHERE and ORDER BY clause. One or both can be specified. The WHERE
clause enables us to limit the number of rows loaded into the scroll area. The
ORDER BY clause can be used to sort the rows before they are loaded into the tar-
get scroll area. The SQL string can accept bind variables that are used as part of
the WHERE or ORDER BY clause. Bind variables can be regular or inline bind vari-
ables. The SQL string can include Meta-SQL functions.

turbo Improves performance of the ScrollSelectNew function. The
parameter is passed as a Boolean True when Turbo is used.

Rules Keys on the select record must be the same as on the target scroll record. A
record can be used as both select and scroll record. Select record must have been defined
and created using Application Designer and cannot be a Derived/Work record.

Returns Does not return a value

Example
/*Load Location data into scroll level 1 */

ScrollSelectNew(1, RECORD.MY_LOCATIONS,
RECORD.MY_LOC_OPR_VW, True);

ScrollFlush

Description Removes records from a target scroll area

Licensed to James M White <jwhite@maine.edu>

1036 APPENDIX E

Syntax
ScrollFlush (scrollpath)
ScrollPath defined as
[RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
 RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row The level 1 row to flush. The value is an integer and can be a
variable or a constant. The parameter must be specified when ScrollFlush is
targeted at scroll levels 2 or 3.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row Indicates the scroll level 2 to flush. The value is an integer and
can be a variable or a constant. The parameter must be specified when Scroll-
Flush is targeted at scroll level 3.

Target recordname The target scroll area where rows to remove are
located. When the target scroll is on level 3, specify the level 1 and level 2 records
first, then the record at target level 3. The target record name must be prefixed
by RECORD.

Rules Rows flushed from the target scroll area are not removed from the database

Returns Does not return a value

Example
ScrollFlush(RECORD.MY_LOCATIONS, CurrentRowNumber(),
 RECORD.MY_LOCATION_EMP, RECORD.MY_LOC_EMPL_VW);

ActiveRowCount

Description Identifies the sum of active rows in a given scroll area

Syntax
ActiveRowCount (Scrollpath)
ScrollPath defined as:
[RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
 RECORD.target_recname

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1037

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2 this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Identifies the record at scroll level 1. The value is an integer
and can be a variable or a constant. The parameter must be specified when
ActiveRowCount is used to return the number of active rows at scroll level
2 or 3.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row Identifies the record at scroll level 2. The value is an integer and
can be a variable or a constant. The parameter must be specified when
ActiveRowCount is used to return the number of active rows at scroll level 3.

Target recordname Record in the target scroll area. The target record
name must be prefixed by RECORD. The target record may be on scroll level 1,
2, or 3

Rules Records marked as deleted are not included in the count.

Returns Returns a number representing the number of active rows in a scroll area

Example
&NUMBER_OF_ROWS = ActiveRowCount(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

CurrentRowNumber

Description CurrentRowNumber is used when it is necessary to identify the row
number of the current row in a scroll area.

Syntax
CurrentRowNumber ([level])

or
CurrentRowNumber()

where
level Identifies the scroll level where the row number is retrieved

Rules When the level parameter is not specified, the function uses the current scroll
level from where the function is called as the default level. CurrentRowNumber is
sometimes used with ActiveRowCount to limit program loops to the number of
active rows.

Licensed to James M White <jwhite@maine.edu>

1038 APPENDIX E

Returns A number representing the current row number on the specified scroll
level

Example
/*The return value can be used in ActiveRowCount*/

&COUNT = ActiveRowCount(RECORD.MY_LOCATIONS, &ROW_NUMBER,
RECORD.MY_LOCATION_EMP);

/*CurrentRowNumber can also be specified explicitlty */
&COUNT = ActiveRowCount(RECORD.MY_LOCATIONS,
CurrentRowNumber(1), RECORD.MY_LOCATION_EMP);

DeleteRow

Description DeleteRow enables rows to be deleted from a PeopleCode program.
The function triggers the RowDelete event, which mimics the F8/Delete Row
operation.

Syntax
DeleteRow (Scrollpath, target_row)

ScrollPath defined as:
[RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Identifies the record at scroll level 1. The value is an integer and
can be a variable or a constant. The parameter must be specified when
DeleteRow is used to delete rows at scroll level 2 or 3.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row Identifies the record at scroll level 2. The value is an integer and
can be a variable or a constant. The parameter must be specified when
DeleteRow is used to delete the number of rows at scroll level 3.

Target recordname The target scroll area to delete. The target record may be
on scroll level 1, 2, or 3 and must be prefixed by RECORD.
target_row Identifies the row number to be deleted

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1039

Rules When DeleteRow is used in a loop, the operation must begin with the
highest row and work downwards. Each time a row is deleted the system renumbers
all remaining rows.

Returns Returns an optional Boolean value

Example
For &I = ActiveRowCount(RECORD.PERS_DATA_EFFDT)
 To 1 Step - 1
 DeleteRow(RECORD.PERS_DATA_EFFDT, &I);
End-For;

FetchValue

Description Retrieves the value of a field from a row stored in the panel buffer of a
scroll area and places it into a variable or fieldname

Syntax
FetchValue (Scrollpath, target_row,
[recordname.] fieldname)

ScrollPath is defined as:
RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Indicates the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when fields from
rows at level 2 or 3 are fetched.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row Represents the scroll level 2 row to be referenced. The value is
an integer and can be a variable or a constant. The parameter must be specified
when FetchValue is targeted at scroll level 3.

Target recordname Represents the target scroll area containing the row
where data are to be fetched from. The target record name must be prefixed by
RECORD. The target record may be on scroll level 1, 2. or 3.

target_row Identifies the row number in the target scroll area where buffer
field contents we will be retrieved.

Licensed to James M White <jwhite@maine.edu>

1040 APPENDIX E

[recordname.] fieldname The name of the field that references the value
to be loaded. The record name is used when the function call is made from a
record definition that is not the same as recordname. The fieldname can reside
on scroll level 1, 2, or 3.

Rules In many instances FetchValue may not be necessary if the contents of a
field are accessible to a program by using the [recordname].fieldname syntax.
FetchValue can be used when a value is not within context.

Returns Returns an ANY data type value.

Example
&EMPLID = FetchValue(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP, &I,
MY_LOCATION_EMP.EMPLID);

HideRow

Description HideRow is used to hide a specific row and any child rows in subordi-
nate scroll levels.

Syntax
HideRow (Scrollpath)
[, target_row]

ScrollPath defined as:
[RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row This parameter indicates the scroll level 1 row. The value is an
integer and can be a variable or a constant. The parameter must be specified
when fields from rows at level 2 or 3 are to be hidden.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when HideRow is targeted at scroll level 3.

Target recordname The target record to hide. The target record may be on
scroll level 1, 2, or 3 and must be prefixed by RECORD.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1041

target_row Identifies the row number to be hidden

Rules When a row at a higher scroll level is hidden, any associated child rows are
hidden as well. When the HideRow function is used, the target row is hidden but
there is no impact to the underlying database tables.

Returns A Boolean indicating the success (True) or failure (False) of the call

Example
If MY_LOCATIONS.EFFDT < &TARGET_DATE Then

HideRow(RECORD.MY_LOCATIONS, CurrentRowNumber(),
RECORD.MY_LOCATION_EMP, &I);
End-If;

HideScroll

Description This function is similar to HideRow except that rather than hiding a
row, the complete scroll area is hidden including all data in the scroll and the scroll bar.

Syntax
HideScroll (Scrollpath)

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,]
[RECORD.level2_recname,] level2_row,]
 RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row This parameter indicates data at scroll level one. The value is an
integer and can be a variable or a constant. The parameter must be specified
when hiding scroll areas at level 2 or 3.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when hiding a scroll at level 3.

Target recordname The target scroll area to hide. The target record may
be on scroll level 1, 2, or 3 and must be prefixed by RECORD.

Rules HideScroll is usually implemented in the RowInit and FieldChange
events.

Licensed to James M White <jwhite@maine.edu>

1042 APPENDIX E

Returns A Boolean indicating the success (True) or failure (False) of the call.

Example
If %Mode = "U" Then
 If ActiveRowCount(RECORD.MY_LOCATIONS) = 0 Then
 HideScroll(RECORD.MY_LOCATIONS);
 End-If;
End-If;

RowScrollSelect

Description RowScrollSelect uses the select record parameter to read data and
place it into a scroll specified for a particular parent row. This function is similar to
ScrollSelect. The difference between ScrollSelect and RowScrollSe-
lect is that ScrollSelect uses the key hierarchy of the parent keys and automat-
ically places child rows under their corresponding parent data within the scroll buffer.
RowScrollSelect does not do this and requires that the SQL string be used to
limit the rows loaded into the scroll to those of the parent row keys.

Syntax
RowScrollSelect (levelnum, scrollpath,
RECORD.sel_recname
[, sqlstr [, bindvars]]
[, turbo])

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,
[RECORD.level2_recname, level2_row]]
RECORD.target_recname

where

levelnum Represents the level number of the target scroll area. This value can
be 1, 2, or 3.

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Specifies the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 2.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when the target record name is on scroll level 3.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1043

target recordname Target record name appears at the lowest scroll level.
The target record name must be prefixed by RECORD. Target record may be on
scroll level 1, 2, or 3. When the target record is on scroll level 2, the target record
name must be prefixed with the RECORD.level1_recname, level1_row parame-
ter. When the target is on scroll level 3, the target record name must be prefixed
with the RECORD.level1_recname, level1_row and the RECORD.level2_rec-
name, level2_row.

RECORD.sel_recordname Specifies the record or view from which data
can be retrieved. Sel_recordname can be the same as target_recordname. One
characteristic of this parameter is that it enables target rows to be loaded into a
record with only those fields required in the scroll area in addition to key fields.

sqlstr [, bindvars] The SQL string parameter requires the SQL WHERE
and an optional ORDER BY clause. The WHERE clause is used to limit any child
keys read to those of the parent row key. The ORDER BY clause can be used to
sort the rows before data are loaded into the target scroll area. The SQL string
can accept bind variables that can be used as part of the WHERE or ORDER BY
clause. Bind variables can be regular or inline bind variables. The SQL string can
include Meta-SQL functions.
turbo Improves performance of the RowScrollSelect function. The param-
eter is passed as a Boolean True when Turbo RowScrollSelect is used.

Rules RowScrollSelect does not arrange child rows under their related parent
row keys. It is up to the WHERE clause in the SQL string to limit child rows to the par-
ent record key. Select record should be defined and created using Application
Designer and cannot be a Derived/Work record.

Returns Does not return a value

Example
/* Loads the Direct Deposit Distribution record for the current Emplid */

For &I = 1 To ActiveRowCount(RECORD.DIRECT_DEPOSIT);
RowScrollSelect(2, RECORD.DIRECT_DEPOSIT, &I,
RECORD.DIR_DEP_DISTRIB, "WHERE EMPLID = :1
ORDER BY EFFDT", PERSONAL_DATA.EMPLID, True);

End-For;

RowScrollSelectNew

Description RowScrollSelectNew resembles RowScrollSelect, except that
RowScrollSelectNew marks records as New when they are loaded into the scroll
area. RowScrollSelectNew does not automatically place child rows under their corre-
sponding parent key within the scroll buffer. It requires that the SQL string be used to
limit the rows loaded into the scroll to those of the parent key.

Licensed to James M White <jwhite@maine.edu>

1044 APPENDIX E

Syntax
RowScrollSelectNew (levelnum, scrollpath,
RECORD.sel_recname
[, sqlstr [, bindvars]]
[, turbo])

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,
[RECORD.level2_recname, level2_row]]
RECORD.target_recname

where

levelnum Represents the level number of the target scroll area. This value can
be 1, 2, or 3.

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Indicates the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 2.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row Represents data at scroll level 2. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 3.

target recordname The target record name appears at the lowest scroll
level. The target record name must be prefixed by RECORD. The target record
may be on scroll level 1, 2, or 3. When the target record is on scroll level 2, the
target record name must be prefixed with the RECORD.level1_recname, level1_
row parameter. When the target is on scroll level 3, the target record name must
be prefixed with the RECORD.level1_recname, level1_row, and the
RECORD.level2_recname, level2_row.

RECORD.sel_recordname Specifies the record or view from which data
can be retrieved. sel_recordname can be the same as target_recordname. One
characteristic of this parameter is that it enables target rows to be loaded into a
record with only those fields required in the scroll area in addition to key fields.

sqlstr [, bindvars] The SQL string parameter requires the SQL WHERE
and an optional ORDER BY clause. The WHERE clause is used to limit any child
keys read to those of the parent row key. The ORDER BY clause can be used to
sort the rows before data are loaded into the target scroll area. The SQL string
can accept bind variables that can be used as part of the WHERE or ORDER BY

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1045

clause. Bind variables can be regular or inline bind variables. The SQL string can
include Meta-SQL functions.

turbo Improves performance of the RowScrollSelectNew function. The
parameter is passed as a Boolean True.

Rules RowScrollSelectNew does not arrange child rows under their related
parent row keys. It is up to the WHERE clause in the SQL string to limit child rows to
the parent record key. Select record should be defined and created using Application
Designer and cannot be a Derived/Work record.

Returns Does not return a value

Example
RowScrollSelectNew(2, RECORD.MY_LOCATIONS,
RECORD.MY_LOCATION_EMP, RECORD.MY_LOC_EMPL_VW,
"WHERE SETID = :1 AND OPRCLASS = :2 AND LOCATION = :3",
MY_LOCATIONS.SETID, MY_LOCATIONS.OPRCLASS,
MY_LOCATIONS.LOCATION, True);

RowFlush

Description Used at the row level to remove a particular row of data from a scroll

Syntax
RowFlush(scrollpath, target_row)

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,
[RECORD.level2_recname, level2_row]]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Indicates the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 2.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when the target record name is on scroll level 3.

Licensed to James M White <jwhite@maine.edu>

1046 APPENDIX E

target recordname The target record name appears at the lowest scroll
level. The target record name must be prefixed by RECORD. The target record
may be on scroll level 1, 2, or 3. When the target record is on scroll level 2, the
target record name must be prefixed with the RECORD.level1_recname, level1_
row parameter. When the target is on scroll level 3, the target record name must
be prefixed with the RECORD.level1_recname, level1_row, and the
RECORD.level2_recname, level2_row.

target_row Identifies the row number to be removed from the specified tar-
get scroll area

Rules RowFlush does not remove rows from the database; it only removes them
from the panel scroll buffer. To remove records from the panel scroll buffer as well as
from the database, the DeleteRow function can be used because it performs both
operations.

Returns Does not return a value

Example
If EMPLID <> PERSONAL_DATA.EMPLID Or
 EFFDT <> DIRECT_DEPOSIT.EFFDT Then
 RowFlush(RECORD.DIRECT_DEPOSIT, CurrentRowNumber(),
 RECORD.DIR_DEP_DISTRIB, CurrentRowNumber());
End-If;

UpdateValue

Description UpdateValue is commonly used in a scroll area to update the value
of a field using a value parameter.

Syntax
UpdateValue (Scrollpath, target_row,
 [recordname.] fieldname, value)

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,
[RECORD.level2_recname, level2_row]]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Indicates the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 2.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1047

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when the target record name is on scroll level 3.

target recordname The target record name appears at the lowest scroll
level. The target record name must be prefixed by RECORD. The target record
may be on scroll level 1, 2, or 3. When the target record is on scroll level 2, the
target record name must be prefixed with the RECORD.level1_recname, level1_
row parameter. When the target is on scroll level 3, the target record name must
be prefixed with the RECORD.level1_recname, level1_row, and the
RECORD.level2_recname, level2_row.

target_row Identifies the row number in the specified target scroll area be
to updated

[recordname.] fieldname The name of the field to be updated on the
target row. Recordname is used when the function call is made from a record
definition that is not the same as the recordname. Fieldname can reside on scroll
level 1, 2, or 3.

Value Identifies the variable, constant, or record field that is moved to the
corresponding target record

Rules The data type of the value parameter must be of a type compatible with the
record field. The UpdateValue function updates the value of the field in the scroll.
If the panel is canceled, no changes are written to the database.

Returns Does not return a value

Example
&NEW_DATE = %Date;
If EFF_STATUS <> "A" Then

For &I = ActiveRowCount(RECORD.DIRECT_DEPOSIT)
 To 1 Step - 1;

UpdateValue(RECORD.DIRECT_DEPOSIT, CurrentRowNumber(),
RECORD.DIR_DEP_DISTRIB, &I,
DIR_DEP_DISTRIB.LAST_UPDATE_DATE, &NEW_DATE);

End-For;
End-If;

TotalRowCount

Description Produces the aggregate number of rows in a scroll area including
deleted rows

Licensed to James M White <jwhite@maine.edu>

1048 APPENDIX E

Syntax
TotalRowCount (Scrollpath)

ScrollPath is defined as:
[RECORD.level1_recname, level1_row,
[RECORD.level2_recname, level2_row]]
RECORD.target_recname

where

RECORD.level1_recname Represents the path to the target scroll area.
When the target record is on scroll level 2, this parameter must precede the
target_recordname. The leve1_recname requires the RECORD prefix.

level1_row Indicates the scroll level 1 row. The value is an integer and can
be a variable or a constant. The parameter must be specified when the target
record name is on scroll level 2.

RECORD.level2_recname Represents the path to the target scroll area.
When the target record is on scroll level 3, the target_recordname must be pre-
ceded by a RECORD.level1_recname and RECORD.level2_recname.

level2_row This parameter represents data at scroll level 2. The value is an
integer and can be a variable or a constant. The parameter must be specified
when the target record name is on scroll level 3.

target recordname The target record name appears at the lowest scroll
level. The target record name must be prefixed by RECORD. The target record
may be on scroll level 1, 2, or 3. When the target record is on scroll level 2, the
target record name must be prefixed with the RECORD.level1_recname, level1_
row parameter. When the target is on scroll level 3, the target record name must
be prefixed with the RECORD.level1_recname, level1_row, and the
RECORD.level2_recname, level2_row.

Rules TotalRowCount is similar to ActiveRowCount except that TotalRowCount
includes deleted rows. Rows that are marked as deleted remain in the buffer until all
system updates have been performed.

Returns A number that includes active as well as deleted rows.

Example
/* To obtain total number of rows at level 1 */

&TOTAL_ROWS = TotalRowCount(RECORD.MY_LOCATIONS);
/* Total number of rows at level 2 */

&TOTAL_ROWS_LEVEL2 = TotalRowCount(RECORD.MY_LOCATIONS,
CurrentRowNumber(), RECORD.MY_LOCATION_EMP);

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1049

SQL functions

SQLExec

Description Executes an SQL command passed as a string from a PeopleCode pro-
gram. The SQL string can contain bind variables, subselects, and joins. Data elements
appearing in a Select statement are returned to the PeopleCode program as output
and can be stored in variables or record fields.

Syntax
SQLExec (sqlcmd, bindvars, output)

sqlcmd Represents an SQL string passed by the PeopleCode program. It can
contain references to both regular and inline bind variables.

bindvars Bind variables are the data elements referenced in the SQL string.
There are two types of bind variables, regular and inline. When regular bind vari-
ables are used, each requires a corresponding variable name that replaces the :n
reference in the SQL string. These variables appear outside the double quotes as

variable-1 [, variable-2, variable-3 …]

When inline bind variables are used, the variables are enclosed within the SQL
string as

[:recordname1.]fieldname1 [, [recordname2.]fieldname2] ...

output Represents the column name (s) populated as a result of a Select
statement. The output can be placed into variables or record fields. Each column
selected requires a corresponding output variable or record field separated by
commas. The two forms include

variable-1 [, variable-2, variable-3] …

or
[:recordname1.]fieldname1 [, [recordname2.]fieldname2] …

Rules SQLExec is one function where unpredictable results can occur if rules are
not followed. Because SQLExec bypasses the Application Processor and heads
directly to the database, no evaluation of the SQL string contained within quotes is
performed. Record fields used as inline bind variables or output variables are evalu-
ated by the Application Processor when they are not contained in the SQL string.
When PeopleCode containing SQLExec statements are entered into the PeopleCode
editor, any undefined record fields are represented by an error message during the
syntax check or save operation. SQLExec statements containing inline bind variables
are the exception. Because an inline bind variable is enclosed in quotes, an SQL state-
ment which contains incorrect inline bind variables generates a runtime error mes-
sage. A previously undefined output variable is created at runtime and does not
generate an error.

Licensed to James M White <jwhite@maine.edu>

1050 APPENDIX E

A SQLExec Select statement retrieves one row of data only. When multiple
rows are selected, only the first row is actually returned.

The maximum number of output variables when using Select is 64.
With SQLExec, Updates, Inserts and Deletes can be performed but can

only be done in the following events:

SavePreChg
WorkFlow
SavePostChg

Application records referenced in a SQLExec statement require the PS_ prefix.

Returns Returns an optional Boolean. A True indicates the function ran successfully.

Example
/* Using UPDATE with a regular bind variable */
SQLExec("Update PS_MY_LOCATIONS SET EFFDT = %1",
MY_LOCATIONS.EFFDT);

/* Using an inline bind variable */
SQLExec("Update PS_MY_LOCATIONS SET EFFDT =
:MY_LOCATIONS.EFFDT");

String functions

Lower

Description Converts the uppercase characters of the field or variable to lower case
and returns them as a String data type

Syntax
Lower (string)

Rules Numeric, punctuation and other non-letter values are not changed

Returns A lowercase string

Example
&MY_STRING = "THIS STRING BECOMES LOWER CASE";
&NEW_STRING = Lower(&MY_STRING);

LTrim

Description Function is used to remove any leading characters identified in string2
from string1

Syntax
Ltrim (string1 [, string2])

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1051

Rules When string2 is not supplied, all leading blanks from string1 are removed.
When string2 is supplied, the function is terminated when characters found in
string1 do not match those found in string2.

Returns A string with leftmost characters in string2 removed or blanks when
string2 is not supplied.

Example
&STREET_ADDRESS = ",##@&100 Main Street";
&STREET_ADDRESS = LTrim(&MY_STRING, ",.#@&");
/* &STREET_ADDRESS Now contains 100 Main Street */

RTrim

Description Function is used to remove any rightmost characters identified by
trim_str from the source string

Syntax
RTrim (source_str, [, trim_str])

Rules Works from right to left removing trailing characters defined in trim_str.
When trim_str is not supplied, any rightmost blanks are removed.

Returns A string with leftmost characters in string2 removed or blanks when
string2 is not supplied.

Example
&DEPARTMENT_DESCR = "Software development & Web
Services,,,,,,";
&DEPARTMENT_DESCR = RTrim(&DEPARTMENT_DESCR, ",");

Upper

Description Converts the characters appearing in a text string to upper case values

Syntax
Upper (string)

Rules Characters such as numeric, punctuation, and other non-letter values are not
changed

Returns Returns a string containing uppercase values.

Example
&LAST_NAME = "picard";

&LAST_NAME_SRCH = Upper(&LAST_NAME);

/* Value of &LAST_NAME_SRCH = PICARD */

Licensed to James M White <jwhite@maine.edu>

1052 APPENDIX E

Trace Control functions

SetTracePC

Description Controls PeopleCode Trace based on parameter values passed.

Syntax
SetTracePC (n)

Rules Takes one parameter, which represents the trace settings used in producing the
output trace file. When multiple trace options are required, each option number is
added, and the sum is passed to the function. The options available to SetTracePC
are shown in table E.2.

By default SetTracePC produces a file named DBG1.TMP in the Windows
Temp directory. A unique file name can be specified if necessary, and this can be done
from within the configuration manager trace option.

Returns Does not return a value

Transfer functions

SetNextPanel

Description SetNextPanel identifies a panel name that will be transferred con-
trol to when the operator activates the F6 or presses the NextPanel toolbar icon.

Syntax
SetNextPanel (panelname)

Rules Verifies that the panel identified by panelname is available on the current
active menu

Table E.2 SetTracePC options

Option # Description

1 This option traces the program that is executed. It includes options 64, 128 and
256 specified below.

2 Lists the entire program.

4 Displays the outcomes of assignments made to variables.

8 Identifies the values retrieved for all variables.

16 Identifies the contents used in the internal stack.

64 This trace option identifies when each program is started.

128 Identifies the calls made to external PeopleCode routines.

256 Identifies the calls made to internal PeopleCode routines.

512 Displays the value of parameters passed to a function.

1024 This option displays the values of parameters at the conclusion of a function call.

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1053

Returns Returns an optional Boolean value based on the success or failure of the
function call

Example
If &RETURN_CODE = 0 Then
 SetNextPanel("MY_APPLCTN_TBL");
Else
 SetNextPanel("MY_USER_TBL");
End-If;

TransferPanel

Description Transfers control to the next panel in the panel group, the panel name
supplied to the function, or to the panel identified by a previous SetNextPanel
function.

Syntax
TransferPanel ([panel_name])

or
TransferPanel ()

Rules The panel transferred to must exist in the current panel group. When the
function is called from events outside of save processing (SavePreChg,
SavePostChg), any PeopleCode statements following the TransferPanel func-
tion are not executed and processing is halted.

Returns Returns an optional Boolean value based on the success or failure of the
function call.

Example
If &RETURN_CODE = 0 Then
 SetNextPanel("MY_APPLCTN_TBL");
Else
 SetNextPanel("MY_USER_TBL");
End-If;
TransferPanel();

/* Can also be written */

If &RETURN_CODE = 0 Then
 &NEXTPANEL = "MY_APPLCTN_TBL";
Else
 &NEXTPANEL = "MY_USER_TBL";
End-If;
TransferPanel(&NEXTPANEL);

Licensed to James M White <jwhite@maine.edu>

1054 APPENDIX E

META-SQL FUNCTIONS

Meta-SQL functions are used in SQL strings. They expand in these strings to become
platform-specific parameters in the SQL statements. SQL strings are used in the
SQLExec as well as scroll functions that accept an SQL string. Meta-SQL can also be
implemented when constructing dynamic views or Application Engine statements.

Table E.3 Selected Meta-SQL functions

Function Description

%CurrentDateIn This is an In function that becomes a platform-specific SQL string. The
string can be used to represent current date in a Select, Update, or Insert
statement.

%CurrentDateOut An Out function that can be used as the current date in the Select clause
of an SQL string

%CurrentDateTimeIn An In function that becomes a platform-specific SQL string. The string can
be used as a DateTime value in a Select, Update, or Insert statement.

%CurrentDateTimeOut %CurrentDateTimeOut is an out function that can be used as the current
DateTime value in the Select clause of an SQL string.

%CurrentTimeIn This is an In function that becomes a platform-specific SQL string. The
string is used as current time in a Select, Update, or Insert statement.

%CurrentTimeOut An Out function that can be used as the current time in the Select clause of
an SQL string

%DateAdd Returns a date after adding the add_days parameter to date_from.
syntax: %DateAdd (date_from, add_days)
add_days is an integer that can have a negative value and is added to
date_from.

%DateDiff Identifies the difference between two dates
syntax: %DateDiff (date_from, date_to)
The difference between date_from and date_to is returned as an integer
value. When a date literal is used, it must be passed as a %DateIn.
Example
&Difference = %DateDiff(INCIDENT_DT, CLOSE_DT);
&Difference = %DateDiff (CLOSE_DT, %DateIn(‘1999-05-31’));

%DateIn An In function that becomes a platform-specific SQL string. The function
accepts a date value parameter or a date literal in the format YYYY-MM-DD.
%DateIn is used in SQL statements such as Select, Insert, and Update
that require a date bind variable or date literal.
syntax %DateIn(date)

%DateOut An Out function that can be used as the date in the Select clause of an
SQL string
syntax: %DateOut(date)

%TimeIn This is an In function that becomes a platform-specific SQL string. The
string is used as the time value in a Select, Update, or Insert statement.
The time parameter passed can be a time variable or a literal in the form
hh:mm:ss.ssssss [{AM|PM}].

Licensed to James M White <jwhite@maine.edu>

BUILT-IN FUNCTIONS 1055

%TimeOut An Out function that can be used as the time in the Select clause of an
SQL string

%Substring This function references only the portion of the string identified by source_
str. The starting position is identified by start and is relative to 1. Length rep-
resents the number of characters to be referenced. %Substring can be
used to extract or compare a selected area of a string.
syntax %Substring (source_str, start, length)

%TrimSubstr This function is similar to %Substring and can be used to extract or com-
pare a selected area of a string. The difference is that any trailing blanks in
the string referenced by source are removed from the target substring.
syntax %TrimSubstr (source_str, start, length)

Table E.3 Selected Meta-SQL functions (continued)

Function Description

Licensed to James M White <jwhite@maine.edu>

1056

A P P E N D I X F

Application Engine
functions

Eight basic functions or macros can be utilized in Application Engine statements:
&BIND, &CLAUSE, &CLEARCURSOR, &EXECUTE, &MSG, &&RECORD, &ROUND, and
&SELECT. We’ve already covered the most common functions in our exercises
(&BIND, &MSG, and &SELECT). The only macro is &&RECORD.

&BIND

Purpose Retrieves an individual field value from the cache record.

Syntax
&BIND(cache_field [,NOQUOTES] [,NOWRAP] [,STATIC])

Rules The &BIND function can be used almost anywhere in an SQL statement. It
cannot be used in a Select statement Result Set field list.

A character field is returned enclosed in quotes unless the optional NOQUOTES
parameter is used.

Date fields are automatically enclosed (or “wrapped”) within the %DATEIN or
%DATEOUT Meta-SQL functions unless the optional NOWRAP parameter is specified.

When the STATIC parameter is specified, Application Engine resolves the &BIND
variable before compiling the SQL statement. This is useful when creating dynamic
SQL statements.

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE FUNCTIONS 1057

Example
&SELECT(COUNTER)
SELECT COUNT(*)
 FROM PS_&BIND(RECNAME,NOQUOTES,STATIC)

The example is the same used in exercise #3 of our tutorial. When using a RECNAME
of JOB, the following SQL statement is compiled:
SELECT COUNT(*) FROM PS_JOB

The value of JOB is not enclosed in quotes due to the NOQUOTES parameter and can
therefore be concatenated properly with the PS_ prefix. The STATIC parameter tells
Application Engine to resolve the &BIND variable before compiling the statement.

The &SELECT portion of this statement is described in the &SELECT section.

&CLAUSE

Purpose Similar to a COBOL copybook (or #Include in SQR). When used in a
statement it is replaced with the contents of the Application Engine statement speci-
fied in the &CLAUSE function. One of the main uses of the &CLAUSE function is
retrieving predefined column lists and substituting them in the calling statement.
This is useful for Select lists or Insert statements. There are several parameters
that can be used with &CLAUSE to increase its’ flexibility.

Syntax
&CLAUSE(product, application, section, step, type [,parm1] …
 [,parm9])

Rules &CLAUSE must point to a valid statement designated by the fully qualified
Application Engine statement name of product, application, section, step, and type.
No validation is performed. Any errors will be recognized at run-time.

The actual clause section that’s retrieved may have optional &P(n) parameter
variables embedded within it. A parameter value must be passed to it with the
&CLAUSE function. Up to nine parameters may be passed. Several symbolic parame-
ters may be used in an &CLAUSE function:

&COMMA Since a physical comma (or ‘,’) would not be interpreted as an actual
parameter, the &COMMA symbolic can be used.

&SPACE This symbolic represents a blank or space. If the retrieved clause sec-
tion uses &P(n) but isn’t required a space can be passed to resolve them using
&SPACE.

&RPAREN A right parenthesis may be passed to the specified “clause section.”
Once again, the symbolic must be used. A physical right parenthesis would not
be interpreted as a parameter that needs to be passed.

One of the primary uses of parameters in a &CLAUSE function is to pass a syn-
onym to be used as a column prefix.. The table synonym must be passed with a

Licensed to James M White <jwhite@maine.edu>

1058 APPENDIX F

period like ‘A.’ or ‘B.’ —without the quotes. The &CLAUSE function would then
return the columns with the desired prefixes to your current statement.

Example Assuming we defined a “clause section” for product = AE, Appl ID =
SAMPLE, section = COMMON, step = CITYINFO, and statement type = S. The col-
umn list is entered in the statement text box as follows:
&p(1)CITY
,&p(1)STATE
,&p(1)ZIP

The &CLAUSE function allows us to substitute the above column list anywhere in our
program. Using parameters, we can tailor the column list to our particular needs with
prefixes. You’ll notice the &P(n) prefix variable contains a ‘1’ for all three columns.
This means the first parameter passed in the &CLAUSE function is used as the prefix
for all three columns. Using &p(n), the n represents the nth parameter passed in the
&CLAUSE.
INSERT INTO ps_user_cityinfo
(&CLAUSE(AE, SAMPLE, COMMON, CITYINFO, S, &SPACE))
SELECT &CLAUSE(AE, SAMPLE, COMMON, CITYINFO, S, A.)
 FROM ps_temp_cityinfo A

The &CLAUSE is used twice: Once for the Insert Column list, which doesn’t allow
prefixes, and once for the Select Column list, which in this case uses a prefix of ‘A’.
When the SQL statement is resolved, it appears as:

INSERT INTO ps_user_cityinfo
(CITY, STATE, ZIP)
SELECT A.CITY, A.STATE, A.ZIP
 FROM ps_temp_cityinfo A

Also, see the &&RECORD macro for similar functionality.

&CLEARCURSOR

Purpose A re-used statement may need to be recompiled during execution of the
program. The &CLEARCURSOR function accomplishes this and resets any &BIND
variables in the statement that use the STATIC option.

Syntax
&CLEARCURSOR([product,] [application,] section, step,
 type)

Rules This function must be located at the start of the statement. There may be no
other functions or commands in the statement.

Example
&CLEARCURSOR(BI, BIIVC000, DUEDATE, SETDATE, D)

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE FUNCTIONS 1059

This recompiles the DO Select statement in the SETDATE step. The step is found
in the DUEDATE section of the billing application BIIVC000.

NOTE Refer to the section describing the Statement Definition panel in
appendix F for an explanation of re-used statements.

&EXECUTE

Purpose Database-specific commands may be executed with this function. Gener-
ally, this means any SQL statement that cannot be executed directly using the
Update/Insert/Delete SQL statement type.

Syntax
&EXECUTE([/])

command_1 {; | /} …
command_n {; | /}

Rules The Update/Insert/Delete statement type must be used. This function
must be located at the start of the statement. No other functions or commands may
exist in the statement.

Application Engine expects each command within the &EXECUTE function to be
delimited with a semi-colon. The optional forward slash (/) parameter overrides this
convention and allows the use of a procedural language such as Oracle’s PL/SQL to be
used. Since the commands within a PL/SQL block are normally terminated by a semi-
colon, the forward slash override avoids any conflict. The forward slash would then
be required at the end of the &EXECUTE statement.

Example
&EXECUTE(/)
declare
 ctr integer:= 0;
begin
 while ctr = 0 loop
 ctr = ctr + 1;
 update ps_installation_ar set st_id_num = ctr;
 end loop;
end;
/

The forward slash (/) tells Application Engine to execute the entire PL/SQL block.
No conflicts result due to the semi-colon.

Licensed to James M White <jwhite@maine.edu>

1060 APPENDIX F

&MSG

Purpose The &MSG function writes a message to the message log.

Syntax
&MSG([Message_Set_Number], Message_Number, [Parm_1],….
 [Parm_n])

Rules The &MSG function always uses an SQL statement type of Update and must
be the first and only function or command in the statement.

Example
&MSG(,1,’Hello World’)

The example is the same as that used in exercise #1. Since the Message Set Number is
excluded, it defaults to the Message Set Number specified on the Application Engine
definition panel. Message Number 1 is passed a string value of “Hello World”. This
string value is used in place of the %1 substitution variable defined in the message cat-
alog entry.

&&RECORD

Purpose The &&RECORD macro inserts all the field names of the specified record
into your statement. The optional parameter can be used to assign a column syn-
onym when the entire record is required in your statement(s). This is a quick alterna-
tive to the &CLAUSE function.

Syntax
&&RECORD(record [, parm_1])

Rules You must use a valid RECNAME.

Example
INSERT INTO ps_customer_tao
SELECT &&RECORD(CUSTOMER)
 FROM ps_customer

Using &&RECORD, the Select statement uses all the columns in the Customer
record as they exist in Application Designer. This example assumes the CUSTOMER_
TAO record matches the Customer record exactly.

&ROUND

Purpose When Multi-Currency is activated, this function can be used to round
numeric fields to the currency precision specified under Define General Options.

Syntax
&ROUND(field)

Licensed to James M White <jwhite@maine.edu>

APPLICATION ENGINE FUNCTIONS 1061

Rules The Multi-Currency option must be specified.
To set the Multi-Currency option
Go → PeopleTools → Utilities → Use → PeopleTools Options
To set the currency precision:
Go → Define Business Rules → Define General Options → Use A-D →

Currency Code

Example
UPDATE ps_user_tmp
 SET USER_AMT1 = &ROUND(USER_AMT1)

This example updates the table with the USER_AMT1 value rounded to the appropri-
ate currency precision.

&SELECT

Purpose Updates the cache field with the value assigned by the corresponding SQL
Select statement

Syntax
&SELECT(cache_field_1 [,cache_field_2] [,cache_field_x])
SELECT field_1 [,field_2] [,field_x]

Rules &SELECT is used in tandem with an SQL Select statement immediately
following.

• The number of cache fields must match the number of fields in the SQL Select.
• The datatypes of corresponding cache and SELECT fields must match.
• If NO rows are returned by the SQL Select statement, the cache fields are

assigned a value of zero or blank, depending on the datatype.

Example
&SELECT(COUNTER)
SELECT COUNT(*)
 FROM PS_PERSONAL_DATA

The example is the same as that used in exercise #2. The record count is selected from
the PERSONAL_DATA table (lines 2 and 3). The &SELECT function (line 1) assigns
the record count to the cache field COUNTER.

Licensed to James M White <jwhite@maine.edu>

Licensed to James M White <jwhite@maine.edu>

1063

index

System variables

SQR variables
#prcs_run_status 639
$prcs_oprid 646
$prcs_process_instance 637
$prcs_run_cntl_id 646

PeopleTools variables
% PanelGroup 386
%BPName 276
%Date 276, 379
%DATEIN 813
%DATEOUT 813
%DateTime 276
%DbName 276
%DbType 276
%EmployeeId 276
%Import 45, 276
%KeyEqual 421
%Language 276, 282
%Market 276
%Menu 276
%MessageAgent 276
%Mode 277, 300
%OperatorClass 277
%OperatorId 277, 321
%Panel 277
%PanelGroup 277
%SQLRows 277, 335
%Time 277
%WLInstanceID 277
%WLName 277

Application Engine variables
&&RECORD 1060
&BIND 786, 813, 816, 821,

827, 834, 945, 1056
&CLAUSE 1057
&CLEARCURSOR 1058
&EXECUTE 1059
&MSG 802, 806, 823, 839,

859, 1060
&ROUND 1060
&SECTION 875, 886, 949
&SELECT 811, 816, 821,

865, 1061

A

Abort Application 784
Absent status (Upgrade flag) 449
Access groups 67
Access Profile 54
ACTION (COBOL) 721
Action (Panel Group) 449
Action Add (Upgrade) 450
Action Delete (Upgrade) 450
Action Mode (Panel Group)

Add 176
Correction 176
Data Entry 176
Update/Display 176
Update/Display All 176

Action Replace (Upgrade) 450
ACTION-COMMIT 729

ACTION-FETCH 732
ACTION-SELECT 730
Activate event 420
active scroll area 303
ActiveRowCount (PeopleCode

function) 304, 353
Add 16, 176, 220, 221, 224
Add Search Record 153
AddKeyListItem (PeopleCode

function) 387
AddToDate (PeopleCode

function) 378
administration tools 32–68
AE_APPL_TBL 777
AE_MESSAGE_LOG 897, 906
AE_REQUEST 889, 891, 893,

894, 895, 896, 897, 898, 902,
906

AE_RUN_CONTROL 782,
788, 929, 946

AE_SECTION 873, 875, 880,
882, 893

AE_SECTION_TBL 777, 778
AE_STEP_TBL 777, 778
AE_STMT_B_TBL 779
AE_STMT_TBL 777, 779
AEADHOC 804, 815, 825
All (PeopleCode function) 380
Alter comments to script 214
Alter Tables 210
Alter/Create scripts 453

Licensed to James M White <jwhite@maine.edu>

1064 INDEX

alternate search key 93, 145,
152, 206

ANY (Data Type) 272
API Aware 624, 636, 652, 654
API Aware flag 624, 640
API Aware process 634, 640
API Aware program 639
API files 635
API programs 683
Application Designer 1, 19, 58,

69, 75, 249–256, 259, 260,
475, 739, 793, 896
PeopleCode 263

Application Engine 250, 769,
771, 908
advantages 772
analyzer 948
analyzing programs 947
compared to SQR 805, 826,

848, 870, 886
debugger 966
definition panels 779
definition tables 777
disadvantages 772
macros 963
main components 776
messages 805
PeopleCode 963
program 802
restarting a process 946

application folder tab 780
Application Library 958
application menus 113
Application Processor 69, 216,

218, 220, 223, 225, 226, 229,
230, 234, 240, 244, 247, 257,
261, 272, 293, 333, 337, 553,
612

Application Reviewer 401, 408
Application Run Control

record 574, 600, 643
application server 6, 9, 126
Application upgrade 438
architecture 4
arithmetic operators 288

array objects 422
arrays

in a loop 423
multi-dimensional 422
populating 422
removing items 423

Audit 96
Audit Flags 451
authorizing users 118
Auto Update 96
Automatic Insert option 477
AutoSelect 342

B

Background Disconnect
Interval 48

backward compatibility 416
bar items 14, 114
BEA Systems 5
Bind Data 724, 763
Bind Setup 724, 763
bind variables 333, 731, 733,

734, 735, 786
BOOLEAN (Data type) 272
Boolean constants 275
Boolean operators 289
Boolean value 335
Break (PeopleCode

statement) 282, 284
Break at Cursor 406
Break at Start 402, 403
BRIO Technology 569
Build (records) 211, 215
build options 210
building database tables 204
built-in functions

(PeopleCode) 376
Business Component 250
Business Interlink 250
Business Process Map 48

C

cache (Application Engine)
Process Request panel 824

cache fields 807–816
assigning values 811
values 813

cache record 771, 780, 788, 789,
806, 807, 824, 893
custom 793
USER_AET 817

calling functions 260
Cancel 244, 248, 307, 320, 385
catalog tables 198
C-callable library 396
Change Control 450
Changed * (Upgrade) 449
Changed/Unchanged

(Upgrade) 449
Char (PeopleCode

function) 377
character field 296
Check Box 460
child key 341, 362
child row 341, 365
Citrix 4
class of operators 47, 48
client 9
COBOL 713, 753, 771

trace 761
trace file 758
trace file contents 763
using SQL 716

COBOL Analyzer 766
COBOL Call Structure

listing 766
COBOL program 715, 784, 800
COBOL statement timings 764
Column Length Options 212
command button 161, 164
command line 666
command-line parameters 645
Comment (Application

Engine) 777, 785
comment (PeopleCode) 271
COMMIT 729
commit 247, 309, 781
commit limit 451
Commit-Transaction

function 640

Licensed to James M White <jwhite@maine.edu>

INDEX 1065

communicating errors 639
communication area 722
Compare Type 446
comparison operator 288, 335
compilation errors 558
concatenation

(PeopleCode) 287
Configuration Manager 1, 11,

528, 628, 648, 758
Application servers 13
Client Setup 14
Common 13
Crystal 13
Database 13
Display 12
nVision 13
Process Scheduler 13
Remote Call 14
Startup 12
Trace 13
Workflow 13

CONNECT 728
constants 275
contiguous setup list strings 727
control display 229
control statements 279
conversion functions 377
Copy dialog panel 451
Copy Options 84
Copy process 450
Copy to Clipboard push

button 580
Correction (Action Mode) 16,

153, 176, 177, 178, 225
Create Indexes 210
Create Tables 210
Create Views 210
creating a custom panel 498–

513
creating a custom record 495–

498
Critical Database Update 782
cross reference files 765
cross references 30
Cross-Reference Utilities 28
Crystal Report (.rpt) 576, 708
Crystal Reports Process 708

Ctrl-F7 82
CurrEffdt (PeopleCode

function) 378
CurrEffSeq (PeopleCode

function) 379
CurrentRowNumber 352, 355
CURSOR 723
custom (Field Format) 86
CUSTOM (PTPSQLRT

parameter) 84
customization 431, 473
Customization Upgrade 444

D

data access 332
Data Administration 100, 204
data conversion 337
Data Definition Language (See

DDL)
Data Entry (Action Mode) 176
data entry (Application

Processor) 236, 303
data model 591
Data Mover 1, 33, 717, 719, 742

scripts 719
data retrieval 225, 300
Data Trace 409
data types 271

ANY 272
BOOLEAN 272
DATE 272
DATETIME 272
NUMBER 272
OBJECT 272
STRING 272
TIME 272

database
catalog tables 198
keys 148, 205
object modeling 202
security 660
type of compare 449
views 204

DATE (Data type) 272
Date (PeopleCode

function) 377

date comparison 136
Date/Time 377

defaults 576
parameters 576

DatePart (PeopleCode
function) 272

DATETIME (Data Type) 272
DateValue (PeopleCode

function) 377
DBG1.tmp 528
DDDAUDIT 201
DDL 100, 207, 208
DDL Model 203
Debug 781
debugging 400

breakpoint 401, 427
viewing data 407

debugging tools 399–415, 956,
966
Application Reviewer 401
WinMessage 400

decimal number setup 726
decision logic 849–870
Declare Function 395, 396
Default Panel Control 96
Default processing 233
Define List button 411
Define-Prcs-Vars (SQR) 635,

637
Delete (COBOL) 733, 912
DELETE (SQLExec) 336
Delete Row (F8) 16, 351, 367
DeleteRecord (PeopleCode

function) 383
DeleteRow (PeopleCode

function) 347, 355, 370, 381
Department security 548, 664
Department table 38
Derived records 84, 155, 160
Derived/Work record 154, 504,

506, 512, 557
Descending Key 94, 206
Description 623
Detail Trees 66
development objects 250
development steps 889

Licensed to James M White <jwhite@maine.edu>

1066 INDEX

development tab 443, 564
DiscardRow (PeopleCode

function) 301
DISCONNECT

(COBOL) 728
DISCONNECT ALL

(COBOL) 728
Display Control 105, 501
display-only 104
DispOnly 49
DLL 397
DMS script 719, 727, 734, 742
DO section 784, 834, 846, 927,

949, 950
DO Select 777, 784, 785, 833,

841, 854
DO Until 777, 785
DO When 777, 785, 864, 865,

918, 923
DO While 777, 786
DoCancel (PeopleCode

function) 385
DoSave (PeopleCode

function) 385
DoSaveNow (PeopleCode

function) 521
dot notation 417
Drop Column Options 212
drop-down list 102, 131, 460
DUAL 864, 870
duplicate keys 306
Duplicate Order Key 93, 206
dynamic prompt 137, 154
dynamic sections 871–886
Dynamic SQL 814
dynamic views 84
DYNSECTN section 925

E

Edit Box 102, 460
Edit Run Control panel 585
edit search fields 223
Edit Type 97
editable fields 384
editing values 260

EFF_STATUS 134, 135, 136
EFFDT 134, 135, 136, 177
effective date 134, 176, 178, 378
embedded SQL 332–339, 716
EMPLMT_SRCH_GBL 661
Employee ID 54
End-Function 394
End-If 280
ERP 429
error 298, 304, 307, 309, 320,

326, 579
duplicate key 306

ERROR (COBOL) 728
error handling 313–331
error-handling (COBOL) 716
ERR-SECTION 729
Evaluate (PeopleCode

statement) 281
event-driven languages 257
Execute options 211
Execution Trace 409
Explain (Messages) 315
Export 35
expressions 286
external function

(PeopleCode) 393, 559
external Non-PeopleCode

functions 396

F

–f flag (SQR flag) 655
F7 82
F8 239
Fast Security 669
FETCH 731
Fetch 418, 730, 732
FetchValue (PeopleCode

function) 357
FieldChange (PeopleCode

event) 26, 261, 299, 303, 352
FieldChanged (PeopleCode

function) 382
FieldDefault 26, 95, 261, 295,

296, 302, 404
FieldEdit 26, 261, 298, 303, 327

FieldFormula 26, 261, 295, 296,
393, 395, 556, 557

Field-Level security 660
Fieldname 274
fields 20, 78

character 296
definitions 78, 255
editable 384
hidden 384
invisible 384
label 462
modification 236
numeric 296

File Layout 252
File object 417
File Overwrite Options 214
file-handling methods 417
Find Object References 468, 536
Fit/Gap Analysis 72
Folder Tab Label 611
font settings 270
For (PeopleCode statement) 283
From Search field 94
From Search keys 149
FUNCLIB 556
function categories 178

(See also appendix E)
built-in 376
Cancel 385
conversion 377
Date/Time 377
Effective Date/Sequence 378
external 393
internal 389
Logic 380
Math 380
Message Catalog/

Display 314
overview 375
Panel buffer 381
Panel control 384
Panel transfer 387
Process Scheduler 388
Save 385
scroll 365

Licensed to James M White <jwhite@maine.edu>

INDEX 1067

function categories(continued)
Sequence 378
String 386
Trace 413

function declaration 395
Function keys

F7 82
F8 239

function libraries 278, 297, 374–
398

Function statement
(PeopleCode) 389

G

General Attributes 48
general environment 255
General tab 105, 111, 116
Get-As-Of-Date 648
Get-Run-Control-Parms 637
Get-Values procedure 646
Global Time Zone 711
global variables 277, 278
granting security access 523
Gray (PeopleCode

function) 384
Grids 23

column widths 192
copy data 190
creating on a panel 193
freezing columns 192
from spreadsheets 191
into spreadsheets 190
row heights 192
sorting 190

Group boxes 22

H

hidden fields 384
Hide (PeopleCode

function) 384
HideRow (PeopleCode

function) 359
HideScroll (PeopleCode

function) 360
HTML 250, 253

HTML definitions 253
HTML Document (.htm) 708

I

Icons 76–78
If (PeopleCode statement) 280
If-Then-Else 279
Ignore Error (Application

Engine) 784
IGNORE_DUPS 37
image definition 253
Images 23
Import 36
Import Header 39
Import Manager 37, 276
indexes 208
Initiated (Process Scheduler

Status) 579, 637, 639
inline bind variables 334, 339
Input dialog box 95, 145
input parameters 643, 644, 697
inquiry panel 187, 188
INSERT 336, 337
Insert 734, 735
Insert Row (F7) 16, 351
InsertRow (PeopleCode

function) 383
INSTALLATION 668
Int (PeopleCode function) 381
integrating SQC files 648
internal functions 389
Internet Client 249
invisible fields 384
Issue Message 781
item name 546
ItemSelected (PeopleCode

event) 263

J

Java applets 7
job 688
Job Definition (Process Scheduler)

Job Description 694
Job Priority 694
Job Run Mode 694

Job Definition (Process Scheduler)
(continued)
Parallel 694
Process Class 694
Recurrence Name 695
Run Always 695
Serial 694, 695
Server Name 694

Job Definitions panel group 695
job stream 688, 690, 691
Jolt 7
Jolt Internet Relay 7
Jolt Relay Adapter 7

K

Keys 93
Alternate Search Key 93
Descending Key 94
Duplicate Order Key 93
From Search Field 94
List Box Item 94
Search Key 94
Through Search Field 94

L

Label 103, 104
label type

RFT Long 463
RFT Short 463
Text 512

language elements 268
Language Preference 54
LASTUPDOPRID 449
layout (Panel Definition) 105
leading characters,

removing 386
Len (PeopleCode function) 387
level one (Scroll Bars) 170
level one record 342
level parameter 355
level two (Scroll Bars) 170
level zero (Scroll Bars) 171
level zero record 341
list box 145, 147, 152
List Box Item 94

Licensed to James M White <jwhite@maine.edu>

1068 INDEX

local variables 277
Log Client Request 624
log file 35, 36, 410
log window 409
Logging Level 213
Logging Output 213
logic functions

(PeopleCode) 380
LONG (Data Type) 335
Long Description 623
Long Edit Box 23, 460
loop 284, 354
Lotus 1-2-3 files (.wks) 708
Lower (PeopleCode

function) 386
LTrim (PeopleCode

function) 386

M

MAIN (Application
Engine) 777, 798, 799, 808,
828, 839, 854

Mass Change 771, 784, 800
math functions

(PeopleCode) 380
math operations

(PeopleCode) 288
menu 14, 113, 117, 276, 544

actions 295
attaching panel group 899
modifying 515
pop-up 113, 242, 305
Problem Tracking 616
properties 116
security 666
standard 113

Menu Items 49, 108, 112, 113,
114, 119, 614
properties 115

Menu PeopleCode 263, 267
Menu Upgrade 565
Message catalog 316, 326, 330,

789, 790
Message channel 254
Message definition 253

Message log 771, 936
Message node 254
Message number 318, 330
Message set 316, 330, 790, 1060
Message severity 319
MessageBox 314, 316, 405

style parameters 314
Meta-SQL 272, 337, 772, 956,

962
Meta-Variables 963
Microsoft Excel (.xls) 708
Mod (PeopleCode

function) 381
mode (Panel Group) 218, 220
modifying PeopleSoft

COBOL 738–747
MsgGet (PeopleCode

function) 330
MsgGetText (PeopleCode

function) 330
multi-dimensional arrays 422
multiple rows 828–848

processing 829

N

nested statements
(PeopleCode) 280

Network security 660
Next in List 16
Next Panel in Group 16
NextEffDt (PeopleCode

function) 379
No Auto Select 172, 173, 174
No Auto Update 174
Node Oriented Trees 66
None (PeopleCode

function) 380
NOQUOTES 813, 821, 827,

1056
NOWRAP 813, 1056
n-tier 8
NUMBER (Data Type) 272
Number (Field Attribute) 80
numeric 275
numeric field 296

O

OBJECT (Data Type) 272
object group 60, 62
Object Inspector 77
object modeling 202
Object references 28, 536
Object security 58, 59
object types 58
Object Workspace 76
obsolete process definition 642
online help 13
Online panels 572
online security 660
Online Trace File 758
operation code 410
operation operands 410
operations hierarchy 288
operator 118, 126
operator class 47, 67, 118, 124,

126, 277
Operator ID 47, 53, 55, 56, 635
Operator Password 54
Operator Preferences 63
operator security 900
OPRCLASS 118, 128, 149
OPRID 118, 127, 149
Output Destination 587, 707,

708
output file 655
Output Format 707, 708
Output Options 702
output options 707
Output Type 707
Output Variable 335
Output Window 76
Override Options 705

P

Panel buffer functions 381
Panel control functions 384
Panel definition 101, 256
panel design 165–197
Panel Design Icons 77
Panel Field properties 103

Licensed to James M White <jwhite@maine.edu>

INDEX 1069

Panel Group 24, 109, 112, 218,
247, 277, 419, 541, 546, 610,
624
adding a panel 485
attaching to menu 899
custom 513
definitions 256
display 232, 302
structure 419
upgrade 565

Panel Group Icons 78
panel layout 105, 170
Panel Properties 105
Panel Transfers tab 627
panels 22, 109
parameter descriptions 721
parameter list 319, 397
parameters 344, 603, 698

level (Scrolls) 355
MessageBox 316
style (Message) 316
Turbo (Scrolls) 347

parent data 365
parent key 342
parent record 91
parent row 341
partial key 145
Password 125
PeopleCode 26, 29, 44, 69, 100,

257, 520, 521, 891, 902, 903,
956
comments 271
data elements 273
debugging tools 399–415
editor 259, 269
embedded SQL 332–339
events 261
expressions 286
font settings 270
function libraries 374–398
language elements 268–292
PeopleSoft 8 416–427
RowSelect 315
runtime errors 261
scrolls 340–373
search 411

PeopleCode (continued)
SQLExec commands 520
statements 278
toolbar icon 265
tools tables 289
Trace 413

PeopleCode Debugger 423
PeopleCode editor 269, 274,

334
PeopleCode event

FieldChange 521
FieldDefault 26, 95, 261,

295, 296, 302, 404
FieldEdit 26, 261, 298, 303,

327
FieldFormula 26, 261, 295,

296, 393, 395, 556, 557
ItemSelected 263
PrePopup 27, 262, 305
RowDelete 239, 262, 303,

304, 327, 354, 355
RowInit 261, 296, 297, 302,

304, 354, 556
RowInsert 239, 262, 303,

354, 383
RowSelect 262, 301, 324
SaveEdit 262, 299, 307, 327,

380
SavePostChg 521
SavePreChg 521
SearchInit 262, 296, 297, 300
SearchSave 262, 300, 301
WorkFlow 521

PeopleCode functions 557, 560
(See also appendix E)
ActiveRowCount 304, 353
AddKeyListItem 387
AddToDate 378
All 380
Char 377
CurrEffdt 378
CurrEffSeq 379
Date 377
DatePart 272
DateValue 377
DeleteRecord 383

PeopleCode functions (continued)
DeleteRow 347, 355, 370,

381
DiscardRow 301
DoCancel 385
DoSave 385
FieldChanged 382
Gray 384
Hide 384
HideRow 359
HideScroll 360
InsertRow 383
Int 381
Len 387
Lower 386
LTrim 386
Mod 381
MsgGet 330
MsgGetText 330
NextEffDt 379
None 380
PriorEffDt 379
RecordChanged 382
RecordDeleted 383
RecordNew 383
Round 380
RowFlush 367
RowScrollSelect 363
RowScrollSelectNew 365
RowSelect 26, 232, 262, 301,

315, 324
RTrim 376, 386
ScheduleProcess 388, 394
SearchInit 26, 262, 296, 297,

300
SearchSave 26, 262, 300, 301
SetCursorPos 307, 327
SetNextPanel 387
SetTracePC 414
StopFetching 301
SUBSTR 338
Time 377
TimePart 272
TotalRowCount 372
TransferPanel 388
UnGray 385

Licensed to James M White <jwhite@maine.edu>

1070 INDEX

PeopleCode functions (continued)
UnHide 384
UpdateValue 370
Upper 386
Warning 298, 304, 307, 309,

320, 327
WinMessage 324, 400

PeopleCode statements 278
Break 282
Declare Function 395
Else 280
End-Evaluate 283
End-If 280
Evaluate 281
For 283
Repeat 284
Return 396
True 279
When 281
When-Other 282
While 285, 286

PeopleSoft
API 572
architecture 4
Configuration Manager 628
security 659

PeopleSoft 8 8, 249–256, 416–
427, 702–711, 954–968

PeopleSoft Online security 660
PeopleSoft Query tool 662
PeopleTools 8 417, 710

Acrobat (.pdf) 708
array objects 422
Comma Delimited (.csv) 708
file object 417
HP format (.lis) 708
HTML documents format

(.htm) 708
Line Printer Format (.lis) 708
Other (.lis) 708
output formats 708
panel group 419
Panel group PeopleCode 419
PeopleCode Debugger 423
Postscript (.lis) 708

PeopleTools 8 (continued)
Process Request Monitor 703
Process Scheduler

Manager 703
Process Scheduler Request

Dialog 703
Process Scheduler Server

Agent 703
Rowset 420
SQL object 418
SQR Portable Format

(.spf) 708
PeopleTools catalog 199

(See also appendix C)
PSDBFIELDLANG 21
PSINDEXDEFN 22
PSKEYDEFN 22
PSMENUDEFN 25
PSMENUDEFNLANG 26
PSMENUITEM 26
PSMENUITEMLANG 26
PSPCMNAME 27
PSPCMPROG 27
PSPNLDEFN 24
PSPNLFIELD 24
PSPNLGDEFNLANG 25
PSPNLGROUP 25
PSPNLGRPDEFN 24
PSPROGNAME 27
PSPROJECTDEFN 27
PSPROJECTITEM 27
PSPROJECTMSG 27
PSRECDDLPARM 22
PSRECDEFN 21
PSRECDEFNLANG 22
PSRECFIELD 21
XLATTABLE 140

PeopleTools run control
record 576, 583

PeopleTools upgrade 438
PERSONAL_DATA 807
PERSONAL_SRCH_QRY 661
PGM_NAME 718, 723
Physical Application Server 6
platform dependent 338

platform independence 337, 338
platform specific 337
populate search fields 222
populating arrays 422
pop-up menu 25, 113, 117, 242,

305
PostBuild 420
PRCSAPI.sqc 635, 637
PRCSDEF.sqc 635
PRCSRUNCNTL 603, 606
PRCSRUNCNTL_LC_SBP 60

6
PreBuild (PeopleCode

event) 420
PrePopup (PeopleCode

event) 27, 262, 305
Previous in List 16
Previous Panel in Group 16
primary records 344
printer setup SQCs 711
PriorEffDt (PeopleCode

function) 379
Problem Tracking

(application) 34, 69, 309,
384, 393, 590

Problem Tracking menu 616
PROCEDURE DIVISION 739
Process Class 623
Process Definition 113, 123,

617, 621, 622, 623, 629, 703,
903
API Aware 624
Description 623
Log Client Request 624
Long Description 623
Panel Group 624
Priority 623
Process Class 623
Process Security Groups 625
Recurrence Name 623
Run Location 623
Server Name 623
SQR Runtime 624

Process Definition dialog 621
Process Definition Options

panel 626

Licensed to James M White <jwhite@maine.edu>

INDEX 1071

Process Definition panel
group 704

Process Detail panel 580
Process groups 53, 118, 121
Process Instance 635
Process Monitor 572, 578, 581,

632, 654, 749, 750, 754
status 579

process profiles 123
Process Request 684, 803, 821,

843, 934
assign cach values 824

Process Request detail 579
Process Request table 636
Process Run status 639
Process Scheduler 69, 113, 123,

388, 572, 574, 635, 642, 752,
803, 903
Output Destination 576
PeopleCode support 710
Request dialog 576
Run Date/Time 576
Run Recurrence 576

Process Scheduler API 749
Process Scheduler functions 388
Process Scheduler Request 576,

587, 631, 702, 706
Process Scheduler security 702,

709
Process Scheduler

terminology 703
Process Security groups 625, 666
process type 621
PROCESS_INSTANCE 793,

794, 795, 929, 944
Processing (Process Status) 579,

637, 639
PROCESS-INSTANCE 750
ProcessRequest class 710
PROGCOUNT 21
Project Workspace 76, 958
projects 82
prompt 134, 136, 137, 138, 139,

240
prompt records 131
Prompt Table Edit 97, 238

Prompt Table No Edit 97
properties 93, 105, 111, 193,

196, 611
prototype 74
PS_EMPLMT_SRCH_GBL 66

4
PS_EMPLMT_SRCH_US 533
PS_FAST_PERSGL_VW2 671
PS_PERS_SRCH_QRY 664
PS_PRCSDEFN 642
PS_PRCSDEFNGRP 642
PS_PRCSDEFNPNL 642
PS_PRCSDEFNXFER 642
PS_SQLSTMT_TBL 717
PSAUDIT 92, 451
PSAUTHITEM 56
PSDBFIELD 200, 238, 448
PSIDXDDLPARM 199, 200
PSINDEXDEFN 22, 199, 200
PSKEYDEFN 22, 199, 200
PSLOCK 864, 870, 955
PSMENUDEFN 25, 199
PSMENUDEFNLANG 26
PSMENUITEM 26, 199
PSMENUITEMLANG 26
PSOPERDEFN 321
PSOPRDEFN 277, 334
PSPCMNAME 27, 199, 289
PSPCMPROG 27, 199, 269,

290
PSPNLDEFN 24, 199
PSPNLFIELD 24, 199, 229,

642
PSPNLGROUP 25, 199, 228
PSPNLGRPDEFN 24, 199, 218
PSPRCSRQST 388, 636, 639,

642, 750
PSPRCSRQST table 639
PSPRCSRUNCNTL 576
PSPROGNAME 27, 199, 290
PSPROJECTDEFN 27
PSPROJECTITEM 27
PSPROJECTMSG 27
PSPRSCRQST 638
PSRECDDLPARM 22, 199,

200, 208

PSRECDEFN 86, 92, 199, 200,
228, 449, 834

PSRECFIELD 21, 199, 200,
228, 238, 269, 291, 448, 829,
834

PSRELEASE 449
PSSQR Shell 710
PSSQR1 629
PSSQR2 629
PSSQR3 629
PSSQR4 629
PTCSQLRT 721, 729
PTCUSTAT 749
PTPEMAIN 769, 771, 788,

804, 944, 946, 952
PTPSQLRT 717, 719, 720, 721,

763
PTPUSTAT 749, 750, 755, 756
push button 23, 154, 160, 161,

164, 183, 241, 242, 508, 512

Q

Query Access Trees 66
Query Security record 91
Query tool 662, 665
Query views 84
Queued (Process Status) 579,

639

R

Radio Button 460
read-only access 58
Reasonable Date 238
Rebuild SQL Statements 781
RECNAME 833
record 84, 86

level one 342
level zero 341

Record audit 92
Record definition 205, 255, 497
Record Display Icons 77
record events 261
record field 93, 102, 269
Record Field properties 41
Record Field references 273

Licensed to James M White <jwhite@maine.edu>

1072 INDEX

Record PeopleCode 261
Record tab 103
Record Type 92
RecordChanged (PeopleCode

function) 382
RecordDeleted (PeopleCode

function) 383
RecordName 274
RecordNew (PeopleCode

function) 383
records

delete 519
link 342
location header 346
primary 344

recurrence 686
definition 702

Recurrence Definition
panel 577

Recurrence Name 623
Related Display 105, 229

field 501
Related Language record 91
removing items from arrays 423
Repeat 284
REPLACE_ALL 36
REPLACE_DATA 37
Report Filter 84
report output 582
Report Request Parameters 574
Request Parameters 579, 580,

655, 752
Required Field 238
Restart 781, 946
retrieve data 230
Return (PeopleCode

statement) 396
return code (COBOL) 728
return value (PeopleCode) 396
Rich Text File (.rft) 708
ROLLBACK 729
Round (PeopleCode

function) 380
row by row processing 773
Row Select processing 232

RowDelete (PeopleCode
event) 26, 236, 239, 262,
303, 304, 327, 354, 355

RowFlush (PeopleCode
function) 367

RowInit (PeopleCode event) 26,
261, 296, 297, 302, 304, 354,
556

RowInsert (PeopleCode
event) 26, 236, 239, 262,
303, 354, 383

Row-Level security 660, 662,
665, 668

RowScrollSelect (PeopleCode
function) 363

RowScrollSelectNew (People-
Code function) 365

ROWSECCLASS 127, 128
RowSelect (PeopleCode

event) 26, 232, 262, 301,
315, 324

Rowset (PeopleTools 8) 420
RTrim (PeopleCode

function) 376, 386
Run Control 574, 887–941
Run Control ID 574, 621, 635
Run Control panel 574, 605,

633, 684, 893
Run Control record 583, 600,

633, 672
Run Location 576, 623
Run Recurrence 699
Run with Defaults 16
running multiple requests 883
runtime 245
runtime errors 261

S

save 243, 307
save events 386
Save functions 385
save processing 243, 307
SaveEdit (PeopleCode event) 26,

262, 299, 307, 327, 380

SavePostChg (PeopleCode
event) 262, 309, 315, 322,
324, 334

SavePreChg (PeopleCode
event) 26, 262, 308, 315,
324, 334

saving panel 106
schedule parameters 686
ScheduleProcess (PeopleCode

function) 388, 394
Scheduler parameter list 646
scheduling, recurring basis 684
schema 85
Script File Options 214
scroll area 303, 306
scroll bar 166, 168, 169, 171,

172, 173, 174, 177, 342, 482
scroll bar objects 341
scroll functions 353

enhanced 420
scroll handling 257
scroll levels 344
ScrollFlush (PeopleSoft

function) 351, 354
ScrollPath 346
scrolls 340–373
ScrollSelect (PeopleSoft

function) 347, 354
ScrollSelectNew (PeopleSoft

function) 350
search fields 220
search in PeopleCode 411
Search key 94, 132, 145, 152,

553
search processing 218, 295, 300

add mode 295
search record 144, 148, 151,

218, 533, 534, 612
SearchInit (PeopleCode

event) 26, 262, 296, 297, 300
SearchSave (PeopleCode

event) 26, 262, 300, 301
Secondary panel 23, 179, 182,

183
SECTION 777

Licensed to James M White <jwhite@maine.edu>

INDEX 1073

section reusability 846
security 119, 129, 901

database 660
field-level 660
implementing 659–682
Row-Level 660
row-level 668

security access 488, 523, 546,
615

Security Administrator 1, 32, 47,
118, 119, 123, 126, 218

security class 61
security in SQR 672
security layers 659
security record 537
security search views 664
SELECT 337, 730
Select 731, 777, 785, 811, 833
Select Data 725, 745
Select Setup 724, 741, 745
Select statement 92
selection logic 591
Server Agent 580
Server Name 623
Set Control field 91, 98
SET INPUT 36
SET OUTPUT 35
set processing 772, 775
SetCursorPos (PeopleCode

function) 307, 327
SetDefault 310
SETENV.sqc 635
SETID 98
SetNextPanel (PeopleCode

function) 387
SetTracePC (PeopleCode

function) 414
Setup 595
setup list 724, 742
Signed Number (Field

Attributes) 80
signing-on

connection type 10
database name 11
operator ID 11
password 11

Sign-On 121
sign-on times 51, 53
SQC file 635, 647
SQL Alter 212
SQL definition 254, 418
SQL in COBOL programs 716
SQL object 418
SQL statement 763, 784, 800
SQL statement name 723
SQL statement table 718
SQL string 334, 337
SQL table name 92
SQL tables 198, 201, 203, 204,

205, 209, 226, 261, 302
SQL Trace 758, 765
SQL View 84, 92, 185, 202, 205,

214, 226, 302, 496
SQL-CURSOR-

COMMON 723, 732
SQL-Error 639
SQLExec function 272, 274,

276, 277, 295, 309, 332, 333,
405, 521, 786

SQLRT 722
SQL-STMT 723, 731
SQLTABLENAME 21
SQR 257, 283, 569, 571, 771,

772, 797, 817, 829, 850
command line 572
Report 621

SQR dialog box 636
SQR process 621
SQR program 572, 631

designing 591
executing 597
output files 597

SQR Runtime 624
SQR security 672
SQR security flag 669
SQRW dialog box 666
SQT 624
stamping the database 453
Standard menus 113
Startup tab 12
State Record 957
STATEMENTS 777

statements 278
STATIC 814, 822, 827, 1056
Static Image 22
Static Text 22, 102
status 449, 639

absent 449
In Progress 310
Unknown 449

STDAPI.sqc 635, 637, 638, 653
Stdapi-Init (SQC procedure)

636, 637, 639, 653
Stdapi-Term 636, 638, 639, 653
STEP 777
STMT_NAME 719, 723
STMT_TEXT 719
STMT_TYPE 718, 723
StopFetching (PeopleCode

function) 301
Store command 719
stored SQL statement 718, 727
STRING (Data Type) 272
string functions 377, 386
structured programming 717
Structured Query Report Writer

(See SQR)
style 106, 315, 324
style parameter 316, 319, 324
style sheet 255
subpanel 179, 180, 181, 182,

460, 464, 466
subrecord 84, 180, 181
Substring function 386
Success (Process Status) 579,

639
Summary Trees 66
Suppress Error 784
syntax check (PeopleCode) 326
SYSADM 667
system edits 37
system tables 1002–1007
system variables 276

T

target orientation 447
testing 523–524, 547, 563
Text Files (.txt) 708

Licensed to James M White <jwhite@maine.edu>

1074 INDEX

Think Time PeopleCode 295
Third Party panel 669
three-tier 4, 247
Through Search field 94
Through Search key 149
TIME (Data Type) 272
Time (PeopleCode

function) 377
Time-Out 49
TimePart (PeopleCode

function) 272
toolbar 16
toolbar icon 265
tools tables 289
TotalRowCount (PeopleCode

function) 372
trace 413
trace file 759, 763, 787, 937

contents 763
sample 943

trace filename 528
trace options 530, 780
trace settings 759
Trace SQL statement 530
Trace utility 528
Traffic Light button 575
trailing characters,

removing 386
TransferPanel (PeopleCode

function) 388
translate 140, 141, 144
Translate Table edit 97, 238
translate values 42, 140
Tree Manager 1, 32, 64
Trees 23, 128
True 279
Turbo 348
Turbo parameters 347
tutorial 789

Tuxedo 5, 6, 247
two-tier architecture 4

U

UnGray (PeopleCode
function) 385

UnHide (PeopleCode
function) 384

Unicode 711
UPDATE 336, 337, 732
Update 734, 777, 785
Update mode 300
Update/Display 16, 153, 176,

178, 221, 224
Update/Display All 16, 153,

176, 178, 225
UpdateValue (PeopleCode

function) 370
upgrade 27, 438, 563
Upgrade Compare process 84,

444, 448
upgrade considerations 433
Upgrade Copy 84
Upgrade Copy process 444
Upgrade tab 443, 564
Upgrade values 449
Upper (PeopleCode

function) 386
Use tab 104, 106, 111, 117
User Think-Time 322
USER_AET 817
using Select method 421
utilizing MessageBox 320

V

validate fields 298
vanilla 429

variables
bind 334
global 278
inline bind 334, 336, 339
output 335
temporary 272

verify mode 225
view definition 497

W

Warning (PeopleCode
function) 298, 304, 307, 309,
320, 327

web server 10
When 281
WHERE 35
While 285, 286
WinBatch 764
Windows Notepad 582
Windows Registry 759, 760
Windows Registry Editor 760
WinMessage (PeopleCode

function) 324, 400
Work record 302

creating 506
work scroll 173
WorkFlow (PeopleCode

event) 27, 262, 308, 315,
324, 334

working storage 726, 731, 740
worklist 277

X

XLATTABLE 140, 167

Y

Yes/No Table edit 97, 238

Licensed to James M White <jwhite@maine.edu>

